

P800M Programmer's Guide 3
Volume lll: Software Processors

A Publication of:
Phillps Data Systems,
DepartmentSSS'T&D,
P.O. Box 245, 7300 AE Apeldoorn, fhe Netherlands.

Publlcation Nunber 5122 99I 28384

May 1983

Copyright (C) by Philips DaÈa Systens 1983.

All rights stricËly reserved. Reproduction or issue
to third parties in any form whatever is noÈ pernitted
without wriÈten authority from the Publisher.

Printed in the Netherlands.

T75 0-l I4ay 1983.

PREFACE

This volume describes the processors running under the control of the MulËi
Applicatlon Monitor. These processors are:

Assembler
Overlay Linkage Editor
[pdat-e Processor

- Librarian
Debugging Package
Transaction-oriented Disc File ManagemenÈ
Sort Processor.

Part I of the manual describes the Assembly Language. A description of FORTRAN
may be found in the FORTRAN Reference I'lanual (5122 99f 1140x), and of RTL/2 in
a number of manuals (e.9. F.TL/2 Language Specification, 5L22 }Lf 2895x).

This manual should be used with the orher MAS Manuals:

Vol. I: Multi ApplicaÊion Monitor
Vol. II: Instruction Set
vo.. IV: Trouble Shooting Guide.

While every care has been taken in the preparaÈion of thls book, some errors
may remain. Should the reader find an error or omission, or have any other
coonent to make, he is invited Èo contacÈ:

SSS, Training and Doctrnentation,

aÈ the address on the opposite page. A forn is provided at the end of this
book, for the user's convenience.

T75 0-2 I4ay 1983.

0-3T75 l4ay 1983.

TABLE OF CONTENTS

PART I ASSEI"IBLY LANGUAGE 1-l

Chapter I Introduction . l-3

9tt"pt*.2 Syntax Description l-5

Chapter 3 Format of Source Statements t... t-8

Labgl Figldo..r........ 1-B
Operation Field 1-9

Locati-on Countero l-ll
Operand Field l-11

Address Expression ... l'12
Register Expression o.. I-12
Constants . 1-13

Decinal Constants . 1-13
Hexadecimal Constants 1-13
Character ConstanEs f-13

CornmenÈ Field 1-13
Input of Source Statements and Corrections l-I4

ChapLer 4 Registers and Machine InsÈructions 1-15

Registers l-15
P-register o 1-15
I'Iorking Registers Al - Al 4 1-15
Register Al 5 r.. o........, 1-15
Condition Register 1-16

Functional Operation of Instructions 1-16
Load and Store Instructions 1-f6
Arithnetic Instructions o l-I7
Logical Instructions r... I-I7
Character Handling InsLructins l-I7
Branch Instructions 1-17
ShifL Instructions 1-19
Control Instructions 1-f9
I/O Instructions l-20
External Instructions 1-20
Move Table InsÈructions l-2O
String Instructions f-20

Addressing Modes I-zL

Chapter 5 Assembly Directives .,........ I-23

Program Framework o... I'23
Linkage Control l-23
Assenbly Control- ... o........... t... . L'23
Value Definitiorl .. o. r........ L-24
Area Reservation o l-24
Listing Control l-24
Spobol Generation o..... I-24
IDENT L-25
END . T-25
ENTRY L-26
EXTRN I-26
coMN . L-27

T75 0-4),lay 1983 .

Chapter I

Chapter 2

Chapter 3

Introduction 2-3

OPT Control StatemenÈ o. . r.... . o... o . Z-7

T75 0-5 May 1983.

PART 3 LINKAGE EDITOR

Chapter I IntroducÈion

PART 4 UPDATE PROCESSOR

Chapter I InÈroduction

Definition Phase ...,...... ... o..
Execution Phase
General Conmands

Chapter 2 Calling Sequence ..,..... r...... . 4-5

Severity Codes o. o............... ... 4-6

Chapter 3 Commands,.. ... 4-7

Defini-tion Commands 4-7
IN Define Input File 4-8
OU Define Output File o.. 4-9
RS Replace a Character String . 4-f1

4-3
4-4
4-4

T75 0-6 May 1983.

DS Delete a Character String .. 4-12
DE Del-ete Line with a Given SÈring . 4-13
IS Insert Line(s) after a Line with a Given SÈring4-L4

Execution Commands o..,... 4-15
RE Replace a String in a Line o.. , 4-16
DL Delete Line(s) o...., ... 4-L7
IL Insert Line(s) ... 4-18
JN Join from Auxiliary Input File .. 4'I9
EX Immediate Exi.t from Update . 4-21
EN TerminaLe Updating ! r 4-22
KF Terminate and CaÊalogue Updated File o . 4-23

General Çemmands . 4-24
CC Change Special Characters . o................ 4'24
CI Change Command Input Device 4-25
IIL llelp - Ask for Syntax 4-26
LF List File ... 4-27

Chapter 4 Examples 4-29

Example 1,.. ... o. 4'29
Example 2 4-29
Example 3 4-29
Example 4 .., 4-30
Example 5 4-30
Example 6 ... ,........., 4-31
Example 7 r o 4-31

PART5LIBRARIA}I .5.I

Chapter I Introduction . 5-3

Chapter 2 Operation ... 5-5

Chapter 3 Flag and l,lagnetie Tape Cornmands . 5-7

Set/Reset Flag Commands 5'7
Invisible Flago................... .o....5-7
Systen Flag 5-7
llrite Protect Flag5'7
Shared Flag'............... 5'7

l"lagnetic Tape Commands ..,.. 5-9
FBS Space File Backward ,........... 5-9
FFS Space File Forward 5-11
PLB Print Label o.. 5-i2
RBS Space Record Baekward o........ 5-13
REF Rewind File 5-14
REI,I Rewind to Load Point 5-15
RFS Space Record Forward o o..,.. o.. 5-16
ULD Unlock Device ... 5-17
IIEF l,Irite End of File 5-18
WES l{rite End of Segment . 5-f9
IJEV l,IriËe End of Volume o...o.....,....5-20
WLB lùrite Label 5-2L

175 0-7 ù1ay 1983.

Chapter 4

CDD Condense Disc 5-23
CDF Copy Disc File o............ o... r... 5-24
COB Condgnse Object Library ... o... o o. o......... o.. o o.. o.. 5-25
csF copy sequenrial File 5-26
DCD Declare a DADo...'........o...oo.......... 5-28
DCU Declare User ldentification 5-30
DLD Dglgte a DAD..............oo....o.5-31
DLF Delete a File 5-32
DLU Delete User ldentification 5-33
DOB Delete Object Module(s) o........... 5-34
DUF Dr:rnp File o................o.........o.. 5-35
HLP List Parameters of Librarian Cornmand .. 5-36
KOM Keep Object Module(s) o.... o......... .. 5-37
KPF Keep File o............. 5-38
LEN End of Librarian . 5-39
LTO Convert Load Module to Object 5-40
POD Prlnt Object Directory .., o...... o . 5-41
PRC Print Catalogue o o,............ 5-45
PRD Prlnt Directory 5-46
PRF Print File ... 5-47
PRV Print Voh:me Table of Contents,. o.......................... 5-48
REC Reeeive File from Datacom Line 5'49
SDD Copy Disc Ëo Disc o 5-50
SDM Save Disc on Magnetic Tape 5-51
SEN Send File on Datacom Line ... 5-53
SMV Set Maximum Version Number 5-54
SRD Save and ResÈore DAD o.... 5-55
SVU Save User Files e o o....,..... 5-57

PART 6 DEBUG o...... 6-1

Chapter I Introduction '.. 6-3

0-8T75 l4ay 1983 .

RE

RT
cn
CI
TR
RX

//

Commsn4
Command

Cornmand
Conmand
Command

Command
Command

aaaaaaaaaa

aaa.. aaaaa aaaaaaaoaaaoaraaaaaa

.a..a aaa.aaa.aaaaaaraaaaaaaaaaaaaaaaa

a a. a aa r ao. a a a a a a a a a ra a ao aa aaa aa aa a a a a a a a

a..a.

6-r8
6-r9
6-20
6-21
6-22
6-23
6-24

Chapter 4 Error Messages ,......... 6-25

Chapter 5 Exanple of Use 6-27

PART 7 TRANSACTION-ORIENTED DISC FILE MANAGEMENT SYSTEM . 7-L

Chapter I Introduction 7'3

Chapter 2

Chapter 3 7-11

General 7-11
Comrrand Syntax .o........r.... ...o.o....... 7-f1
Parameter Syntax r ,.... 7-I1
Concurrent Access 7-L2
Error Handling 7-12
Disc Space Allocation 7-13

FILE Cornmand ... 7-I4
KEY Co "nand 7-15
DATA Cournand .. . 7-L6
NKEY Command 7-I7
NDAT Connand,...... 7-18
DLKE Cornmand ... 7-L9

Loading and Unloading 7-20
LOAD Cornurand ... 7-21
UNLD Comrnand ... 7-23

File Reorganisation 7-24
Index Reorganisati-on 7-24
Data Reorganisatiot ro..o.......,......,... ...7-24
IDRG Corunand7-25

rt) 0-9 May 1983.

