el & A £ ﬂsi e af e b

WHA,J‘,.“H‘.HA.._.!., ,_-.LJ (e« 2O wwl.. . .LU

ook n B, e TR

| T
.V,,nw A.v .u ﬂ Mw-l. 3 em L3} n‘i..t: oY .Qr&
Ar@ll‘ u.‘.\ m ﬂwmw 3 4 e

on
..s :
) s e
4r o ,ﬂ‘. N » i
ey - S ; T
o e | e Ry ¢l P s
o W - 5 4 o hin. w”a.\w
4 Y’) v il St

ST @

.\.\.M : 1 T)

Pl
- e

L PR onan ARMNI S e, ‘_-.
e R

.’ .‘-‘ 1.. o > : e S s i
b 2> %l:fﬁ& Ny et

. ‘. S ; A A -~ ;. ».-. S o
e \.;._,.;*. st 2 ks =00

; J : e
. n X : :

(S

s #on ;
N ﬁ;’\b- ik 7 - arabe.

0 3
'

, mi"ra P 4
- o

-

Sk

e
o
- L
o L—-M‘n*ﬁ.-mtoc

’
4
Wi
¥
_\\'l: /(
i

S

e

P80OM Programmer’s Guide 3
Volume llI: Software Processors

A Publication of:

Philips Data Systems,

Department SSS, T & D,

P.0O. Box 245, 7300 AE Apeldoorn, The Netherlands.
Publication Number 5122 991 28384

May 1983

Copyright (C) by Philips Data Systems 1983.

All rights strictly reserved. Reproduction or issue

to third parties in any form whatever is not permitted

without written authority from the Publisher.

Printed in the Netherlands.

T75 0-1 May

1983.

PREFACE

This volume describes the processors running under the control of the Multi
Application Monitor. These processors are:

- Assembler
= Overlay Linkage Editor
Update Processor
= Librarian
= Debugging Package
- Transaction-oriented Disc File Management
= Sort Processor.

Part 1 of the manual describes the Assembly Language. A description of FORTRAN
may be found in the FORTRAN Reference Manual (5122 991 1140x), and of RTL/2 in

a number of manuals (e.g. RTL/2 Language Specification, 5122 011 2895x).
This manual should be used with the other MAS Manuals:

= Vol. I: Multi Application Monitor
= Vol. II: Instruction Set

H

voi. IV: Trouble Shooting Guide.

While every care has been taken in the preparation of this book, some errors
may remain. Should the reader find an error or omission, or have any other
comment to make, he is invited to contact:

SSS, Training and Documentation,

at the address on the opposite page. A form is provided at the end of this
book, for the user‘s convenience.

T75 0-2 May 1983.

75 0-3 May 1983.

TABLE OF CONTENTS

PART l ASSEMBLY LANGUAGE © 000000 0500606000600060606000060000080000060000600Ee l—].

Chapter 1 - IntrodUCELON wiiivasuieniniaiss se sisiessn sl isionsslssinsssssessins 1=3

Chapter 2. Syntax Description iiseecsshssnssssisssessssnsvissssnoss 1=D

Chapter 3 Format of Source StatementsS ceceeccccccscscccscssssscscscse 1=8

Label Field csssissviissassososonsesisssssinssssssposssssvissssevess 18
Operaticiy E1eld, s wmafies s s oot dess o slersioioks misielole. o siote alalers srs'e aiolelots.s ielers o/ sl
Location Counter w.sesse s isessspervannasssniseissnesmansesssmnss 121
Operand Field issssnvassssrnvvissnssssnsssmnasosnnsonsssssbososnsoasssis 1=l
Address-EXpression seisaiasssenieosssssinsssssssnnssanasssvssnmanvnes 1—12
Register EXPression sssesessses ssesssnasnnssnomnsnssnsnnssaosnsnse L—12
ConsEantsi: o us it s v st nioss s sileielos e bl s s s B o5 vt s ddie o8 o ismmiswee L=13
Declmal Constants sseissssssssisssensmssesssovnsasesnioesssssnsnses 1—13
Hexadecimal Constants csisssessssseabosvoseonsassansmiosssnmssnss 1-13
Character ConsStants i.ssesesssesssenenpsssssssssssssissrassnsnsnn 113
Comment. Field sessassssssnoeissmsonsssssesssssnsssssanabsnessnsesves L=13
Input of Source Statements and COrrectiOnS csiceacessescsssccasssseses 1=14

Chapter 4 Registers and Machine Instructions ...eoececcecosssssscssss 1-15

ROl BtEr S nessns e ssssssbossonniressommssaessmennseadanssshenssasss 4l
P=register cceescossscsesoscsnesonssnsssssnsssosnscenpsnssonnssssse 1=1]
Working Registers Al — Al4 ..ceeceecccccccccososssssssssassassassee 1=15
Register AlD weesssssnoisssssnsssnsansvnssccnnssencesranssnssssseses 1=15
CondIETon. REBLEEGT & wiewie o o'e s s oloisic enekeloyers s s s n inieis: o o @ s o srai s @ e isidio m & 0 016 Ji=lO)

Functional Operation of INStruUCtioONS ceceecececssscccssssasscsseseees 1=16
Load and Store INStrUCEIiONS seecessseorssssssssscscssscssssscscsscse 1=16
Arithmetic INSETUCLiONS sesssssncssnsssssssssssnssssssssnsensssne =17
Logical InNSETUCTLONS i s s sins tisisss oimiseessesnesssnseosssssossenesewns L=l
Character Handling InStructins .seceeccsccesssccsassoscscssssenanes 1—17
Branch ' Instructions sssssssssssssssvinssssnssnassnossanenmansssnme 1717
Shift ITNSETUCELONS - swie s s wis isheisl aldun Breinie s s o 8 miasales aie o ieie)e.n .o alee s o emnoraen =19
Control INSETUCELIONS wesesvemssusvsscsseninmnesssssionnsseeensssssss 1—19
T/ O-TNSEENEELONG - 4wt vl m v s iole SLaTm ohorslo s # & Srweds v 5 w3 bres &5 w v iogsier ww % w wlarers | 1=20
External INStructiOnS eceesccecesessccscscscscsscssssssssncsssssasss 1—20
Move Table INStrucCtioOnNS cecsceccscesssssccscacscccsoascscsccssnscsss 1—20
String INSErUCLIiONS seesecesssccesssscsssscssssssscssssssssssssases 1-20

Addressing MOdEs esssuwssdsnnesosdnunssnssessnssnssioessenipsnnsenesnss 1—21

Chapter 5 Assembly DirectivVesS ceeeesscecsscescccsccsssccscsscsssssses 1—23

Program FLamewoTk: eeeiw oo's o eiions sueieielsho as siemoioisl 5o oisiaialsi sis oo mononeesssss 123
Linkage CONLLOL vessmissssvnmsennieoesasnsssnsssasmasssnnssssnennnase 1=23
Assembly CoOntrol ..ceeeecssscccscsscessososcsascsassssssssssscssssssss 1-23
Value ‘Definiblon. wiessveusnis o dis e ssiomonios oo seim s v osonme gsdnnwonese L=20
Area- Reservation |svdsdees vesdsssvesvsssinnesssssnsdbssdadoddsnanesse L=24
LASEING COREFOL ofe s oo s n e mimionars s o orelain]e. v ot wisis s o s win o 0050 o niel o 8 0 1o inue] ww oris o =20
Symbol Cenerallon “wiis s s ews siss oes s essssssessssisosnisennnesssssnnssse 1204
TDENT weio a0 s isiora s e s ioie o s e s 008 000 01000/ 610 06 @70, 0si 8 89 8 01e] 8| 080 eeseesowwasss L=o)
END: s wvaiso oo oo s ¢ 5% @ onsr e v s 6 009700 5 6870198 9,55 i @i w0 e 6 @meie e eweesespesenes 12D
ENTRY ssscsnmunsonmemvnsssesensssessssossoonanrmpsmssanseensssnwonsss L—=20
EXTRIN .50 % @ % 50608 6 % 8 95005 8 8 5670 5081 88,850 /5, ai0L 878 9.8 16w v, a7s 16 iviw e 0 3 5 0w m o o w wamwi o o 1226

COMN ©© 5 9000005060000 0606005000000006000GC606000000COC0CSc 6006000000 000COCG6O00OCO0COSCSE S 1_27

T75 0-4 May 1983.