DFM File Housekeeping,....... 7-26
COPY Connand . . o. o. o.... .. 7-27
REPL Cornmand o.. .., 7'27
SAVE Coromand r r...... o........... 7-28
REST Conmand ô....... o.. ... 7-28
DEL Command 7-29
DKI'IT Command7-30
MTDK Co qrand ... o. ... 7-3L

Recovery Cornmandsr.r.......o,....7-32
BOGN Cornnand 7-33
BUGN Conmand 7-34
INSE Conmand r....., r ... 7-35
RBUP Cornnand7-36
sPRo comuand ... o. 7-37

Diagnostic and Other Commands 7-38
DUMP Comrnand,. ... 7-39
STAT Comrnand7-4I
SBUF Connand 7-42
EFEN Command 7-43
ABT Command 7-44

Chapter 4 Input/Output o 7'46

LKI"I Calling Sequence ...o...........7'46
Transaction Ready 7-47

Opening Modes r................. .. 7-48
Transaction Finished 7-49
Abort Transactioo o. 7-50
Finish and Cancel Transaction . .. 7-51
Back-out Recovery 7-52

Result Block Layout o... 7-53
Position on Key Value 7-54

Exarnple 7-55
Read on Key Value 7-56
Read Next. ... 7-58
Read Previous o... 7-59
Replace Record 7-60
Read orr Physical- Co-ordinates r.... ,.. 7-6t
Delete a Record .. 7-62
Wri.te a Record7-63
Detach One or All Records 7-64
Returned Status .. 7-65

lrlarning Status o. 7-66
Error SÈatus ... 7-66
Oisc I/O Errors 7-67

Error Code Cross-reference Table 7-68

Chapter 5 Recovery Procedures 7-7O

DefiniÈions . 7-70
Transactions 7-70
Runs ... o. 7-7L
Establishing Recovery Mechanisms 7-71
Recovgri.ng TDFM Files o.,..... o..... 7-7L

Chapter 6 Example of Use r.........r.............. ...7-74

T75 0-i0 l4ay 1983.

PART 8 SORT PROCESSOR . 8-I

Chapter I Introduction 8-3

Exanple I
Exarnple 2 aaaaa aa.aa aaaaaaaaaa aaaaaaaaaaaaoaaaaa

8-11
B-L2

APPENDICES A.I

APPENDIX A ERROR MESSAGES .. A-3

APPENDIX B FILECODES B-I

T75 0-t I l,lay 1983.

PART 1 ASSEMBLY LANGUAGE

1-1 l,lay 1983.T75

T75 L-2 May 1983.

INTRODUClION

A nodule or program written in the Assenbly Language consists of a series of
statemenÈs. There are two types of statements:

Inst.ructions

The program insÈructions nornally forn the bulk of the program, and are the
actual work tools by which data rnay be input, processed and output. Each
instruct,ion in the P800I"1 instruetion set is fullv described in Voh:me II.

Directives

The directives are used Èo guide the actual assenbling process and to
struet,ure the program according to Èhe progra.mer's needs. The direcÈives
are described in Chapter 5 of this part.

After Èhe program is wrltten, lt is input t,o the Assembler and then to the
Overlay Linkage Edltor to convert to load rnodule fornat and Ëo fill in external
references.

T75 l-3 May 1983.

r-4T75 May 1983.

SYNTAX DESCRIPTION

The following spbols are used to define the syntax of the pSOOM Assenbly
Language and Assembly Directives.

::= means ttis defined astt.

space (i.e. one or more significant spaees)

t 1 Èhe syntactic items between these square brackets may be omiÈted.

{a I Ul means a or b

ellipsis indicates repetiÈion of the last syntactic item.

The following list contalns the definition of all items used:

(absoluÈe synbol) ::= characters representing a value

(address expression) ::= (expression)

(characrer) 3 3= {(lerrer) | <aigir> | (dellnirer)}
(character constant) ::= \(character)[(charact.er)]'

(character string> : := '(character) l(character) f . . .'
(eonrments) ::= {characters (in cornnents field) |* characters (on new line))
(common field definition) ::= (common field name)[(conrnon field length)l
(common field definition list) : := (conrmon field definition),

(common field definition),
(comnon field length) ::= (predefined expression)

(conrnon field name) ::= (label)

(constant) :;= {(decimal constant) |
(hexadecinal consÈanr)

|(eharacter constant))

(cnd) ::= condition value or condition mnemonic
(see condition table with the comnands
AB, ABR, ABI, RB, RF)

(data expression) ::= {(expression) | (characÈer strlng>}
(data expression)

(decinal constant) ::= (digit string>
range -32768 to +32767 in 16 birs
range 0 to 255 in 8 blrs

T75 1-5 May 1983.

(deliniter) 3 3= {* plus
I

- minus I* asterisk
I

= equals
I

' apostrophe
I

, cotllma
blank

/ slash
(left parenÈhesis

I

) right parenthesis
I

. period I

: col0ni

(digit) ::= 0 to 9 inclusive

(digit string> ::= (digit)[(digit)]

(enÈry name) ::= (label) wiÈhin reference module

(expression) ::= {(predefined expression) |

(exËernal narne){* | -}(aUsolute syrbol value){* | -}(value)}
(external nane) ::= (label) defined in another rnodule

(field definition) ::=
(field lengÈh definition){= | :}(field value definition)

(field length definition) ::= nr:nber of bits (1-16)

(field nr:mber)

(field number list)

=(field value definition)

:(field value definition)

(hexadecimal const.ant)

(hexa digiË)

(inceger)

(internal symbol)

<k>

b

::= (decimal constant)

::= (fleld number)[,(field number)l ...

::= (value> to be placed in field

::= address of r{rord, relative to FORM

::= tX'(hexa digit)[(hexa digit)]' I

/(hexa digit)[(hexa digit)] i
range 0 - /FFFF in 16 bits
range 0 - /FF in 8 bits.

; s= {(digit) | A to F inclusive}

::= 0 - /f'f'rr or -32767 < i < 32767

::= (label)

::= shorË constant

::= long constant indicator

(label) ::= (letter){(letter) | (digit) | (delinicer)i
Maximum length 6 characters.

(letter) ::= A to Z inclusive

175 1-6 May 1983.

<1k> ::= <long constant>

(long const.ant> ::= <expression>

<û ::= <address expression>

(mnemonic) ::= characters representing instruction or
direct,ive

(nodule naûe> ::= (label)

(predefined absolute expression) ::=
t{+ | -}(absolute spbol value)tt+ | -}(absolute symbol value)tt+ | -}(value)ll

| (relocaÈable symbol)-(relocatable symbol>tt+ | -)(value)ll
(predef ined expresslon)

{(predefined absolute expression) |(relocatable synboD[{+ | -}(aUsoluÈe symbol value)tt+ I -}(value)]l}

(operand)

(operatlon code)

(register expression)

(register name)

(relocatable symbol)

(tL, 12, 13)

S

(short constant)

(statement)

(value)

*
field) |current value of location counter

(in operand field))

::= (expression)

::= (mnemonic)

: := (reglst.er name)

::= P, Al - 415 inclusive

::= characters representing an address

: := (register expression)

::= sÈore indicator

: := (predefined absolute expression)
(absolute value < 256)

: := { [(label)]_(operatlon code)_[(operandl)]
[,(operand2>] [,(operand3)l [(connents)]

[* (connents)]]

constant> | (hexadecinal constant))

indirection indicator (in operation code

::=
{(decinal

T75 L-7 May 1983.

FORMAT OF SOURCE STATE}MNTS

A source nodule consists of a sequence of sÈatements. The Assenbler interDrets
each llne as it, i.s presented.

A statement, can be divided into the following fields:
label fleld

- operation field
operand field
comments field.

(s tat ement) : : =. { [(label) l-(operation-code)_[(operand)]_[(comrnents)] |* [(co..ents>]] -
Each field has ro be separated from the following by one (or roore) spacecharacter(s), shown here as underlines. Spaces may noË appear in the fields
themselves' except when specified in a eharacter const.ant or a comments field.
Instead of spaces, a backslash nay be used for separation (see ttlnput, of Source
StaÈements and Correctionsrr, below). one or more spaces at the beginning of astatement lndicate that there Ls no label field. If there are eleven or more
sPaces at the beginning of a st,atement., all following characters are consideredas belonging to the comments field.

4t :t (asterisk) at. the beginning of a sÈatement identifies t,hat line as a
Commgngs line.

LASEL FIELD

(label) ::= (lerrer){(lerÈer) | <aigir> | (deliniÈer)}
Maximr:m length 6 characters.

Labels (or identifiers) in a module are
module.

used to refer to ot,her staÈements in a

mosË cases ' the assembler assigns to each label a word address value whichthe numerical equivalent (absolute or relocatable) of the label.
The maximum number of characters ln a label recognised by the Assenbler issix' lhe first of those must always be a let,t,er. A label may contein more thansix characters, but the additional characters will not be taken into account.If Ëhe label has al-ready been allocated to another statement, an error messageis output.

Period signs in a label are not significantr e.g.

M.AS256 LDK A1, 6
MAS256 A3R A4

will give an error message.

The value of a 1abe1 is normalry regarded as relocatable, except when:an absolute address is equated by an EQU directivethe label appears in an absoluÈe progr"* section, defined by Ehe AORGdirectlve, and is not equated by an Èqu airective to a labei previously
defined as relocaÈable.

In
is

T75 1-8 May 1983.

OPEMTION FIELD

(operation code) ::= t(nnernonic)[{S | (cna; I L}lt*] | <direccive)}

(nnemonic)

The operation field normally contains the mnemonic of a standard instruction.
It is possible, however, to generate one's own instruction mnemonics by means
of the FORIUI and XFORIVI directives; see Chapter 5.

S

Allowed after the mnemonic of cert,ain regist.er to register and memory reference
insËructions. It indicates that the resul-t of the operation must be stored in a
memory location and not in a register (bit t5 of Èhe instruction is set to 1).
In fact, S has to be considered as a part of the instrucEion mnemonic, ê.8. CIR
and CIRS instruct.ions are to be considered as two different insÈructions.

The S may be preceded by a period sign, although the Assembler does not Ëake
this sign into account.

E.g. AD.S = ADS

(cnd) ::= {(condition value) | (condition mnemonic)}

(condition value) ::= {0 | 1 | 2 | 3 | 4 | 5 | 6 | 7}

(condition mnemonic) ::= {Z
NZ

PlNlolElclLlAllul
NP I Nu I NE I nc I NL I NA I NR)

(See condi.ti-on Èable be1ow.)

This specifies the eondition under which a conditional branch instruction is to
be perforrned. The table below shows how the conditional mnemonics and condition
values rnay be used in the Assembler.

T75 1-9 May 1983.

CONDITIONAL NOTATION

t--------
I C0ND.REGI (cnd)
I C0NTENTS I

I IcENERALI mnw.
I -------- | --------- t -----------

COMPARE rlo

rll
I o | (o) l(z)z"ro
| 1 | ttl l(PlPositive
| 2 I tzl l(N)Negarive

(E) Equal | (A) Accepted
(G) Greater | (R) Refused
(L) Less

I NOT - CONDITTON NOTATION
t--------
I couo.nncl
I CoNTENTS l --------

(U) Unknown

ttl
| 0 | ta> | (uz) Not Zero
ltl
| 1 | (s) l(NP) Not Pos'
ttl
| 2 | Co> | (NN) Not Neg.

rlo

(NE) Not Equall(NA) Not
AccepËed

(Nc) Not | (NR) Not
Greater I Refused

(NL) Not Less | --
llr--l3lcz>l Unconditional
t--------

L

Allowed after the mnemonic of a constant instruction and in the ABL
instruction. It specifies Êhat t,he operand is contained in 16 bits, i.e. Ehat
the instruction must be assembled as a ttlong'r instruction.

The L roay be preceded by a period sign; the Assembler does not take the period
sign into accounÈ.

E.g. LDKL and LDK.L give the same result.

Not,e: Constant instructions with registers A8 to A15 (inclusive), or wiÈh a
value greater than 255, must always be long.

LDKL A8,/4820
LDKL Al,/rrrr
LDK M,/pp
LDKL LIz,/ BUF2 load address of BUF2 in A12

tr

Indicates the indirect addressing mode in a regi.ster to register or a memory
reference instruction.

- (directive)

See Chapter 5 of this Part.

'17 5 1-10 May 1983.

Locati-on Counter

The Assenbler maintains a location counter, which is a softrdare counter used to
assign relative or absolute memory addresses to program elements. The location
counter starts with a relative value of zero, or at the absolute address
defined by an AORG directive. The value of the counter is incremented in steps
of 2 or a nultiple of 2, depending on Ehe length of the current instruction.

The currenÈ value of t.he counter may be referred uo by an * in the operand
field. In absolute program sect,ions * has an absolute value. The value may be
changed by a RES or RORG directi-ve.

The location counter may t.ake neither a negative relative value nor an odd
value.

See also Èhe note under the DATA directive description, in Chapter 5.

OPERAND FIELD

The operand field contains a maxj-mum of three operands. An operand may be an
address expression, a register expression or constant expression, a predefined
expression, or a predefined absolute expression associated with the current
machine instruction or assenbly directive. The structure and meaning of the
operand depends on the cype of instruction and directive, and is explained
below.

All expressions must be separated by a comma.

(expression) ::= {(predefined expression) |

(external narne){* | -}(absoluËe synbol value){* | -}(value)}

(register expression)

(register name)

(pred
it+

Note

::= (regisÈer name)

::= P, AI - A15 inclusive

(predefined expression) ::=
{(predefined absolute expression) |

<relocatable sp.bol>[{+ | -}(absolute syrnbol'value)tt+ | -}(value)] l}

efined absolute expression) ::=
-l(absolute synbol value)t{+ | -}(absolute symbol value)ti+ I -}(value)Il
(relocatable sym.bol)-(relocatable syrnbol)tt+ | -l(value)l)

* is considered to be a relocatable svmbol.

In the instruction syntax the following mnemonics are usedl they mean:

(m) ::= (address expression) ::= (expression)

(rl) | (r2) | (r3) ::= (register expression) ::= (regisÈer name)

<k> ::= 1<'1 rË constant> ::= (predefined absolute expression)
(absolute value < 256)

<fk> ::= (long constant) ::= (expression)

T75 1-11 May 1983.

The table below shows the results of a combinaÈion of positive and negative
absolute or relocatable symbols:

lst Lerrn I trl-Rl*ol*l
l--------r-------------l

+R
2nd term

-R

Where: R=relocatable A=absolute E=erroneous.

Mdress Expression

The address specified in a memory reference instruction can be either absolute
or relocatable.

An absolute address is the acÈual address in memory where the infornat.ion the
,tseffi.rno.

A relocatable address is relative to the beginning of the program in which it
aPpears.

The address expression may contain one of the follor^ring terrns or a combination
of them:

* AsÈerisk, which is a predefined expression representing the current
value of the location counter. This counter is incremented by two or
a nultiple of two, depending on the length of the lnstruction.

(synbol) Used Èo refer to an instruction or data word with the same identifier
in its label field. Ihe Assembler will convert the srmbol to a
relative address.

(displacement value)
llhich can be aÈtached to'*'or's;robol' to indicate a word not
labelled by an identifier.

Register Expression

Regist,er expressions consist of one, two, or three characters. Ihe register
expressions recognised by the Assembler are:

P P-register
Al ... 414 Registers I Èo 14 (general purpose registers)
A15 Register 15 (stack pointer)

+R

+A

-A

T75 T-12 May 1983.

Constants

A variety of constant types may be specified in the operand of an instruct,ion
or direcEive.

(constant) : 3= {(decimal const.ant)
|(hexadecioal constant) |

(characÈer constant))

Decimal Constants

(decirnal constant) ::= (digit string>
range '32768 Eo +32767 in 16 bits
range 0 to 255 in 8 blts.

The decimal constant is a digit or integer, contained in an 8-bit character or
16-bit \^rord, whose value may range fron 0 to 32767.

Ilexadecinal Constants

(hexadecimal constant) ::= {X'(hexa digit)[(hexa digit)l' I

/(hexa digit)[(hexa digit)]]
range 0 - /FFFF in 16 bits
range0-/FF inSbits.

(hexa digit) 3;= {(digit) | n to F inclusive}

The hexadecimal constant is considered to be a hexadecimal value or bit string
in the range frorn 0 to /ffPf.

Character Constants

(character constant,) : := '(character) [(character>] .. .'

A character constant is composed of a characÈer string enclosed in single
quotat,ion marks. The string is composed of the characters described in the
character set.

A character constant can be used \Àrith a machine instruction only if the
constant consists of either one character (short constant) or two characters
(long constant). Longer strings can be specified in a DATA directive. A single
quote nark (') used as a character is specified by t\^ro consecutive single quote
marks

COMMENT FIELD

Comments may be included aft,er each insÈruction or group of instructions, to
explain the reason and meaning of the instruction(s). Comments can be r\rrit.ten
from the 40th column, or data is considered to be conments when it is separated
from t,he operand by a space character.

Commqngs are printed on the assenbly listing up to column 72. They are not
included in the generated object program.

A line is a comment line when the line starts with "tr
:t (asterisk), or when the

first eleven characters of that line are blank.

T75 1-13 I{ay 1983.

INPUT OF SOURCE STATEMENTS AND CORRECÎIONS

The user may Èype in the statenents and corrections from the operator's
typewriter. IIe may do so by counting the number of characters to obtal-n a neat
outpuË on the listing device. This procedure is rather cumbersome when nany
statement,s have Èo be typed in. An easler way of input from the tyPewriter is
by typing a backslash between the various Parts of the statement.

Example:

lst column 10th column l9th colr:mn 40th coh:mn
(label) (opcode) _ (operand) _ (commenÈs)

may be typed as follows:

(labe1)\ (o pcodeX (operand)\ (comment s)

withouÈ having to count for the first column of each field.

Example:

DATAF\LDK\A4,4
\ABL(7) \HAIT
DEVUN\LDK\A4,5
\ABL(7) \nelr
ADDIT\LDK\AI,O\SET INDEX REGISÎER FOR BUFFER.

\LDK A3/OOFF\SEÎ LOGICAL CONSTANT INTO A3.

175 1-14 b(ay 1983.

REGISTERS AND MACHINE INSTRUCTIONS

sixteen registers are available for use by the prograrnmer. These l6 registers,which have the predefined symbols P and Al to Al5, are called the scratchpad.They rnay be addressed from eiÈher the instruction being carried. out or from thetoggle switches on the control panel.

The specific designation of registers within the scratchpad is:

P-Reg j-ster

This register is used to hold the address of the next instruction to beexecuted. rt is incremented in steps of two if the program is executedsequentially, or it may be altered to hold the requireà ,rew address if a branchis to be carried out.

@At-At4)
The working registers may be used with an instruction in any of the followinglrays:

As accumulators, where the data to be processed can be found in a register.
As polnters, where t.he specified register contains the operand addressrather than the operand itself.
As index registers, where the contents of the speeified registers and thecontents of the word following the instruction are added tàgether toproduce the operand address.

rt is a reconmended standard that regi-ster A14 be used as the application stackpointer.

Register Al5

This register i-s used by the l4onitor as its stack pointer and, as such, it isupdated whenever it is used for memory addressing. rt rnay also be addressed byan insÈruction in the same r,ray as the registers Al to A14.

Note: P, A1 , M, A3, et.c., can only be used Èo refer to the regisÈers. IfÈhey are used for other purposes, an error message will be output forthe Assembler processor.

T75 l- 15 l,tay 1983.

Name Meaning
InËernal Value

decinal

P

AI
M
A3

A4
A5
A6
A7
A8
A9
A10
All
A12
A13
A14
A15

Instruction Count.er
Register I
Register 2
Register 3

Register 4
Register 5
Register 6

Register 7
Register 8
Register 9
Register 10
Register 1l
RegisÈer l2
Register 13
Register 14
Monitor Stack Pointer

0
2
4
6
8
10
T2

L4
I
3

5
7

9

11
l3
15

0000
0010
0100
0lt0
1000
1010
1100
1110
0001
0011
0101
0111
1001
l01I
1101
1111

bit 5 6 7 8 inthe
insËruction formaÈ.

Condition Register

The Condition Register is a 2-bit hardware register, t,he contents of which are
determined by Èhe result of the most recently executed "effectj-verr inst,ruclion.
By rreffeetive'r, it is irnplied that noÈ all instructions affect the contents of
the CR. Thus Èhe conÈents of the CR reflect the result of, for example, a
foregoing compare instruction.

By natching these conÈents with a condition value (range 0 - 7), or a condition
mnemonic (see syntax description) , a condiËional progran branch may be set up.

FUNCTIONAL OPEMTION OF INSTRUCTIONS

Load and Store Instructions

Load Instructions

Before t,he progranmer can perfontr an operation on the contents of a memory
location or a register, its contents nust be placed in one of the registers A1
Èhrough 415, an operation which is performed by the load instructions. The
contenÈs of any memory location or any register are loaded into any register or
memory location where the operation will take place.