TH R ST TR i e 500004 o i St o i i o R 8 3 s Cetereesseeneeess 1-28
HTAR 5w 500 6008 o 55 5 50805 50500007 00 W8 5 S 00 3 A0 w6 i B 0 e w0 - VD
R 5 s 5w ot 1 e s 3 6 58 i g kS ek B 558 e BEET T o !
RORG eeveveens Ceeeeeaas R . - A ol N B 1-30
DEATA: 5o w0 5000 0508 5 008 W00 8 3 0000 65 0805065 800 8 e v w3 s wob i eee ws e 1 31
200) AP Ceeeeeeeteeeaenans T S e e P Cereeeeeeneenenn . 1-32
RES varwuisnsie s s e s sssessssssness s sleneseesssssesesssioisesseonsssess 1=33
BUECT 56555555555 5 566 5 65 $58505 57580575 6-405/0ke 5791 00908 55 ikt § 8 5 3 6 w6 8 5 wowm oy Blf
NLIST sssiesbnssiesns B T v 88 B A ¥ A S RS S e g wes asansy IOk
GTBIT a0 0 6 g e e e e 2 e e m w B R wE 8 S N D
FORM +4eueveoenoannooceseannsssecssnnssssscasnnnnssssssssssscacassss 1=35

XFORM ® 000000000000 000000090000000000000600e0000G60000000000000O0CO0COPEOC6EOCEGS6CES6CTC 1-38

Chapter 6 Programming Considerations eceeeceececevccccss sriovin @ e 1o i iw18: 5wk 1-39

Stand Alone or Monitor Programming eseeceecscescsccscscsscssocsccssess 1=39
Interrupt SYSEeM eeeseccccsccccccccnsce S BE B § S 5§ S ek 8 8 e e e 4 1P 39
System SEACK eesennasassssesss eecossesessssssessssssssssessssscscsse 1=40
USer StACK ssvesesssssesasssssssssscsssssnnssssssosssssssssssssnssss L—=40
Memory Management Unit MMU eesescessessossssscoscsassscsssssssscnses 1=42
Layout of Segment Table WOrd sceseesccsssesssossesssscsosssscsnses 1=42
Memory Protectlion sssssssssnssssssssoissrssnanenssssmenasnoonssus 143
Floating Point ProCeSSOTr sssessssssssscassssssossssasscsccscsnnsnnsse 1=43
OPEEALLON . vinsisienimioensionessnsioniseisessmenesssenessssssisosssosssss 1—43
Floatlng Polnt FOrMAL wsesssssssssessesessnsmnnsnssnsessssnnnsesss 1=bb
Trap ACEiON ceeesosessccecsscsssasscsssssssosnsssssscossssssssssscesse 1=45
Stand Alone Input and Output Programming seesesssscccssssscsscssssee 1=45
Programmed Channel eeeececcessscscecssssssssoosssssssssessssssssscs 1=45
1[0 Procogsor sessssssssssssnsnosesdsossssisepinssoninnsssesssssan 1=45
Source Program Calling a FORTRAN Library Subroutine ..eseeececesssees 1=51

PART 2 ASSEMBLER ooooo © 0000000000000 0000006000000606006060060006000000006006s 2_1

Chapter 1 Introduction © © 00060000000 0600000000000000°500000000000000O08GCECS 2-3

Chaptel’ 2. Call the Assembler © 6000000000000 00000000600000600600000060H0E0S 2-5

Chapter 3 OPT Control Statement eeeeesssccscccscssessscssssosssconces 2=7

SOUTCE FLIB nesosinsss it st orrpsstass s s Saaes Fassuewssssssns e cuwms e 2]
ObJeck FILe sosescumssens omesssime s ssssoasnssssssoss e s s sssseonsss 2=/
Type 1 Source File Filecode = /El teeeesssccccscscsscccsccsscccseses 2=7
Type 2 Source File Filecode Pre—-Assigned ecceeecesscsccccccssssscccss 2-8
Type 3 Source File Filecode NOt Given seeeeesesssccssssssscssssscses 2=8

Chapter 4 ASSembly Listing ©© 0000000000 000000000600000060000600060008000S 2-11

Listing eeeececcses S0 B E B BE08E B 8508 S e o 6 8 8 & e @ e e e e 2]
Symbol Table ceeeovccoccssscosssscsscssosssssns I sessnvesssessss 211
Error Indications sessssssesssssssssssssmsssnnsssmansessosssessnsses 2=11

Severe Ertors sesssssssesssssessssssasssssssinevsssssnssssssnevene 2—12
Severity CodeS secscesccccscsccccss TS .8 By a8 B 56,888 66 0 elR1E & B e e sose 2=12

Chapter 5 Assembler Output MESSAZES scecessssssccssssssccsssssscsscss 2—13

75 0-5 May 1983.

PART 3 LINKAGE EDITOR © e 500520690000 060000005000000000000000008c0600000000 3—1

Chapter 1 INEroducEIon ¢ eie ec oo e s siesivieie s s oiale s s s e sine siesessssssieen 3—3

(O8]
i
wu

Chapter 2 Multi-module Program ...ocoeececesscscsosssssccscnssssssssscs

Chapter 3 Overlay Technique ...ceessocesccssoscascsscosscsosscanssnsse

7
~

Segment ® ° 2 9000000096000 5000000000050 0005000000000060000000600000002c0000

Disc-Resident OVErlay eeeeceessccsscsascccccscccssscsscscascscssssossncsnsse
Memory—Resident OVerlay .ccecescesscccsscsscscsssscscsosscsscssscsscsscns

ROOL wosoomsnssmosnonioonssanaseessssssssensosesssssssesssssesnssssssss
Path l.l...I..........l...ll.l'.0..0......0......'..IDO...I..'.IOQOI

NOAE! 50559 555 @ 50085 5 5 8 616, 8.8 & & 50oleralaliens o 8007 @ [o9/656 0 5855060 80 & @l eresieme ol

TEVEL. uiereisis s e s om0 einm sisie s s sislseees e snsesssssesssssessesssssessssssee

ASCENAANIE w6 wiss 5 o6 66006 5.8 515500 8.8 & ©1616/5 6,8 5.6 $5s sis8 e @ s 8 80 50 58 S0 e eeewsn

Descendant e esisissnsesessiosssiesssissorsesssesesssenseessssisessssesnioss

w w(»lﬁtf(f(ﬂ W w W
00 0000 0 00 NN NN

EXCIUSIVE: &5 5,610,555 5 5 5,685 § o-8:8:80 & 57506506 008 o & @ias s & 8 GUere & & s G6wras v o e s

Chapter 4 Programming Considerations seeeseecscesccscsssscsssssssosss 3-11

Chapter 5 Call the Linkage EditOr .eecescsesccscescosccsscsssescssss 3=13

Segmented ProOgTram eeeseecssssacsccsssssssasccscssssasscsssssssscnnass 3—13
LKE OPT Statement eesceecsccescsscsvrssscasssssssssssssscsssssscsssscs 314
PEOCESSINE wuwersnumisrsseosinsrdsspsonsnonnsssisssisasissssssnnsnsss I=10