The contents of a number of memory locat,ions may be loaded in the same number
of consecuti-ve regist,ers by means of a multiple load instruction. The first
regisÈer to be loaded is always register A1.

When working in system mode on a P00M with MMU board (see also "Memory
Management Unit'r, in Chapter 6), locations beyond 32K can also be loaded, as
their addressing is taken care of by the MMU.

T75 r-16 May 1983.

Arithmetic instructions perform the normal arithrnetic funcÈions such as add,
subtract, rnultiply and divide. The instruction operand operates upon the
contents of the specified instruction.

This type of instruction includes also the double add and double subtract
instructions, where operations Èake place on the cont,ent.s of two consecutive
memory addresses and registers AI and A2.

Logical Instructions

Instructions described under this heading are called logieal instructions
because Èhey operate on binary information according to the rules of logic.
The first operand, which may be a memory locaÈion, a regisÈer (Rl or R3), or a
constanÈ, is eompared with the second operand, register R2. The resulE is
placed in a regi.ster or possibly in memory. In the instruction set, for each
logical instruction is described in which way the contents of a memory location
is ANDed or ORed.

Character Handling Instructions

Character handling instructions operate on a character level. Characters may
be exchanged or compared, or I bits of a constant may be placed in 8 bits of a
register.

Branch Instructions

These insÈructions cause a branch Èo an address in memory, either when a
certain condition is fulfil1ed or uncondiÈionally. In branch instrucËions on
condition the instruction mnemonic is followed by a number ranging from 0 to
6renclosed in brackets. When Èhe number is (7) or omitted, the branch is
unconditional.

These nr:mbers are compared with the contents of the condition register set by
the prevlous instruction.

Ihe condition number has Èhe following rneanings:

Store InstrucÈions

Conpanion to the load instructions mentioned
which store Ëhe content.s of a register, or a
containing the result of an operaËion, into a
a number of memorv locaÈions.

Arithueti" rr,"atrr.tions

above are the store insËructions
number of consecutive registers,
register or a nemory location or

(0) branch if
(1) branch if
(2) branch if
(3) branch if

CR

CR

CR

CR

= Q (4) branch if CR * O

= | (5) branch if CR # t
= I (6) branch if CR * Z

= I (7) unconditional branch

T75 1-17 Iaay 1983.

!=eeelg,

io* M,4
LABEL SUK M,L

RB(4) LABEL Branch if CR t 0.

The Assembler allows the progranmer to write, insÈead of a number, a conditl-on
mnemonicr e.g. Z, E, A (see the Condition Table in Chapter 3).

Unconditional branches are nade by the following instrucÈions:

Absolute or relative branch inst,ructions, without a condition indicaËor or
when (7) is specified.
CF, RTN, EX insÈructions.

Long format absolute inst.ructions permit branching, forwards as well as
backwards, to any address in Èhe program. Short format absolute branch
instructlons may only branch Èo locations /0000 to /00FE. RelaÈive forward and
backward instructions may not skip more than L27 Locations backwards or 128
locations forwards.

The Assembler gives an error indication if the penoissible branch range ls
exceeded.

The address to which control is Ëo pass may be indicated ln various ways:

1. By means of a synbolic address expression
ABL(3) LABEL

2. By an absolute address held in a register
ABR(7) As

3. By using a constant to indicate an absolute memory address
(short const,ant)
A3 /84

4. By means of a displacemenL value added to or subtracted fron the
instruction count,er value (RB and RF lnstructions only). This displacernenÈ
value is compuÈed by the Assenbler from an address expression used in the
operand, and may not exceed more than 128 words forwards or I27 backwards.

TI^IENTY EQU 20
RB(O) TWENTY

Another group of branch instructions are the Call Function and Return from
Function instructions. The Call Function instruction provides a link Èo a
subroutine by branching to t,he first instruction of the subroutine. To be abLe
to resume the execution of the nain progran after the subroutine has been
executed, the content.s of the P-register and the Program SÈatus Word are stored
in the stack. tlhen Ëhe lasË instruction of the subroutine (RTN) is executed,
the content,s of P and PSI,I are restored.

A special group within the branch instructions is formed by the instructions
EX, EXK and EXR. These _insÈructions allow the progrânmer to address a memory
locaÈion whose contents are the binary represenËation of another instruction.
The latter instrucÈion is executed before the progras cont.inues with the nexÈ
instruct,ion in sequence.

175 1-18 I'{ay 1983.

Example:

:

LDKL A3,CIO
LDKL A4,SST

cro cro A1 ,l,TY
EXR* A4 EXECUTE SST
RB(4) x'2

EXR* A3 EXECUTE CIO

SST SST A7,TY
RB(4) *-2

The Execute instruction may not refer to another EX, EXK or EXR instruction,
nor to Call Function, RTN or double format instructions.

Shift Instructions

Shift instruct.ions operate on a bit level. These instructions allow t,o rotate
the contents of one of the registers Al Eo A7 by n positions in Èhe direction
and manner specified in Èhe instructions. Double shlfÈ instrucÈions permit
oPeration on two registers.

Control Instructions

These instructions perforn the control of Èhe program by allowing the program
Èo be interrupted or not, or to reset an internal interrupt. Except for Ehe

LKM instruction, control instructions should only be used in Stand Alone
programming.

INH and ENB are Ëwo companion inst.ructions. The program part betr{teen these two
inst.ructions is not interruptible, as INH inhibits all interrupts. ENB sets the
machine status to allow interrupts.

-E=ggplgg'

IDENT TEST
OUT EQU *

RORG OUT+/600
START HLT

INH
LDK A5,0)
LDKL All,BUF)
LDK M,0)

AGAIN CIO M,l,/30) program inhibited
RB(NA) AcArN)
LC A3,BUFPT,A5)
:)
ENB)

The RIT instruction is used to reset an internal interrupt which was previ-ously
set by an interrupt from the control panel, pohrer failure/automat.ic restart,
real-time clock, or by a program error.

)

T75 1-19 May 1983.

The progra$mer may specify a 5-bit hexadecinal value in the operand of this
inst,ruction to clear specific interrupts.

INTRTC RIT /tg Reset the real-time clock lnterrupt.

I/0 Instructlons

I/0 instructions handle the data Ëransfer between the CPU and peripherals, the
operation of contrl units for these peripherals and sEatus control.

In ltrrnltor-controlled programs the I/O functions, initiated by these
lnstructlons, are Èaken over by a general I/0 routlne which is called each time
an LKI"I insÈruction, followed by a DATA directive, ls used. The user need not,
therefore, write his own I/0 routines.

When the progranmer has to wriÈe a Stand Alone program, he must write his own
I/0 routi-nes. Since there is no memory protection option, except when working
with l'lemory Management Unit MMU, t,he prograuuner must be careful not to
overwrite parts of a program already in memory.

E:cternal Transfer Instructions

lhese inst,ruetlons may only be used in sysÈem mode. The instructions RER and
WER nay be used to address an external register. Ihe function of these
lnstructions is described ln Chapter 6.

The renainder of the instructions in this group are instructions involving the
operatton of the MMU in the P857M. They permiÈ to load the 16 regist,ers on the
MMU board with information pert,aining to the up to 16 pages into h'hich a
progran can be divided.

Elggplg'

SEGTAB DATA /OOOO
DATA /O4OO

DATA /3OOO

TL SEGTAB

A Table Store (fS) instruction writes the contents of these registers in the
MMU, which are updated during the program execution, back to Èhe specified
reserved locations.

I"love Table Instructlons

The instructions under this heading are only accepEed on the P800 models fitted
with an MIIU. lhey allow copying of a string of consecutive memory locations
lnto another area, or when working in system rnode wLth MMU, a string of
consecutive memory locations from a user area to a system area and vice versar

Strlng Instructions

The instructions under this chapter are only accepted on the P854, P858 and
P859. They allow moving, filling and comparing strings of consecutive byte
locations.

T75 1-20 May 1983.

ADDRESSING }4ODES

In Volume II we see how addressing takes place from a hardware point of view.
The conditions an instruction nust fulfil to rneet the requirements of the
Assembler are explained on the preceding pages. Specific examples, with source
statements and explanation concerning the arittmetic instructions AD and ADR,
are given to show the operaÈion within the CPU.

See Volume II for the hardware operation of these l-nstructlons. The order in
which these examples are given is in accordance with Èhe descripÈion on those
pages.

Direct Addressing

AD AI,LABEL The content.s of the memory location with sym.bolic address
LABEL are added to the contents of register Al. The result
is placed in 41.

ADS AI,LABEL Ihe contenÈs of the memory location with address LABEL are
added Eo the contents of register 41. The result is stored
in LABEL.

Indexed Addressing

AD A2,LABEL,AIO The conËents of register A10 are added Èo Èhe address
LABEL. The result gives an address whose contents are added
to the contents of A2. The result of the latter operation is
placed in A2.

ADS A2rLABELrAl0 The contents of regisËer 410 are added to Èhe address
LABEL. The result. gives an address whose contenÈs are added
to the contents of M. Ihe result of the latÈer operaÈion
is stored in the address: LABEL f eontents of 410.

Indirect Addressing

AD* A2 TLABEL The contents of LABEL point to an address whose conÈents are
added to the contents of register A2. The result is placed
in 42.

ADS* A2,LABEL Ihe conÈent,s of LABEL point to an address whose contents are
added to the contenÈs of regist,et L2. Ihe result is placed
in the location whose address is in LABEL.

Indexed Indirect Addressing

AD* A2rLABEL'A1O LABEL is added to the conÈents of register Al0. The result
points to a location whose contents are added to Èhe
cont.enls of register A2. The result is placed in register A2.

ADS* A2,LABEL'AIO LABEL is added to the contents of register A10. The result
points to a location whose contents are added Èo the
contents of register M. The result is placed in the address
obtained by adding LABEL Èo the contents of A10.

Register Ëo Regi-st.er Operation

ADR AlrA2 The contents of M are added Èo the contents of A1. The
result is placed in Al.

T75 r-21 May 1983.

1a8;i,1tqr 44gl9ee4ng.

i:fR.* r\,1 ,A2

ÂDRS Al,,A2

The
the

contents of the address polnÈed to by A2 are added to
contents of register Al. The result is placed ln A1.