Processing of Commons sissssssemnsssessssassinmannssnionssnassmansos 317
foad Mbdule susssseassssssissisnmsbsvsssspsEssamasspavnossnsnomunns 317
Non-segmented PrOgTAm «.ceeeeeeccscsccsnscsscsscssssssscssssosncsesas 3—18
Object Module OUEDUE e essmme s e ammrss s mliessssssioassnsisnnosssesmnsnes I—LO

Chapter 6 Output of the Linkage EditOr ..ceeeeeeccsscccccoccssssssss 3-19

Load MOAULE eecececoccoscsoscsssssasssssssnnaosnsosssscscscssacssnssssss 3—19
Map and Symbol Table saewsessioesiesesssssienssiiosssesaenssssssisosnresss 3220
ETXTOor MESSAgeS seeesnssescssssssssnssssenssssosssssssssncasassevasne =22
FALAY EETOTE o 'viwmme e s seesswine siomeorso sisly sre ale s s & 5 eia-orsis sioreiors shelo's saks sreia iS22
Non—-Fatal EXTOTS eceeesccsccscsosssssosssccssscossssecsssssssccsssnss 323
SeVELity COARSE v v e s ssssinesssemssessssssssssssonsessssessss s e =23

PART 4 UPDATE PROCESSOR: s s.6.95 5606 500 sesssessaeessseesssesseesss 4_1

Chapter 1 Introduction eseecccsesscsscccsossssssccssssscsscsoscnssnass 4=3

Definition PhASE@ ceesesesscoscesssoassssossssssssasssassssasssnsssosse 43
EXQCutiOn PhaSe ©© 9 9600660090600 0000000006000 5000000005000 0569°5000000e00606S 4—4
General COMMATIAB, s ees s biems b ot o s iomm s 686600 8 o8008 5 8 8 es 0earins oo aieeene Gl

Chapter 2 Calling SEQUENCE seoeseccsssssnossssssasscccsssssasssssssss 4=5

Severity COdeS © 06590200 0° 05062090508 00000005500000060606005006000606000080600e000000 4—6

Chapter 3 COmmandS © 9060055200000 00600600606060800000006060000600060608s0000S0 4_7

Definition. ComMands . s ww'e.s s 5 s om w63 o6 oo s s o s @ oo ss s duessesssennses 4=
IN Define Input File eeeeceeecescssssssssssssssessccsscncsnccscsce 4=8
0. Define Oubpul FLLE v ws n dmwsien daeinsmm Semn v py moie s wses s vy s i 559
RS Replace a Character String ..esecesceccecccccccsccccesssessscnnss 4=l

75 0-6 May 1983.

DS Delete a Character SETINE ecceecccccosscscsccnocssasassssesssss 4=12
DE Delete Line with a Given String .cecescvcsccccccccss cescecesssss 4=13
IS Insert Line(s) after a Line with a Given String ccceececccsssssss 4—14
Exccution Conmands csisisssscasssnsonsinassvsnssssnsnvussnonnsnnanns 415
RE Replace a String in @ LiN€ s.eeeeesesssoccssssssosossscssssscss 4=16
DL Delete Line(S) eesecccscoscoccsscsssosssssosssssssossssssosssssess 4=17
IL Insert Line(s) .eceecccccocosocscsssosasssacsosossssssssscscscss 4—18
JN Join from Auxiliary Input File .eeeeccecscccssssncsccccssesscss 4—19
EX Immediate Exit from Update esessescsccsvsccscsssscscnsosccsnsosess 4=21
EN Terminate Updating sewesecsssssssnvsvsavssssssssssnwossnnsnansnn 4=22
KF Terminate and Catalogue Updated File cseececccscccsssccsssscoss 4=23
General. CONMANAS s esussensenssssnsssnssnousssssrssosnnsnsunsnsnmwsseses 424
CC Change Special CharacCterS seeececccecccsccsssssssssssssssssssness 4=24
CI Change Command INput DeviCe ecscsssccccscssvsccsssssscssnsnsssese 4—25
HL Help — Ask fOr SYynNtaX ceeeseccsccccsscscscscssscscscsssssssssnses 4=26
LF LISt File sunmecscssmonssnnssnsnninssssssnsasanspsonsasosnnsssnnns 4=27

S~

Chapter EXamplesS cecccoccesscsosccacasseascscssoscssssssocssasssasssass 4—29

Example 1 sssesvosssnssnsnssassoesssnnnsoassassssnsnnsnesssnnesnsnssns 4=20

Example 2 cosvisicsvsssissvissssivsnssbsitssinssssninsisisssasanenne §=29

EXample 3 ceeescccccscossoosccoscsasscsossossscssssssascsccsssssssee 4—29

Example 4 .cocosessccsscsccssssscacscsscssssscsossssccsossssscocsssssssss 4=30

Example 5 sescsssmossssrnmsosnnsaussonssnsassssnssnnonnssansassssnese 4=30

Example 6 ssssnscsssssoscssissosasssisusaranssnanns senanssonsnnnswan 431
7

2900000900960 000000000000 C0O0C0©0e0e00066000000O6CO0OCOCOCOCOOCEOCEESEEOSIEDESEOSES 4_31

Example

PART 5 LIBRARIAN © © 0020000600000 0060060000°000006060060500060COCOCOIREGEORLIEOEO6S0SLEODL 5-1

Chapter 1 INtroduUCtiOn .seecesccccescscsassccconcssssscsscscsssssssce D=3

Chapter 2 Operation .eescsscesessencsossssaascsssscscscssscnssssessse D=5

Chapter 3 Flag and Magnetic Tape CommandsS seceecescccssscscscssscsses D=7

Set/Reset Flag CommandS eeesceccccscssscsossssssosssssscsscsssscsssesss D=/
INVISID1E FLAL seecwssansnsssnssnnsssnsnnsnanseosnssnnnnsasssssses O]
System Flag eceececsscscocsscscssssscsnssssssssscscssseascssssonsscsce D=/
Write Protect Flag .ceececccccccsscsssssosssosssescsscscosscsssasess D=/
Gl TLER oo mwmesm v nssmesns sl ooy si ssEasssossrnen orEnEsseusss 59

Magnetic Tape CommAandS sesccsssccccccscaosesssssssssssssssscssansnss D=9
FBS Space File Backuitd sewessensnsnsunmmsnssnansssssnnensnsenensss 99
FFS Space File Forward sccisescsccosoossanssanacssanssassnnnoannns 2]
PLB Print Label ceeeeessccccccsoscsssscsssscssosssosssssssssssnsssssce Dl
RBS Space Record Backward eceesccsseccscsscccccssocsscsssasscssoescsonss D—13
REF Rewind File sesivsssssscssssessssssissvivsisasoverssssanenonans DLl
REW Rewind to Load Point wssssssccosssesssssnmpossnssnanavsosmnsse D=1
RFS Space Record FOrward ccoecsecscecccsscscssssososssscssosssssssnscse D—16
ULD Unlock DeviCe swsassssvssanssssssnsnsanssrsssesasssssmevesosesvss D17
WEF Write End Of File ceescoscccccsscsossosacsssscscsssasssosssssssss D—18
WES Writée End Of SEPMENE wsssnsssscvnssssnnsssssesssannsansassnnensss I=LY
WEV Write End Of VOlUME seveecccccccssssscnnsenscscssssnscncnsesss =20
WLB Write Label weissvssscvssnsssssssssnnsssossssvanssasssasnsennsss D721

175 0-7 May 1983.

Chapter 4 Commands © 6 06606508060 0°20000¢c05000800002 0000000000 0000000000006s0 5_23

CDD Condense DISC seecssosssssancensoassssscsssossssssssssssassssssses D23
CDF Copy Disc Flle sevssssnsessssasssnssossnsnsssansassswnnnssbssssnss I—2h
COR Condenge ObJect LiDTALY. o5 e a6 nnemes s smesessspeesse s se 3=
CSF Copy. ‘Sequential FLle e e sesesiesssssninsessssessssssssesssssnsesses D=20
DCD: Declare a DAD & .o s e s wioe s eseessnssessesssssiossssssneosssssussvsi =28
DCU Declare User Tdentification cesesssmssesssmmsssvssnesseeooesssss D=30
DLD Delete a DAD scessssccosasescsosnsnssssnssssssnsesssasssssannasse D=31
DLF Delete .a File e vsse.eossodomns st nsmess s e onsses e eweesenomese e I=32
DIU Delete User Identification wessesssssssssssansnsssssssssnsanssse D33
DOB Delete Object Module(s) cssessssnssosnsnnsnsssssnosssssensssssos I=I4
DUF Dump File sscenvicsssmnossnmensnsesosessioassssesessssnsesssenis I=ID
HLP List Parameters of Librarian Command ec.cescecesccscscascscsssse 5=36
KOM Keep Object Module(S) eeececccsccccscocscsossssossscssscsssoasscssscse D=37
KPE KEED: FLLE o wieiwrennsmsiorasssoiosnssnionnssssssessssassssesssonssssess IO
LEN End of LIDrarian, «.eseessssesiosssssssssssoossssenssssssposssnsss I3
LTO Convert Load Module tO ObDJECL ceessssscsssssscsscscssccccsssssss D40
POD Print Object DireCLOrY eceseeccsscsosssssscscscsccncnccccccssssss D=41
PRC Print CatalogUe seececsscccssssscssssscssssssscssscsscssscsscssses D45
PRD Print DirecLOTY s ssesseicsssssnisnsnssoossssssssiessessnssssesss D40
PRE-PrAnt . BLle 5.6 56 6 55 6.6.5 5 5 50,6 616765 516, 57578 & & leiois & @ & .10 /0707 & © & ienece) o % & s 1w jore o] D=L]
PRV Print Volume Table of Contents secesssssssesssasssssssnossssssnes =48
REC Receive File from Datacom Line eecceccecccccscccsccssccscassssses D=49
SDD CopYy DiSC t0O DiSC eseeessssssssssscccsscsscosscscscssssssssssssssases D30
SDM Save Disc on Magnetic TApPe sesceecsssssesssscacsssosnssssncscsssse =51
SEN Send File on Datacom Line cesissscsssssvassssnsoeosnsssaessoeenoss I3
SMV Set Maximum Version Numbercceceeescccsccccsacssssssssssssss D=D4
SRD Save and ResStore DAD . «sswessssesisssssesesesssessseseesssesenves I=35
SVU Save User FileS eevcecscocssoccssscsssosssessssccsscscscssssassssee D=57

PART 6 DEBUG © © 0006060005 0000600060600000C05 0060006060000 000006CEOCO0CIOCCCIOIOSIOSTOCEEE 6-1

Chapter 1 Introduction .ssssssssesssssasissssosnesnasevanssssnsssssss 073

Starting DEBUG © 9060000000000 000600606000800000C0C0000606060606006000000O0COCEOOGGSESE 6-3

Chapter 2 ProCeSSiNg seccssscsssscssssscsscccscccascscscsssscnsssssss 0=5

General © 6060000000000 00 000000800000 0000000000060C00O0C0O0O0O0CO0CO0IOCOGEESOIOIOOGOSEOEDLEOEOLO

AddresSing eceeesceccevecscscscscscsscscsssssscssscscccsassscsscscccecsssosnas

6
6
Breakpoltitn cossss oo ssases sssnssse onessssneessesssmensseeesnssve D
INDPUL/ OULPUL s ensinvoeseosessessnsssonsssssssossssssiessssssesssssess 6=
Prog¥am ADOTE scuuswsssassossasvornspssnenassssspsssspsssssosssssosnss 0
Monitor Callis ssw.ssessas s essesess e s s s wesesss s ssssseess s eee O

Chapter 3 Debug Commands cssscsmsssnsssssssasssassossssssesnsiassses 0=9

Command. BYNEAX ewessesnwsssssaosss s emmnsssseeessssssnsssssmessesesy 079
Parameter SYNLAX eeececccssesssssccsssossssssssssssssssssssssasssscss 0=9
AT COmMANA eeessovsccssscssascsssscsssessssssossscsncccssssccssssnssscss 0-l
IF COMMATIA . & wior 5 5 5 i 15 oo o 5 5 16 iwswrsssgale sdeyensss: sve (v l67a7ere) o o is (nisraxarsl o @ nterel eve o wisiaiaia 10=1
GO ComMATd s s 5.6 555 86 6us # 65 6 @ 60816 .56 8701670, 6 & 0 /6 676,016 8 & s [arisiier o) 5.n & s foverm w o w wialeje D12
DB COMMATA o0 0/srsrn s sioeiores s sssiomes s salis s s e b ssonenesssnwssssesmeee0=13
DM ‘COMMATIA . 500 010 558660055880 s60ssssessasssessssssneesssesssesenssoss 0=14
DR COMMANA ceoeeooocccccsssscsanssscssssssnssssssssssasasscsscnssssse 0—15
WM COMMANA «eeeececoccssccsssssesssssssssssanssssssonsssscsccssscsssss OD=16
WR COMMANd ececoocanocoscsccscnsnasocsssssssssssessssssnsssosossssssessss O=17

T75 0-8 May 1983.

RE - Commarnidl mregssmmis-sreramiesaerelarensloms sinls ave s s iolorsTiebs st o slede W78 in i0/aTalTm Bre 0 s ale m L IOELO
RT. "COMMATIA. 4555 5 » w6800 09 % % @re-orsi o 0 475 (s j0uaraze-a-nisis aise/e 668 8 80 b8 0bsebnbessseins O—19
CO: Commandh s v spemme o & Broves 57756 66 6 els @ BT 5 95 e s e s arees a e e lesreen 1620
CL Commant .c.sre vs & % 5.5 5718 § 6 B e T s Wt elslile S ele8 885 s s 5865 o 899 5 ls e 8 0=21
TR COMMATIA! rors-eneTone fn inlammnsnrnswonrsrareletads: susrais s wdoiesle 5 %% i 1o (41 SLb-Rra e wrerelacs B o o wrble D=2,

Commanidl & s 5.5 5 55880 © 8 wrere ole oale jors aslsisiamie’s: o ors s o wime: Sare & © wlers; s o 0w e wie; & D=2

RX
14 TCOMMANTL 5 5 & w51 9:5:5/5-5% B 55+ arafacas w18 s onaa e s 1eTs [6lers: o o o wler ol b m: n o falora; m o o 18 wrms w5+ OS2

Chapter 4 EXror MeSSages sescessscssassssssnssansansnannnesssossasss 0=25

Chapter 5 Example 0f USE ceesssossessscsosssssnsonsssssssnssannssnss 0=27

PART 7 TRANSACTION-ORIENTED DISC FILE MANAGEMENT SYSTEM ¢eveveeeees /-1

Chapter 1 Introduction ..cceeeeecescscoccccccccocsoscssoscsosccscssnscscscoce /=3

Eunctional (ChaTacteriStles o e wes sivsimemss o wimiolole s e el s o 58 o nieis: o o 5 e 0wmia o
File Structure ® ® ® ® ® 00 5 % OO 0 5O OO S0 00O 0O O 0 00 000 DO 0L QOO 000 000 E N0 OO NSO e OES