The contenÈs of the address pointed Èo by M ate added to
the contents of A1. The result is sËored ln the address
pointed to by A2.

L-22175 May 1983.

ASSEMBLY DIRECTIVES

Directives are used to provide a framework for a program and to guide the
assembly process. The directives are written in the program, and are printed
Èhe assembly listing if Èhe listing option is specified in the ASI"I command.

PROGRAI'I FRAI.{EIIIORK

on

The directives IDENT and END form respectively the first and
the module. Ihey are mandatory.

The IDENT directive is used for identification purposes and
generates the END clust,er, after which the assembly process
synbol table is printed.

LINKAGE CONTROL

lasË statements in

the END directive
is stopped and a

Some modules which must grouped into one larger program contain references to
identifiers defined ln other modules.

By means of the directives ENTRY and EXTRN, the user is able to refer to
certain part,s in other nodules, whereas the directive COMN allows to transfer
dat,a among several modules either written in Assembly Language or in FORTRAN.

By using a COMN, the progranmer can define one or more conmon blocks. Each
conrmon block may be divided into a number of subfields of varying length, each
having a synbolic néune which can be referred to directly, but only in the
module in which it is declared.

COMN blocks nay be labelled or blank; a COMN block is labelled if a name is
attached to it.

The Linkage Editor allocates a space to the blank common block at Ëhe end of
the link-edit run (see Linkage Editor). This block is placed at Èhe end of Èhe
enÈire program. A labelled common is placed at the end of the first module
that refers to it.

The ENTRY, EXTRN and C0MN dlrectives must always follow immediately after the
IDENT direcÈive and in this order, though iL is noË necessary for all of them
to be specified.

So: IDENT, ENTRY, EXTRN, COMN or
IDENT, EXTRN, COMN or
IDENT, ENTRY, COMN etc.

ASSEMBLY CONTROL

When it is necessary to check whether a certain condition is satisfied before
assenbling a nunber of source lines, the user nay include the directives IFT,
IFF and XIF. The assembly of the IDENT, END and XIF directives is never
bypassed by IFT or IFF.

By means of the STAB directive the user may specify one or more internal
symbols which are to be used for Debugging purposes. All these synbols must
have been defi-ned previously in the currenÈ module.

Cornmon block n€rmes are handled as externals.

T75 r-23 May 1983.

The RORG and AORG directives are used to reset the locati-on counter to a
relocatable or absolute value indieated in the operands of those two direcLives.

The AORG and RORG directives are respecËively used to deflne an absolute nodule
section and a relative Bodule section. The AORG and RORG directives are only to
be used for self-contained executable programs. If the Linkage Editor
encount.ers an absolute address specified by an AORG direct,ive, it issues a
warning message and Èreats the address as relat,ive.

The RORG directive i.s used to reset the location counter to a relocatable
value, indieated in Èhe operand of this directive, after the AORG directive has
set the locat,ion counter to give absolute addresses,

VAIUE DEFINITION

The directives DATA and EQU are used to deflne cert,ain values in a module.

AREA RESERVATION

The directive RES can be used to skip over an area in memory. The RES directive
saves a memory area of a glven length, specified in the operand, advancing the
locaÈion counter by twlce the number of words specified.

LISTING CONTROL

the Assenbler normally produces an output listing for each assernbly. By means
of the directives EJECT, NLIST and LIST, the prograurmer may determine whj-ch
parÈs of the modules do not need to be listed.

SYI'IBOL GENERATION

Two directives, FORM and XFORM, allow the user to nake a nunber of special
instruetlons for a specifi-c purpose or program. In the FORM directive the user
may define the bit configuraËion and t,he mnemonLc of the special instruction.
If two FORM-defined instructions are to be specified, which differ only in the
content.s of certain fields, the progranmer may use the XFORM
dlrective to specify the second i.nstruction.

Any useful pseudo-instruction or syst.em macro can be defined once and
Ëhereafter used without having to be generated by a F0RM direcLive in every
program where it is used.

T75 L-24 May 1983.

I rDENr
I

Program Identif ication IDENT I

Syntax: IDENT (nodule name)

I^7nef e:

(nodule name) A symbol which is specified according to the rules for a label.

The IDENT directive specifies the name to be given to the object module output
by the Assembler. It is used for identificaËion purposes i-n selecÈive loading
or updating (see Part 3, Linkage Editor, and Fart 4, Update). This directive
must always be presenÈ, and must be the first st-atement in a module.

lnxnl End of Assembly

[(label)] END [(predefined expression)] ['(synbol)]

IENDI

Syntax:

where:

(1abel) The label is given a relative value equal to the length of the
relative section of the generaÈed object program. Trhis length
includes the lengËh of the optional synbol table (see STAB

directive). The length is 0 if this rnodule is absolute.

expression)
This expression, if present, gives the address of the first
instruction t.o be executed in the program after loading.

Ihis parameter gives an entry point name Lo the inÈernal synbol
table of the generated object program when the STAB directive has
been assembled. The internal synbol table consists of a list of
all relocatable symbols defined, with their numerical
equivalenÈs, Ihe STAB directive t,15g immediately precede the END

direct ive.

(predefined

(synbol)

This direct,ive must be Èhe last staLemenÈ in a module, and terminates the
assembly by writing an :EOS mark.

175 r-25 l{ay 1983.

I ENTRY I Define Entry Point Name I ENTRY I

Syntax: ENTRY_(enËry name)[,(entry name)] ...

where:

(entry name) is a label in this module, which can be referred to by an operand
of an instruction in another module. Ihe naximum ntrmber of entry
names which can be specified in one ENTRY directive is determined
by the length of one line (up to colunn 72, inclusive).

The ENTRY directive is used to declare entry names, i.e. labels which are
defined in the current module and used as operands in another module.

Exanples:

IDENT PROG IDENT PROGA

ENTRY NUMBI,NUMB2,NI,MB3 ENTRY LABEL,REFER
EXTRN LABEL,REFER EXTRN NUMBI ,NUI,IBz,NIMB3

START : :

NUI'{81 LDKL A3,LABEL GO LDK1 Æ,0

Ntr4B2 ST A6,REFER LABEL 51* A4,MEMO

NUMB3 CF AI4,EOS REFER AD A3,TOTAJ,

END START TOTAL SU A5,TARM
:

END

I EXTRN I Define External Reference I EXTRN
I

Syntax : EXTRN_(external) [,(external)]

where:

(external) is Èhe name of an external reference (a label in another
nodule). Ihe maximum number of external narnes which can be
specified in one EXTRN directive is deternined by the length of
one line (up to column 72, inclusive).

The EXTRN directive is used t.o declare external names, i.e. labels which are
defined in another module and used as operands in the current module.

Example: see ENTRY.

May 1983.T75 r-26

I coltt't I Declare Conrnon Block I co}û{ |

Syntax: [(label)]_C0MN_(comnon field definition 1isÈ)

where:

(common field definiÈion list) ;3= (semmon field deflnition)[r(conmon field
definition) l

(comrnon field definition) ::= (comnon field name)[(conmon field length)]
(comnon fteld name) ::= (identifier)
(common field length) ::= ((predefined absolute expression))

If the parameter (common field length) is omit.ted, the default value assumed by
the Assernbler is 1. The field length must be given in words.

The COMN directive facilltates coilrmunication between modules written in
Assernbly Language and FORTRAN.

-s:geelg,

A_COMN_FVALT (3), FVAL2(3), rNTcV(I 0)

which defines a labelled common, named A, with length 3 + 3 * 10 = 16 words.

A is defined as an external reference and connon bloek name. Either the eommon
block name itself or the subfield names may be referred to in the same module.
The subfield names are t.hen consi-dered to be equivalent to:

(common block name) t (absolute displacemenÈ)

For examples:

LD_AI rFVAL2 is equivalent to LD_A1,A+6

ST_A2,INTGV+I8 is equivalent to ST_A2,4+30

The displacements in this example are counted in characters. Blank commons can
only be referred to by the subfield names defined in the operand field.

coMN vALl(3),VAL2(4)
_couqval3 (9), vAL4 (I 0)

These directives define a blank conmon of 3 * 4 + 9 + 10 = 26 words.

VAL2, for instance, may be used in symbolic expressions and is equivalent to:

blank conmon ttnamett + 6

More than one blank conmon may be specified in one module.

175 L-27 I4ay 1983.

lIFT,rFF,XrFl CondLtional- Assenbly lrFT,rFF,XIFl

IfT (IF True)

Syntax: IF1_(predefined absolute expresslon)=(predefined absolute
expression)

If the first parauet,er f second parameter, the source line(s) following IFT
up to the nexÈ XIF directive are not assembled.

IFF (IF False)

Syntax: _IFF_(predefined absolute expression)=(predefined absolute
expressi-on)

If the first paranet,er = Èhe second parameter, the source line(s) following IFF
up to the next XIF dlrective are not assembled.

XIF (End of Conditional Assenbly)

Syntax: _XIF_

This direcÈive allows all subsequent statements to be assembl-ed untll a new IFT
or IFF statenent l-s encountered.

Ihese directives are used to indicate thaÈ a block of staÈements is to be
assenbled only if a cert,ain condition is fulfilled. The assenbly of the IDENT,
END and XIF dlrectives is never bypassed.

T75 L-28 May 1983.

I srAB I Define Internal Symbol Table I srAB I

Synt,ax: STAB_[<internal symbol list)]

where:

(internal sym.bol list) ::= (internal synbol)[,(internal synbol)l

The STAB directive outputs, aL the end of the relocatable program section of
the generated module, one or more internal synbols to be used for Debugging
purposes (the internal syobol is the address given to a sym.bol in the program
after assembly). All synbols musÈ have been declared previously in the current
module.

STAB must irnmgdl.g.ly precede the END direct,ive.

If the STAB directive does not contaln a parameÈer in the operand field, all
int,ernal synbols of the module will be included.

Ihe programmer may not specify enLry points, external reference nâmes or
commons. Ihis directive is only taken into account when in the END direcËive
the parameter (syrnbol) is specified, giving the name of the internal- synbol
table.