Keys ® © © ® ® 5 3 0 0 5 0 © 0 00 O O O 0 O 9 0 O O OO0 00 OO OO0 5 00O OO e P OO0 SO 00O O PSSP eSS ES SO
Access MethoOdS eeecccscoccccccssccssssosscssoscssoscssassosossossnsssscsssss

RECOVETY eccecessiosssssosssoscscssccncssssscsssscssssssacsssscasssscsce

Back-up © 00 ©° 000000000000 000006©00080000506000000060600C0000CO00C0COOGCGCEESEEssEL

|
LU e PP W

BaCk—Out ©© 000000200055 00000050°00006060000000000605000e00000000O0OCO0COCOSBOSIEOSIEEE

System Structure © 2000000000 560°50000009006000600000006000600000606000000000G0EC0

NN N N N N N
|

~J
I
~

Chapter 2 SETUCLUTE wwmisirenin s amssisrssonissniosssioss s esasesssessnnisss

File SETUCLUYE o owisoo e oo e s s es s s ssssemnessssses sssssesssssesesses

GENETAL .« uiw s ininimisrn oiais s /s 8 6 685 iere s o /s oo e 1818 8755 & o (eie] 579 568 10 /818 i 0 8 0 0 wyei a6 8
Descriptor Subfile .eesecosenae ceescescsesscsccesssssesesss s s e
TRdeR SUDTILE 6 vie e wmeismor 6o 0w wrens o 6 5 & oUerere: o & o o 1608 8 % & 6 & 5006 & o & & 6,056 8 010 5
Data) Subfile. ssesssamiensssesaineeidssaieosibion i iisRiiesivianvee e

Keys © ©©° 0000050200600 000800600600600°5000600960000000C0GCO°00C0CO0CI0COCOCIO0CIO0IOCOCO0CIOCIECEOIEOCESOCOSEOCES

Access MethodS seeessevsoesssosssesssannssasssnsssssossassnsssssnsssss
Direct Access on KeY sesssnicssssssscssssshossssssssssssshssassses
Sequential ACCESS secssessssssssascscsnssssosssoscsssssssssnasenssss
Direct Physical ACCESS 555598 6s as 906 s86e5s @masssssessassssssssss

|
=== WO WO 00 NN NN

NN NN N NN
I

Chapter 3 EDF Processor sissswsssssssisissssnmssnonsnpmasssanvsssvwssmm =11

Bemeral. s wis s o ommems @ 506 o000 [5 e 80006 @ o578 56 6 5 00 @5 0 6 e 0 s e mae e e v e el
Command SYNtaX seeeececssccsccssossssoccssssssssssssosssssssssssssssssss /=11
Parameter SYNEAX cceecesssscosssssscsssssssssssscnasssssssssssssnnsse /=11
Concurrent ACCESS wwswws s sess s enesesiesessssnessssosesssssmessnsses 1212
Error - Handling sessssssessssansserssssusnsasssensnssseonnsssssmannssw 102
Disc, Space Allocation ssusssswssssasnsssvessessssssssseesessnssassss 113
FEILE COMMATIA, iorere s v inun iorersre: o w s is tessreio ke ioth iorwie: o s in tosiorm; 1 s: o (o 18 1a0} oyal'e o 0 iwilior o Pwmjes =1l
KEY COMMANA wieesmnos nosmsmanssssensssssssssnssnnsssssssssnsssssssss =1L
DATA, COMMATIC. enenoin o o 50 t0rw 15 8 w8 azeimse s 5 @ sesd: sl o s in iniie 078 /30 [0 10 fnvies w0 w w wi 01 8l @ o 0 o0 4= loO)
NKEY -Command. m.e.s e s e sos a5 oot i & o e ® @ o o 5@ 60 b 6568600 65 om w6 JL7
NDAT Command seeecscescecsssscccssassosssssscscsssssonsssssscnssss /—18
DLKE Command eececeecesccescsososssssscosssssssssacccsssssssssssassnsss /=19
Loading and Unloading ssssssssescvssnanesssncesosnsesnosnsnssoossses 1—20
LOAD Command es.s s e smiissssnsinessssss@anessinmssesnasoanessesssonsssese 1721
UNLD Command. sesssssmasnssensmpsesopposasssssnassnsssessasswonnssen =23
File) ReorganIoablon. «5.00 e s ot 5 S5 08 68 66 50685 8555 55 5 658660 b s @B E 5 FO0E
Index ReorganisSation seeecesecccescccoscsoscsossosssssssscsssscsssscsss /=24
Data ReorganisSation sececscsscosscscccsscscscscccccssccnssascnscnsccse /=24
IDRG CommAand e s s simasisssssmoisosssseenses s e e sssssseoesssesmnesssess 422

T75 0=9 May 1983.

DFY File Housekeeping ssssessisssssssinsenssbssonasssmossnsnsesonns I—20
COPY COMMENG 5 o 45 wrele 5 o5 5iers s e s atel S ote s Bl 86 §55 0 e Bow o smnanaamanss A=l)
REPL COMMATIA" tarstesfofatnrs-nasslora-sieotolo]stutalshotatetsbalarasaratola s/ s5e 5%s wlals o s s is s iaislsis w/s_ A =2
SAVE: (Commanmd s o wis s s & o emsionere 5 v 5 5Is7el0 678 8 1 inioL 0} o ¥ @ mieie: wi w0l e inie @ w o m 0 A1e: % 3 98 H2O
REST! :Command. . s aicwissswomaaisnmie s ses oo et omeaes o seeds e eonronsie 1228
DEL Command: o« siweiswsss siwiesrersreasinioss s s s oiessssaniossssasvessnnsivesnss =29
DRMT Command: s s swrsem 555 5o 5iute slsmis oiedelsessssssossessssseaesosssnes =30
MTDR - Commantl. s wiwisisre-ers s oo sie s e et se s o o/ eses siorss s sinsesesisssssse 3l

Recovery COMNANAS wesssssonssssnessnsssossssnssssesnensewsnssvesssen 1=38
BOGN (COMMATIA, 10 w0 roisserams wisiorsre sisroime:sisia sinisis ss s an nnresissaessssseevise: 133
BUGN COMMANA eeeeeveoccoesecoccocsssssssssossssssscscssssssssssccnss /=34
INSE Command sssossssspossssisisssasussnnbssasnensvnbpassnsonnswer § =80
RBUP COmMANG. woweunsnsnsrinsorsnsnsasssntsssssssssssisssssbassssses 730
SPRO COMMANA »uwessusvwssnenssnbsssssonncssstasssssdsspssnspnsosase 137

Diagnostic and Other Commands .cescssosssssssossssnssossasnmsussnees =38
DUME COMUATE. 5556 5065 0 ea s wnssvais SesFaaes beassens oy s s os s yyon 1739
STAT ComMand: s.sms sws swem e asssssssssssssssenssss e sessssasonsesses 1=41
SBUE COMMATIA. 4 aisrois s i oeisisi s s isiorsiare siie ' alinlsiala et s o810 008 in 8 75 .98 § & wloioras wialor] =42
EFENE Commamdi. ssisswree e o 561 o msilon sierels e omsisnsce o b b lofsfors: o she ls jofers; o s 0 0 lalele -l =40
ABT COMMANG eeeeeevcccccsscssscsscsssasenassssssascassssssssnscnses /=44

Chapter 4 Tnput/OUEDPUL essssmsonanssnssssnssssssssssssssssonessesnen I=406

LEM Calling SeqUEnCR we s ss s s ss swse s sees oo s ene s emensssssnsnsssnys {40
Transaction REAAY s e as shes o seemcss sssssssssssesssss done sy ves @we. LTl

Openiog MOAEE o xemiwwesns s sssssssemssesssasssnssvepnsesssvnysssens | —H0
Transaction' FAnTShed i esiee s oscssess s s s s smvenessseessseesees =049