T75 r-29 l,Iay 1983.

I AoRc I Assign Absolute Origln I AoRc I

Syntax: _AORG_(predefined absolute expression)

This directive assigns an even absolute value Ëo Èhe locatlon counter. The
locaÈion counter receives the value specified by (predefined absolute
expression).

From the tine AORG is given and until a RORG directive is glven, Èhe locaEion
counter is incremented in the same hray as if iÈ were relative, i.e. by
increments of 2 or 4 depending on the length of the instruction. All labels
are given an absolute value, unless Èhey are equated to a predefined relat,ive
value by an EQU directive.

RB and RF insÈructions in an absolute program sectlon cannot refer to an
address in a relocaÈable progran section, as Èhe displacement cannot be
calculated.

* Ihe user should be anare of the fact thaÈ the Disc Assembler accepts
absolute addresses, but that the Disc Overlay Linkage Edltor does not, and

will output a warning message and treaÈ the address as relative.

I RORG
I

Assign Relative Origin I RoRG I

Syntax: _RORG_[(predefined relocatable expression)]

Ihe RORG direcÈive allows the user to specify the beinning of a relocatable
module by assigning a relative value, which must always be evenr to the
location counter. Its value rlay never become negative. If RORG has no operand,
the location counter is given the last relocaËable value it has previously
received. Ihis value is equal to Èhe length of the relocatable module at the
tirne this directive ls assenbled.

T75 1-30 I'Iay 1983.

I llre I Data GeneraÈion I DArA I

Syntax: [(label)]_DATA <data expression)[r(data expression)l

where:

(data expression) ;;= {(character string> | (expression)}

(1abel) is given the address of the first or only word of dat,a.

(data expresslon) either an expression, or a character string consisting of
from one to thirty-two ASCII characters enclosed by single
quote marks. A series of words is generated, of two
characters each, left jusÈified. When the nr:nber of
characters is odd, the rightrnost character of the lasÈ word
is a space.

The DATA directive is used to assign a value to one or more words in the
module, for inclusion in the object module. The maximr.rm number of words
assigned by one DATA directive is 16.

NoÈe: Ihough * poinÈs to the currenË value of the location counter, * refers
always to the first word of a generated sequence (nultiple word
instruction, FORM defined instruction, DATA directive).

Examples:

DATA' ABC', /010O, l, / A,2,' DEF'

will generate the following words (in hexadecimal code):

| 4142 | 4320 | 0A0D | 0001 I 000A | 0002 | 444s | 4620
|

'AB C_' lfcr I lA 2 'DE F '

An ECB rnay be built as follows:

ECB_DATA l, BUF2,6,0,0,0

ECB

| 0001 | xxxx | 0006 | 0000 | 0000 | 0000 |

(in which /xxxx is the address of BUF2).

DATA_-(L28,+I2,/31.S,-/A,LABEL,', TEXT :',

\
generates the following:

I FF80 | 000c | 03AB I FFF6 | xxxx | 544s I s9s4 | 3A20 |

-I28 +T2 /3M ./E LABEL 'T E X T Z '

T75 1-3 r May 1983.

IEQUI Equate Syrobol to Value IEAUI

Syntax: (label)_EQU_{(register expression) | (predefined expression)}

Labels are nonnally defined by being assigned memory values as Lhey appear in
the label field of an instruction. The EQU directive may be used Ëo define a
1abel in a direct manner by assigning to it the value of an expression in the
operand field. The synbol in Èhe label field is made equlvalent to the value in
that, operand field. Ihis value may be absolute or relocatable.

A synbol, provided it differs from standard mnemonics and FORM-defined
mnemonicsr may be used as an operation mnemonic, but may not be followed by an
operand. Ihe Assembler generaÈes one code word each Ëime this mnemonic appears
in the operand field.

Exanpleq:

CT EQU /4LC4 CT may now be used anywhere in the program to represent
the value /4IC4 or the instruction CIO LL,L,/O4.

CT /4IC4 represents an instruction.
LDKL AIrCT CT is loaded as a const,ant,.

VAL EQU 10 VAL receives the value 10. (Short constanÈ.)

LDK Al,VAt

LAB EQU * LAB recelves t,he value of the locaÈion counter.

C:l EQU 25 Each time the Assembler encounÈers C:l or REG:3, they
REG:3 EQU A3 are replaced by 25 and A3, respectively:

LDK A1,C:1 ---> LDK Al,25
LDK REG:3,1
LDK REG:3,C:1

175 r-32 May 1983.

IRESI Reserve l"lemory Area I P.ES I

Syntax: (label)_RES_(predefined absolute expression)

where:

(label) receives the address of the first word of the reserved area.

(predefined absolut,e expression)
specifies Ëhe length of the area to be reserved, in words.

If (predefined absolute expression) is 0, the location counter is not updated;
if (label) is specified, the statement is equivalent, to:

(label) EQU *

The RES di.rective is used to reserve a number of memory words. The programmer
may specify this nurnber in the parameter. Ihe location eounter is incremenÈed
or decremenÈed, depending on the positive or negaÈive value of the parameter.
If positive, a memory area of the specified value is reserved. If negative, a
memory area of the specified slze is reserved before the place identified by
(label). The value of the LatËer is noÈ changed, but the location count,er is
reseL to a lolrer value by subt.racting twice Ëhe value specified.

Examples:

locaÈion
counter
0000 RES 4 Reserve 4 words.
0008 LAB1 RES -2 Reserve two words before LABI.
0004 INS RES 0 INS receives the value of the location

counter.

Synbol Table:

LAB1 OOOS INS OOO4

Example of Stack Reservation

STACK RXS 4 STACK .->I

BASE EQU *-2

BASE 'r-2 --> |

* -->l

LDKL AI4,BASE

Load stack base address into A14.

T75 r-33 May 1983.

I EJEcr I Continue LisÈing_on New Page I EJEcr I

Syntax: _EJECL

This directive eauses the remainder of the current page of the line printer
paper Èo be left blank; the listing is continued at the top of the next page.

I Nlrsr I Suspend Listing I Nrrsr I

Syntax: _NLIST_

The NLIST directive causes the Assenbler listing to be suspended fron the polnt
where this directive is given until either the END directive or a LIST
directive

Lines whlch contain errors will continue Èo be printed during this phase.

I Lrsl
I

Resume Listlng I Lrsr
I

Syntax: _LIST_

The LIST directive causes the Assembler to resume the lisÈlng after it has been
suspended by an NLIST directive.

T75 1-34 May 1983.

I F0RM
I

Syntax:

where

Format Definition

(label) FORM (field definition>[,(field definition)]
<f-iefd definition)[/(field number list)]

(field definition) ::=

(field number list) ::=
(f ield ntrnber) ::=

F0RI'1
|

(fteld length definttioù[{= | :}(fiela
value definition)l
(field number)[,(field number)] ...
(decirnal consÈant)

(1abel) Defines the new insËrucEion mnemonic. Ttre operand field of Èhe
directive must then contain values to be placed in any non-
predefined fields. The last non-predefined value is the default.

(field length definition)
Specifies the nunber of biÈs to be allocated to a field of the
word, in the range 1 to 16. If several fields are defined inside
a word, the sum of the field lengths must. be 16. The maximum
ntunber of consecutive \,rords defined by a single FORM directive is
eight.

(field value definition)
If the value is preceded by an equals sign (=) r DâI be used to
place a value into the field t.o which it refers.

If the value is preceded by a colon (:) , the value indicates Èhe
address of a word relative to the first word of the expansion
defined by FORM. Ihe value definition itself may be a predefined
expression, an external reference without any displacemenË, or a
predefined absolute or relocatable expression. If a particular
field has not received a value definition, it will be filled with
zeroes.

(field number list)
If Èhe programer wishes to put t,he values of the operand field of
the FORM-defined mnemonic in an order different from that of the
non-predefined field they are to occupy, or if the user wishes Ëo

alter Èhe values held by any of the predefined fields, he must
use the (field number list) parameter in the FORM directive.

Each field generated is given a number, beginning with 0 for the
first field, I for the second field, up to n-l for the nth
field. n may not exceed 15.

The (field number list) must be preceded by a / (slash), and be
placed after the last field definition on the FORM directive. A1l-
fields not predefined ln the field definiÈion must' be specified
in the (field number list), if it is used.

A field number is represented as a decimal integer.

If a (field number list) is specified afcer a F0Rl"1 directive, the
operand expressions following the pseudo-mnemonic will occupy the
fields specified in Ëhe field number list in Èhe glven order. In
this way, the cont.enËs of predefined fields may be altered while
blank fields may be left blank.

175 r-3s I,f,ay 1983.

This directive is used to define the format of a group of fron one to eight
words named by an identifler, which can be used as an insÈruction rnnemonic
later in this module. The directive ls written as follows:

Exannple: MNEM FORM 16=185A0,16 :14,16=1814L,16=INST,16,16,16

MNEM | /aSaO l--) arithmetic or logical value
l--------l
I MNEM+l4 l --) address of word following this block
r---------l

--------l
/oooo I)

l)
/0000 |) 3wordsconrainingzeroes

l)
/0000 |)

The parameÈer 16:14 lndicaÈes a word address seven words from the beginning of
the expansion defined by F0Rl"1. Ihe progranmer has Èo specify this address, as
the last three words are left zeto.

Example

Suppose the user has specified ln his program, by means of a F0RI"1 directive, a
16-bit word of the following format:

/8I4I l--) aritbmetic or logical value
---------l
INST | --) idenÈifier

2=L 1=15=2 8=2

I00010 |01|I |00000010 |

fieldno 0 I 2

He wlshes to have this word changed t.o:

5=2 2=3 1=0 8= I

| 00010 I 1r | 0 | 00000001 I

fieldno 0 I 2

He may do so by using the following instruction sequence i-n his module, using
the (field number list) in the FORM directive.

IDENT EXAI"T

WORD FORM 5=2,2=L ,L=L ,8=2f 2 ,l ,3t_l:l
lrOP.D 0 ,3 ,1

END

T75 r-36 May 1983,

The Assembler wllL now change the fields as follows:

field no 2 (1=1) will be changed to contain the value 0
field no 1 (2=1) will be changed to contain the value 3

field no 3 (8=2) will be changed to contain the value I
field no 0 (5=2) will keep the val-ue 2.