Abort Transaction, . eis s ses e e s s s 5e emeeses s 5w e s s oo o e e semessseees =30
Finish and Cancel Transaction sceceececsssscssccssscscccscscasssosssocas /=Dl

Back=0out RECOVELY & swssissnsiin ssssamessessssmsesessroosaencoassnnssmes =52
Resulit Block LAVOUL sessisimsnienismesssmeposnssnsossssemosssssensnss (I
PosSition 0N Koy VAIUE oies s sasscersiss sissssssssssssessssnsssssisemoe =4
EXAmPle ceeeessccccssoscsscscsoscsacsssossssssssssssssssssssssssssssss /=55

Read on Key VAlUE seeeecccsescssssssssssssscsssssssssscssscsssccscncs /=50
Read NeXt ©© 6000600050005 00006000060000600600006060GC00000000660000CO0O0OCESESCOEEEEEOLE 7—58

Read PreviouS eceessscsccccscscscacsoscssscssssscssassssssssssssssssscsse /=09
Replace RecCord s e e s e inssssesoeseesnssssvedsomssesenossssssmsiesss 1=00
Read on Physical Co—0rdinates sececescessssscssssssssccccsnssssscnes /=01
Delete @ ReCOTrd seeeeecscsscccsccsccsossossscanssssscssscsssescnscscsscnsce /=02
Write A RecOoTl ssemevessnsmesnssemnes sss.s e sssssen sssss oo ses o os ey 1203
Detach One or ALL Records sissesssssesicirsnscisosviesnssscseesosanras 1=04
Returned StatuS eceeececcecscosossecsccsssssssassscsssssssssssssssssncs /=05

Warning Status sissssssssisssssnossisesssssssnssssssmbssassnmnvness 1-00

Exror SEabUS weli.ewssessoes s eessaes s midasiseanaiusimansevsasnnesen 1200

Disc I/0 EXTOTS sessccsssssscssssssnsessssssssvassinsvessesnnosssse 1=67
Ertror Code Cross—reference Table .c.eossonsessssscncssnconessnscsssss /=08

Chapter 5 Recovery Procedures ...cccecceescessscsscccsccsscsssssscss /=70

Definitions seeeccscceccacccccsscoosccscscsscsssccsssssssscsccsscsssscsssses 7—70
Transactlions s 6503 i 00008 sentmsesiesessssssedssssssnsesseesnssssas 110

Runs © © 000060600606 0600000000900 5000000000000 0000060CCCEOCEESCSOCO0ISCO6O0OSCSGCOCGCIOCIGCQSOCIEOCEEOSEEOLEOSSE 7—71

Establishing Recovery MechanisSms .eeccscesscccsseccessscsccassscssssss /=71
Recovering TDFM Files ® 0 8 9 0 0 00 000000 00 0 00 P00 000 O 0GR E OSSN OLOSELEDLEDSNEBSES OO DS 7—71

Chapter 6 Example Of USE .iceeescssscocscsssscsssssssscssssscsssssee /=74

T75 0-10 May 1983.

PART 8 SORT PROCESSOR cocescsacocscoscscscocnnsscsscssnscsssssssasceses 8=l

Chapter 1 TOEFGAUCETON. 5.0 wie v s s m imiaism e o min e s e m0e o s se s s oo s e eseessssses 8—3

Proeousing .oissesiisss s snsitsinisinpeiississuasussnobasasmunswns o B3
TOPUE/ OUEDIE w016 5 wimm o0 i0: 008 0.0 18 iasiwL 80050 W0081 40850000 10,08 F0iy] .08 10 0 (0er ot mim (s om0 9 fn 0 &) BT
Inpat FIle cusscsissstinisessasessss s isnedaasreswsasssmnannnens s B0
OuEpUl. FAile, cams ssssb s esstssibisssomibsndsviviiseenssumaenesmoss 05
WOTKk FileS sccscocsscsscesscncoasssosssasccsassnascscssasssosssnssosse 3=k
8-4

8-4

Keys 6 e @ 0o P00 000®000000005069 0000006000000 e00E00006000EE0DP0009000000O00CE0CO6OOOIO6OC

EXitS ® 0 e ®0 0080002 E00E9 0000000000000 00@00C00S00EC000 000060000000 CSSE00CO0O0O SO

Chapter 2 Operation ©©© 06000005506 0000600006000000000060606000eC0QCQOCGCEOCEEEESESEOECSsTSEL 8-5

Processor CallS cceeecossocscsssccscecacsoscsosessossssossssssscssssosssnsses O=D
SOrt ParamelerS .cccescsscccscssosccossscccsasoassscocsscsnssssssossss O=D
Sort Called as a SUD=PrOZram .cecscescccccsssescccssssssscccscssss 8=0
User: EXils ssssccosssmenasssn sosshomasspssssrvasasmenanssmesssanemus 07
Uset BEIE 1 comessanmspasnonsosennaonpsnmsnossnsoneenesssnosnsssspess S7
User Exlt 2 cssivsvicsvsnvissssonssoisisssssssssavvsssssnosssavsoss 8—8
TDFM EXIt ceocosccccssscscnsssescscsssossssesoscscscsnscscccnssssanses 3=8
EXTOr MESSAZES sesssnsenssssssasesssasssasssnnnssrnssuessnnnnsonnsse =0
Parameter ErIOrS ssswacsssssscussscsnsnsnssansssnosnssssssnanssnnss 88
Errors in Key Input Ph8SE ceeececsescsoscssossssscssssssssssssssssns =9
Errors in Merge PhaSe ..cececccccsccccssssssssscsascsssccssssssnssss 3=9
Errors in Output PhASE ceecccsccscsccsscsssocssssssccscsscsssssccss =9
Status Values in AssSign EYTOTS secsececoscsscssscssssssscscsssoscssss 39

Chapter 3 Linking Sort ModuleS ..cceececscsccoscsososssssssosnsosssssss 3-11

Example 1 © 9609060950600 02005050060060600080060060600060066006085006006060000000600SsS0 8-11
Example 2 © 0000006065000 000000060000006605 0000006600606 0°0000060006006060606000SH 8—12

APPENDICES © 2000060060 06008060060086000000060066006000000600060000006000060O6GCOCSSS A-l

APPENDIX A ERROR MESSAGES +cvecscesceccescoscscssccoossscscssssnsssnns A-3

APPENDIX B FILECODES cesceossooovesnccessssssscosssscsossscscsssssnsssee Bl

INDEX © © 800 20 e85 0000000000 00000 0C0 080000000000 00000000060ECE000IO0CID0OCO0CGO0CO0O06OD0SC X-l

75 0-11 May 1983.

PART 1 ASSEMBLY LANGUAGE

T75 1= May 1983.

T75 1-2 May 1983.

1 INTRODUCTION

A module or program written in the Assembly Language consists of a series of
statements. There are two types of statements:

= Instructions

The program instructions normally form the bulk of the program, and are the
actual work tools by which data may be input, processed and output. Each
instruction in the P80OM instruction set is fully described in Volume II.

- Directives

The directives are used to guide the actual assembling process and to

structure the program according to the programmer’s needs. The directives
are described in Chapter 5 of this part.

After the program is written, it is input to the Assembler and then to the

Overlay Linkage Editor to convert to load module format and to fill in external
references.

Ti5 ' 1-3 May 1983.

T75 1-4 May 1983.

SYNTAX DESCRIPTION

The following symbols are used to define the syntax of the P80OM Assembly

Language and Assembly Directives.

§ie means "is defined as".

space (i.e. one or more significant spaces)

[] the syntactic items between these square brackets may be omitted.

{a | b} means a or b

e ellipsis indicates repetition of the last syntactic item.

The following list contains the definition of all items used:

<absolute symbol)
{address expression>
<{character>
{character constant)
{character string>

{comments>

<common field definition)>

<{common field definition list)>

{common field length>
<common field name)>

{constant)>

(cnd)

{data expression)

{decimal constant)

T75

characters representing a value
<{expression>

{<letter> | <digit> | <delimiterD>}
*<character>[<character>]’
‘<character>[<character>] ...’

{characters (in comments field) |
* characters (on new line)}

{common field name)>[<common field length)]

{common field definition)>,
{common field definition>, ...

{predefined expression)

<label>

{<decimal constant)> |
<hexadecimal constant)> |
<{character constant)>}

condition value or condition mnemonic
(see condition table with the commands
AB, ABR, ABI, RB, RF)

{<expression> | <character string)>}
{data expression)

{digit string>

range -32768 to +32767 in 16 bits
range 0 to 255 in 8 bits

1-5 May 1983.

<{delimiter>

<digit>
<digit string>
<entry name)>

<{expression>

{+ plus |

- minus |

* asterisk |

= equals |

’ apostrophe |

comma |

blank |

slash |

left parenthesis |
right parenthesis |
period |

: colon}

-

e N~~~

0 to 9 inclusive
{digit>[<digit>] ...
{label)> within reference module

{<predefined expression> |

<{external name>{+ | -}<absolute symbol value>{+ | -}<value>}

{external name)

<field definition)>

{field length definit

{field length definition>
<field number)>

<field number list)>
=<{field value definition>
:{field value definition)

<hexadecimal constant)

<hexa digit>
<{integer>
<internal symbol)>
<k>

L

<{label>

{letter>

T75

{label) defined in another module

ion>{= | :}<field value definition)>

number of bits (1-16)

<{decimal constant)>

{field number>[,<field number>] ...
<value)> to be placed in field

address of word, relative to FORM

{X’<hexa digit>[<hexa digit>]’ |

/<hexa digit>[<hexa digit>]}
range 0 - /FFFF in 16 bits
range 0 - /FF in 8 bits.
{<digit> | A to F inclusive}

0 - /FFFF or =32767 < i < 32767

<label>

short constant

long constant indicator

::= <letter>{<letter> | <digit> | <delimiter>} ...

Maximum length 6 characters.

A to Z inclusive

1-6 May 1983.

<1k>

<long constant)>
<m>

<{mnemonic)

<module name)
<operand>
<operation code>

{predefined absolute expression>

<long constant>
<{expression>
{address expression>

characters representing instruction or
directive

<label>
{expression>

<{mnemonic>

{{+ | -}<absolute symbol value)>[{+ | —-}<absolute symbol value>[{+ | -}<valued>]]
| <relocatable symbol>-<relocatable symbol>[{+ | =}<value>]}

<predefined expression>

{<predefined absolute expression)> |
{relocatable symbol>[{+ | -}<absolute symbol value>[{+ | -}<value>]]}

{register expression>
{register name)>
{relocatable symbol>
<rl, r2, r3>

S

<short constant)

{statement)>

<{value)

{register name)>

P, Al - Al5 inclusive

characters representing an address
{register expressiomn>

store indicator

{predefined absolute expression)>
(absolute value < 256)

{[<label>] <operation code> [<operandl>]
[,<operand2>] [,<operand3>] [<comments>]
| [* <comments>]}

{<{decimal constant> | <hexadecimal constant)}

T75

::= {indirection indicator (in operation code

field) |
current value of location counter
(in operand field)}

1=7 May 1983.

3 FORMAT OF SOURCE STATEMENTS

A source module consists of a sequence of statements. The Assembler interprets
each line as it is presented.

A statement can be divided into the following fields:

- label field

— operation field
- operand field

- comments field.

{statement)> ::= {[<1abe1>]_ﬁoperation—code}_[<operand>]_j<comments>] |
* [<comments>]}

Each field has to be separated from the following by one (or more) space
character(s), shown here as underlines. Spaces may not appear in the fields
themselves, except when specified in a character constant or a comments field.

Instead of spaces, a backslash may be used for separation (see "Input of Source
Statements and Corrections'", below). One or more spaces at the beginning of a
statement indicate that there is no label field. If there are eleven or more
spaces at the beginning of a statement, all following characters are considered
as belonging to the comments field.

An * (asterisk) at the beginning of a statement identifies that line as a
comments line.

LABEL FIELD

<label> ::= <letter>{<letter> | <digit> | <delimiterd} ...
Maximum length 6 characters.

Labels (or identifiers) in a module are used to refer to other statements in a
module.

In most cases, the assembler assigns to each label a word address value which
is the numerical equivalent (absolute or relocatable) of the label.

The maximum number of characters in a label recognised by the Assembler is
six. The first of those must always be a letter. A label may contain more than

six characters, but the additional characters will not be taken into account.

If the label has already been allocated to another statement, an error message
is output.

Period signs in a label are not significant, e.g.

M.AS256 LDK Al, 6
MAS256 ABR A4

will give an error message.

The value of a label is normally regarded as relocatable, except when:

= an absolute address is equated by an EQU directive

== the label appears in an absolute program section, defined by the AORG
directive, and is not equated by an EQU directive to a label previously
defined as relocatable.

T/5 1-8 May 1983.

OPERATION FIELD

{operation code> ::= {<mnemonic>[{S | (cnd) | L}][*] | <directive>}
= <mnemonic>

The operation field normally contains the mnemonic of a standard instruction.
It is possible, however, to generate one’s own instruction mnemonics by means
of the FORM and XFORM directives; see Chapter 5.

- S

Allowed after the mnemonic of certain register to register and memory reference
instructions. It indicates that the result of the operation must be stored in a
memory location and not in a register (bit 15 of the instruction is set to 1).
In fact, S has to be considered as a part of the instruction mnemonic, e.g. CIR
and ClRS instructions are to be considered as two different instructions.

The S may be preceded by a period sign, although the Assembler does not take
this sign into account.

E.g. AD.S = ADS

- (end) ::= {<condition value> | <condition mnemonic)}
<condition value> ::= {0 | 1 | 2 | 3| 4| 5| 6| 7}
<condition mnemonic> ::= {Z | P | N| O| E | G| L | A| | U|

NZ | NP | NN | NE | NG | NL | NA | NR}
(See condition table below.)

This specifies the condition under which a conditional branch instruction is to

be performed. The table below shows how the conditional mnemonics and condition
values may be used in the Assembler.

T75 1-9 May 1983.

CONDITIONAL NOTATION

| COND.REG| (cnd)
| CONTENTS |
| GENERAL | ARITHM. | COMPARE I/0
- - -
I | I |
0 (0) (Z) Zero | (E) Equal (A) Accepted
1 (D (P) Positive | (G) Greater (R) Refused
2 | (2) | (N) Negative | (L) Less -
3 (3) | (0) Overflow | - (U) Unknown
l |- [=
NOT - CONDITION NOTATION
COND.REG|
|CONTENTS|
| GENERAL ARITHM. | COMPARE 1/0
| | |
0 (4) | (NZ) Not Zero |(NE) Not Equal|(NA) Not
[| o | | Accepted
1 (5) |(NP) Not Pos. |(NG) Not | (NR) Not
| | Greater Refused
| 2 (6) | (NN) Not Neg. |(NL) Not Less -
| | |
3 | (7) | Unconditional
= L

Allowed after the mnemonic of a constant instruction and in the ABL
instruction. It specifies that the operand is contained in 16 bits, i.e. that
the instruction must be assembled as a '"long" instruction.

The L may be preceded by a period sign; the Assembler does not take the period
sign into account.

E.g.

Note:

LDKL and LDK.L give the same result.

value greater than 255, must always be long.