The operand expressions following a pseudo-mnemonic are positional parameters.
If one parameter is omitted (oÈher than the rightmost one), its position musÈ
be indicated by a conma.

If a FQRM defined mnemonic is identical with a standard instruction mnemonic,
the pseudoqnnemonic is glven priority.

Example:

Thls example shows how the progranrner may make an I/O request if not all
parameters are known. l{ithout the FORIÎ directive he muld have to write the
instruction sequence:

LDK AT,order
LDKL AS,DECB
LK},I
DATA I

OOOOO IDENT FORM

00001 rNour F0RM 8=/o1,8,16=/80A0,16,L6=/2804,16=1
OOOO2 OOOO BUFFER RES 10
00003 0014 0008 DECB DATA 8,BUFFER,20,0,0,0

0016 0000 R
0018 0014
00lA 0000
001c 0000
00lE 0000

00004 0020 0782 srART rNour /82,DECB
0022 80A0
0024 0014 R
0026 2804
0028 000I

00005 002A 2804 LKM

00006 002c 0003 DATA 3

OOOOT END START

SYMBOL TABLE

BUFFER OOOO R DECB OO14 R START OO2O R

ASS.ERR OOOOO

: EOF

From now on the programer may use INOUT /8?'DECB instead of LDK L7,

In this example, the newly FORMed INOUT instruction creates the same coding as
the four instruccions at the top of the page. Note that fiel-ds 2 and 4 are left
blank in the initial definition of the function, as these will be specified
when used. (They indi-cate, respectlvely, Ehe type of I/O required and the
address of the Event Control Block (ECB) of the device concerned.)

T75 L-37 May 1983.

I xFoRM I Extenslon of a F0R!1 Directlve I xFoRr"l I

SynËax: (1abel)_XFORM (label of F0Rl"1 direct,ive) ,(f ield list)

The XFORM nay be used each time Èwo FoRM-defined pseudo-onemonics have Eo be
defi-ned which do not differ in their fornat, but only in the values of Èhe
predefined fields.

(field list) is a series of field definitions, giving the fonnat of the new
pseudo-mnemonic and the contents of its fields.

The field length definitions must be the same as those of the FORM-directlve
referred to, and appear in the same order.

Example:

INSTI FORM 8=/FF ,4,4,16/L,3,2
INST2 F0RM 8-/33 ,4 ,4 ,16/ L ,3 ,2

The XFORI'I directlve may be used to generate an INST2 instruction as follows:

INST2 XFORM INSTI,8=/33,4,4,16

175 1-38 May 1983.

PROGRAMMING CONS IDERATIONS

Data transfers between input/output devices and the central processor are
controlled by device control units, each of which may have one or more devices
attached to it, depending on the type of device. ConÈrol units are at.tached to
Èhe central processor by an interrupt or break line, by address lines and by
oÈher signal lines, which are used by the computer to determine whether a data
transfer can be perforned.

Data transfers take place through a channel, Èhe General Purpose Bus. The
actual programrning of the data transfers nay be on a character or word basis,
where either each word (or character) ls progranrmed and transferred
individually via the Progranmed Channel, or the user may program blocks of
words or characters via the I/O Processor. In the latter case, ext,ernal
regi.sters on the I/O Processor must be addressed.

STAND-ALOM OR MONITOR PROGRA},IMING

The basic difference between Stand Alone programming and Monitor controlled
programming is caused by the fact that in Stand Alone programming Èhe user has
to write his own input/output routines, whereas in MoniLor controlled
progranming the user may call cert,ain l"lonitor functions by means of Links Ëo

S::S: which execute t,he input/output. For infornation on programrning in -either mode, refer to the P800M Software Training Manual (Publication No. 5L22
991 I243X); see also later in this Chapter.

INTERRUPT SYSTEM

I{hen working in interrupÈ node, each interrupt program rnay be connected to an
interrupt level. As Èhe act,ioning of an interrupt involves the direct
accessing of the inÈerrupt level's start address from its hardware int.errupt
location, the contents of this locaEion must have been previously loaded with
the correct address.

The start addresses loaded in these locations are not fixed and must be defined
by the progranmer.

Interrupt Level Interrupt LocaÈion

0 to 62 /0000 to /OO7C

where level 0 has the highesÈ priority and 62 the lowest. Ihe first 16 levels
are hardware interrupt levels, of which level 0 has the highest priority.
For example, if the control panel interrupt is wired Èo interrupt level 7, the
start address of the corresponding routine should be placed in location /E.

T75 l-39 May 1983.

SYSTE},T STACK

To save t.he contents of registers when the main program is interrupted, the
hardware inÈerrupt routine automatically uses register A15. Ihis register
addresses the stack whieh is to hold the contents of the P-register and the
Program Status l,Iord at the tirne Èhe progr€rm r/as interrupted. It is, therefore,
necessary Ëo reserve sufficient space for the stack and t,o load register A15
wlth its start address. Ihis nay be done by using the appropriate assernbly
directives and by defining the start address by means of an identifier. The
start address is the highest address reserved, as the stack is filled from Èhe
hlgher towards the lower addresses.

Apart from the conÈents of the P-regist,er and PSW, the stack may be used to
save the contents of other regLsters as required by the program. These
registers are saved by means of St.ore lnstructions (one for each register).
Before returning to the main prograrn, Load inst,ructions are required to restore
the contents of the stack, prior Lo RTN. During Èhe hardware action further
interrupts are inhibited. If the user wishes to allow the specific routine to
be interrupted, he rnust give an ENB instruction.

USER STACK

lJe have seen that with the 415 stack the P-register, Èhe PSI{ and any other
regisÈers are saved with Store instructions in this stack Èowards the lower
addresses. Now, if a user calls a subroutine wiÈh a CF instruction, the
contents of the P-register and the PSW are autouatically sÈored in a stack he
has set up previously, for example as follows:

RES 20
sTB EQU *-2

LDKL A14,STB

cF Al4,SUBR

SAREAI

SAREA2

(l)

IDENT MAIN IDENT

PJS 3 ST

RES 4 ST

:ST
cF Al4,SUBRI:
z (2) cF

END :

LD

LD

LD

(4) RrN

END

SUBRI

AI , SAREAI

A2 , SAREAI+2

a3, SAREAI+4

Al 4 , SUBR2

Al, SAREAI

A2, SAREAI+2

A3, SAREA1+4

Al4

IDENT SUBR2

ST AI,SAREA2

sT A2,SAREA2+2

sr a3,SAREA2+4

sT A4,SAREA2+6

LD Al,SAREA2

LD A2,SAREA2+2

LD A3,SAREA2+4

LD A4,SAREA2+6

(3) RrN Al4

END

then the subroutine is called:

and the P and PSW are sÈored in the AI4 stack (other
registers may also be used as stack poinËers).

For example, for a prograxû with Èwo subroutines, one subroutine calling another
one, the saving may be done as follows:

T75 r-40 I,lay 1983.

In this example the following save operaÈions take plaee:

(1) SAREAI

| <--- A14

I

I

Al (I'{AIN)

PSl.l (MAIN)

-----l
P (MAIN)

I A3 (MAIN)

Stored auÈonaËically

(2)

PSlr (suBRl)

P (SUBRI)

PSIT (MAIN)

P (MArN)

Stored auËonaticallv

(3) SAREA2

Stored by user-wrltten instrucÈion

SAREA2

Al (suBRl)

A4 (SIIBRI)

Stored by user-written instruction

<--- Ar4

PSW (MArN)

P (I,IAIN)

P and PSI{ restored for SUBRI

I

| <--- Al4
-l

I

I

P and PSI,I restored for l"lAIN

<--- A14

Regi.sters restored

(4) SAREA1

Registers resÈored

Note:

for SUBRI

for MAIN

It is possible to return fron SUBR2 directly Èo the main program, but in such a
case the user must update the A14 register contenÈs, i.e. the stack pointer,
hinself (with 4, in this case).

T75 1-41 May 1983.

I*IEMORY MANAGEMENT UNIT (Ir"ÎU)

The MMU extends memory addressing up Ëo l28K or 512K words, depending on Èhe
model of P800 to which it ls fitÈed; only P854, P857, P858 and P859 models.

Owing to this facility the P800 and its Monitor are able to serve a m:mber of
large programs, each of which may be up to 32K words. Programs of this size
usually will be segnented and st.ored on disc.

Apart from extended addressing, the MMU also provldes for memory protection.

Coding a program for operation wit,h MMU and Multi-Access l"lonit,or requires no
specific rules eompared t,o a machlne wlthout. MMU as far as the memory
addressing is concerned, as the addressing in an environment larger than 32K
words is t.ransparent to the user.

Instructions relating to the MMU are only accepted in sysËem node.

When tTre user program is called, a path of n segments is loaded into memory,
irnmediately after the ldonitor. lhese n segmenEs are divided over parts of
memory called pages, of 2K words eachT A,s several programs may be running
simulEaneously, the pages do not need t,o be loaded next to each ot,her, buÈ may
be spread out over the entire memory available.

The lvlonitor builds, for each program runningr a table containing data where
each page may be loaded and inforrnation particular to the page. Ihis table ls
up to 16 words long, and is loaded by the Monitor in the 16-register Segment
Table, as follows:

LDR

TL

A4,All where All contains the table address

A4 where the table ls loaded.

To save the infornaÈion in the MMU registers, an ES or ESR instruction may be
used (system mode only).

An address in t,he user program is divlded in two parts. The four most
significant bits point, to a word in the segment Lable. The MMU translates these
4 bits lnto a 6-bit or 8-bit physical page address, and takes the remainder of
the instruction address as an offset relative to the beginning of the page.

Layout of Segnent Table I'lord

0

bits 0 to 5

bir 6

Physical page address, as derived from t.he four most
biÈs in the instruct,i.on address.

t5

significanÈ

Page error indicaËor. This bit is set by the },lonitor when a
program attempts to access a missing or wrong page. The MMU will
give a "Page Fault" interrupt. This bit is not used for system
programs.

t4l3

T75 L-42 I'{ay f 983 .

bit 7 Read-only page. when this bit is set, the page is protected
against overwriting. A "Page Faultrr inËerrupt is given when a
program t,ries to write into it.

bit 8 Mcdified page. This biË is set by the MMU when a wrire operation
took place in this page. Instead of being overlaid, the page is
first writ,ten back onto disc before the area is used again.

biLs 9 to 13 Not used.

bits 14, l5 Not used with MMU's which cân access only 128K words; used as the
most significant two bits of the page address, in MI"lU's which can
handle up to 5l2K words,

Memory Protect

The memory proËect, facility of the MMU is obtained by setting bit 7 in the
table containing Èhe words to be loaded in the MMU segrnent table regisÈers.
Remember, however, that instructions concerning the MMU are only accepted in
system mode. If an attempt is rnade to access a protected page, a "Page Fault'r
interrupt is given. This interrupt, has the highest prioriÈy, and causes storing
in the system sÈack of:

the address of the instruction which caused the inÈerrupt
the PSW

a word containing the page address of the page in which the fault was
detected, and the program level.

This interrupË is reset automatically after a branch has been made to the
interrupt routine address.

FLOATING-POINT PROCESSOR

The Floating Point, Processor i.s an optional, high speed arithrnetic processor
which may be included in the P857M system. It performs by hardware, single
precision, all floating poi-nt. arithnetic operations.

Operation

The board conË,ains three 16-bit floaÈing-point acctrmulators (FPA's) holding the
resulÈ of a floating point operation, or the floating point operand, or the
first floating point operand where the second floating point operand is
temporarlly placed in three ot,her 16-bit registers.

Program instructions are fetched and decoded by the CPU. The significant bitsof each instruction, i.e. op-code, mode, etc., are also copied io an
instruction register on the FPP board. When a float,ing point insÈruction is
encounÈered in the prograrn, the Floating Point Processor is activated by the
CPU and the lat,t.er stops.

Some decoding of t,he instruction register contenÈs takes place on t,he Fpp
board, and an arithmetic unit on this board is signalled the type of operat,ion
it has to perforrn. The arithmeÈic unit takes Èhe informaÈion to be operat,ed
upon from the contents of the FPA, regisËers Al and M, ot the contents of
consecutive memory locations.

The result. is stored in FPA, or Al and M, or a number of consecutlve memory
locations.

T75 L-43 May i983.

DurLng or inmediately after
zero (no errors) or bits in
staÈus register may be:

the execuEion, eilher
Èhis register are set

a status reglster is reset
to 1. Ihe contents of the

to

lolo lo lo lo lo lo l0lo
I

underflow
I

v
indicates during which
inst,ruction inEerrupt
occurred

unnonnalised operand

Any abnornal condition gives an FPP interrupt and sets the CPU condition
register to 3. The FPP interrupt must be connected Èo one of the eight internal
lnterrupÈ levels. If no error sras caused, the CPU fetches the next instruction.

FloaÈing Point FornaÈ

Floating Point Data are real numbers contained in three consecutive 16-bit
words. The first two words contain the mantissa, which is a left nornalised,
double precision nunber. Ihe exponent is held in the Ëhird word as a single
precision integer.

01

overflow

ivision by zero

l5

nantissa ml

+
sign bit of the mant,issa.

01 15

l0l mantissa m2

15

exponent

+
sign bit of the

the sign bit of
between:

positiver* (*z-

exponenË.

the second manÈissa word is always zeto. Ihe mantissa scale 1S

< l-e

-e
negative: -1 (rn

The exponent scale is betweer,: -215

A floatlng point nr:mber is: (rnl ,rn2)

)
)
)
)

, ^-30Ttnere e =z

s
4

n < +zr5-t

2E, where E = the exponent.

May i983.T75 L-44

The absoluÈe value is: I oere | < 109868. Th" accuracy is 9 decinal dlgirs.

The FloaËing Point Processor also allows t.he conversion of floating point data
to integer format and vice versa. In this case the Processor permits operaLions
with single precision integers (in 16 bits), and double precision integers (in
32 bits, the most significant bit of the second word being 0).

TRAP ACTION

Instructions input t.o the P800M computer are checked and decoded by the CPU's
hardware. If an unexecutable instruction is encountered, a trap action is
started, which consist.s of a hardware and software operati.on.

The hardware operation of the trap consists of the following actions:

The CPU does not attempt t.o carry out the instrucÈion.
InÈerrupÈs are inhibited.
Infornation which refers to the instruction's address and processor staÈus
(P and PSI,I) is saved.
An indirect branch is made to locatiorL /78 (starÈ of trap routine).

The software operaËion of the trap consists of:

Save the address in P.
Save the instruction's bit paÈtern and its seeond word, lf any.

STAND-ALONE INPUT AND OUTPUT PROGRA},I}IING

Programmed Channel

To control the data transfer between Ëhe device and the CPU, the following
instructions are, in general, available:

CIO Start Start input or output
CIO Stop Stop input or out,put
INR Input one character
OTR Output one character
SST Send status of the conÈrol unit
TST Test if the control unit is busy.

The register (r3) used in Èhe CIO instruction must always contain additional
j-nformation for the control unit, e.g. input, output, parity, echo. Idhich
informaÈion must be loaded can be found in the relevant hardware manuals
delivered r{rith the system.

When the CIO StarÈ instruction is accept,ed (test the condition regisEer), it is
followed by an INR or OTR instruction. I^Ihen the last character is Ëransferred,
a CIO Stop instruction must be given. Ihis instrucËion should be followed by an
SST instrucEion, which gives the staÈus of the relevanL control unit and may
reseÈ an interrupt and switch a conÈrol unit Èo the Inactive StaÈe.

I/O Processor

The I/0 processor allows the high speed transfer of variable length or fixed
length dat.a blocks between a suiÈable control unit and t,he processor.

Up to eight I/O processors may be connected to Èhe General Purpose Bus, each of
which may control up to eight control units via eight subchannels.

T75 1-45 May f983.

Each I/0 processor contains two working registers, whi.ch are used to effecÈ
reglster to register exchanges with the CPU int,ernal regist,ers.

Before a data t,ransfer can be realised, the user has to speclfy two conÈrol
words for two external regi-sEers. lhese external registers are addressed by thto
WER instructions, in which the address part must be composed as follows:

| 0 | processor I sub channel | 0/t
I

lladdressladdressll
8910I112131415

control unit's address

where processor and sub channel address are determined at system installation
t.ime. Both addresses, which may range from 0 to 7, ÈogeÈher form the atÈached
cont,rol unit address. BiË 15 deterrnines which control word is sent:

bit 15 = 0: first control word
l: second control word.

Format of Cont,rol I'Iords

The format of the first control word is:

| | l0l0 |

01234
where:

bit 0 = 1: exchange is in word mode
0: exchange is in character mode.

bit I = l: exchange is fron memory Èo control unit (output)
0: exchange is from eontrol unit to xnemory (input).

bits 2 and 3 are 0"
bits 4 to 15: specify the nr:mber of characters or words to be transferred.

The fornat of the second word is:

I start address

I5

When operating ln word mode the first word of the block is always even (bit 15
= 0) . Itt ch"racter-i6ElEen biÈ 15 = l, the right hand character is addressed
(odd address); when bit 15 = 0, the left hand character is addressed (even
address) .

15

T75 t-46 May 1983.

Example:

LDKL Alr/8032 word mode, input, 50 words
LDKL A2,BUF starting address of block
I{ER Al,/e send control- words (000 f010 and 000 1011)
I^IER M r/g

CIO A4rlr/01 start input (address:000001)

The RER instrucËlon may now be used to read a transfer's effective length after
terminatlon of the I/0 operation.

When the exchange is compl-eted, an SST lnstruction should be issued, to check
the status of the control unlt and set lt to Èhe Inactive staÈe. The control
unit may now be re-initialised for a new transfer.-

T75 1-47 May 1983.

Input/Output Programing Using a Programrned Channel

a) VliÈhout InterruPts

unknown
addres s

ctrarac -

T75 1-48 May 1983.

b) I^Iith Interrupt Handling

fNTERRUPT

fNR
OTR

)
1

NO

x
AST

YES

5 T
CIO

St op

RTN

T75 r-49 l,Iay 1983.

Programming an I/O Processor

LOAD 2nd
control
wcrd

I

I

I

I

Unknown
addre s s Int errrrPt

LOAD 1 st
c ontro 1

T75 1-50 l"lay 1983.

SOURCE PROGRAI"I CALLING A FORTRAN LIBMRY SUBROUTINE

When writing a progran in Assenbly Language, it uray be useful to have some
operation performed b)' a subroutine, which has been specifically included in
the F0RTMN library to execute such a function.

The user may call this subroutine from his Assenbly program in the following
IÀray:

Suppose Èhe user wishes to nulÈiply Èwo floating point numbers. The FORTMN
llbrary subroutine, whieh executes this rnultiplication, has F:RM as entry polnÈ,

The franework of the Assenbly program, with only the relevant details, is
written as foLlows:

IDENT ASMPRO

EXTRN F:RM

FLNUT.II DATA
DATA
DATA

FLNUI"I2 DATA
DATA
DATA

LDKL AI3,PARLrS
CF AI4,F:RM

PARLIS DATA FLNUM1
DATA FLNUM2

Before the CF instruction is executed, register A13 must eontain the address of
a pâramet,er list. Ihis list must contain the addresses of the t,rrro floating
point numbers Èo be used as operands.

413 parameter list first, pararneter

second parameter

175 t-51 Iby 1983.

?he subroutLne in the llbrary cont,ains the following relevanÈ items:

IDENT FRTLIB
ENTRY F:RM

:

RTN A14

This subroutine does not use the stack of the calllng program, except for Èhe
return. I'lhen valuea are to be returned to the main proglam, âD integer value
wLll be returned to Al or a reaL value to the registers At to A3 lnclusive (the
mantissa in Al and A2, and the exponent Ln A3).

The main program must now be Link-Edlted with the called subroutine from the
FORTRAN library. Ttre Linkage Editor selects those modules required for program
execut,ion.

T75 L-52 May 1983.