LDKL
LDKL
LDK

LDKL

A8,/4E20
Al ,/FFFF
A2,/FF

Al2,/BUF2 load address of BUF2 in Al2

Constant instructions with registers A8 to Al5 (inclusive), or with a

Indicates the indirect addressing mode in a register to register or a memory
reference instruction.

{directive>

See Chapter 5 of this Part.

T75

1-10

May 1983.

Location Counter

The Assembler maintains a location counter, which is a software counter used to
assign relative or absolute memory addresses to program elements. The location

counter starts with a relative value of zero, or at the absolute address
defined by an AORG directive. The value of the counter is incremented in steps
of 2 or a multiple of 2, depending on the length of the current instruction.

The current value of the counter may be referred to by an * in the operand
field. In absolute program sections * has an absolute value. The value may be

changed by a RES or RORG directive.

The location counter may take neither a negative relative value nor an odd
value.

See also the note under the DATA directive description, in Chapter 5.

OPERAND FIELD

The operand field contains a maximum of three operands. An operand may be an
address expression, a register expression or constant expression, a predefined
expression, or a predefined absolute expression associated with the current
machine instruction or assembly directive. The structure and meaning of the
operand depends on the type of instruction and directive, and is explained
below.

All expressions must be separated by a comma.
<{expression> ::= {<predefined expression> |

<external name>{+ | -}<absolute symbol value>{+ | -}<valued}

{register expression) {register name>

{register name)> P, Al - Al5 inclusive

{predefined expression> HEES
{<predefined absolute expression>
<{relocatable symbol>[{+ | -}<absolute symbol-value>[{+ | —}<value>]]}

<{predefined absolute expression> ::=

{{+ | -}<absolute symbol value>[{+ | —-}<absolute symbol value>[{+ | -}<value>]]
| <relocatable symbol>-<relocatable symbol>[{+ | -}<value>]}

Note: * is considered to be a relocatable symbol.

In the instruction syntax the following mnemonics are used; they mean:

<m> ::= <address expression)> ::= <{expression>
<rl> | <r2> | <r3> ::= <register expression> ::= <register name>
<k> ::= <<% rt constant)> ::= {predefined absolute expression>

(absolute value < 256)

<1k>

<{long constant> ::= <expression>

T75 1-11 May 1983.

The table below shows the results of a combination of positive and negative
absolute or relocatable symbols:

| Ist term | | | |

+R -R +A -A

2nd term

l | I I
| +R E A R R
I
| =R A E E E
|
| +A R | E | A A
| |- I I
| -A | R | E | A | A
Where: R = relocatable A = absolute E = erroneous.

Address Expression

The address specified in a memory reference instruction can be either absolute
or relocatable.

An absolute address is the actual address in memory where the information the
user needs can be found.

A relocatable address is relative to the beginning of the program in which it
appears.

The address expression may contain one of the following terms or a combination
of them:
* Asterisk, which is a predefined expression representing the current
value of the location counter. This counter is incremented by two or
a multiple of two, depending on the length of the instruction.

<{symbol> Used to refer to an instruction or data word with the same identifier
in its label field. The Assembler will convert the symbol to a
relative address.

{displacement value>
Which can be attached to ‘*’ or ‘symbol’ to indicate a word not

labelled by an identifier.

Register Expression

Register expressions consist of one, two, or three characters. The register
expressions recognised by the Assembler are:

P P-register
Al ... Al4 Registers 1 to 14 (general purpose registers)
Al5 Register 15 (stack pointer)

T75 1-12 May 1983.

Constants

A variety of constant types may be specified in the operand of an instruction
or directive.

{constant> ::= {<decimal constant> |
<hexadecimal constant)> |
{character constant)>}

Decimal Constants

<{decimal constant)> ::= <digit string>
range —-32768 to +32767 in 16 bits
range 0 to 255 in 8 bits.

The decimal constant is a digit or integer, contained in an 8-bit character or
16-bit word, whose value may range from O to 32767.

Hexadecimal Constants

<hexadecimal constant> {X"<hexa digit>[<hexa digit>]’ |
/<hexa digit>[<hexa digit>]}
range 0 - /FFFF in 16 bits

range 0 - /FF in 8 bits.

<hexa digit>

{<digit> | A to F inclusive}

The hexadecimal constant is considered to be a hexadecimal value or bit string
in the range from O to /FFFF.

Character Constants

’

<character constant) ::= ‘*Lcharacter>[<character>] ...

A character constant is composed of a character string enclosed in single
quotation marks. The string is composed of the characters described in the
character set.

A character constant can be used with a machine instruction only if the
constant consists of either one character (short comstant) or two characters
(long constant). Longer strings can be specified in a DATA directive. A single
quote mark (') used as a character is specified by two consecutive single quote
marks.

COMMENT FIELD

Comments may be included after each instruction or group of instructions, to
explain the reason and meaning of the instruction(s). Comments can be written
from the 40th column, or data is considered to be comments when it is separated
from the operand by a space character.

Comments are printed on the assembly listing up to column 72. They are not
included in the generated object program.

A line is a comment line when the line starts with an * (asterisk), or when the
first eleven characters of that line are blank.

T75 1=13 May 1983.

INPUT OF SOURCE STATEMENTS AND CORRECTIONS

The user may type in the statements and corrections from the operator’s
typewriter. He may do so by counting the number of characters to obtain a neat
output on the listing device. This procedure is rather cumbersome when many
statements have to be typed in. An easier way of input from the typewriter is
by typing a backslash between the various parts of the statement.

Example:
1st column 10th column 19th column 40th column
<label> <opcode> _ <operand> _ {comments>

may be typed as follows:
<{label>\<opcode>\<operand>\<comments>

without having to count for the first column of each field.
Example:

DATAF\LDK\ A4, 4

\ABL(7) \HALT

DEVUN\LDK\A4,5

\ABL(7)\HALT

ADDIT\LDK\AL,O\SET INDEX REGISTER FOR BUFFER.
\LDK A3/00FF\SET LOGICAL CONSTANT INTO A3.

T75 1-14 May 1983.

b REGISTERS AND MACHINE INSTRUCTIONS

Sixteen registers are available for use by the programmer. These 16 registers,
which have the predefined symbols P and Al to Al5, are called the scratchpad.
They may be addressed from either the instruction being carried out or from the
toggle switches on the control panel.

The specific designation of registers within the scratchpad is:

P-Register

This register is used to hold the address of the next instruction to be
executed. It is incremented in steps of two if the program is executed
sequentially, or it may be altered to hold the required new address if a branch

is to be carried out.

Working Registers (Al-Al4)

The working registers may be used with an instruction in any of the following
ways: =

- As accumulators, where the data to be processed can be found in a register.

= As pointers, where the specified register contains the operand address
rather than the operand itself.

- As index registers, where the contents of the specified registers and the
contents of the word following the instruction are added together to

produce the operand address.

It is a recommended standard that register Al4 be used as the application stack
pointer.

Register AlS

This register is used by the Monitor as its stack pointer and, as such, it is

updated whenever it is used for memory addressing. It may also be addressed by
an instruction in the same way as the registers Al to Al4.

Note: P, Al, A2, A3, etc., can only be used to refer to the registers. If

they are used for other purposes, an error message will be output for
the Assembler processor.

T75) 1-15 May 1983.

| | | Internal Value |

Name Meaning
decimal | binary
| l | l
P Instruction Counter 0 0 0 0 O
| Al | Register 1 2 | Dg1 -0
A2 Register 2 4 0O 1 0 O
A3 Register 3 6 0 1 1 O
A4 | Register 4 | 8 1 0 0 0 |
A5 Register 5 10 1 0 1 0
A6 Register 6 12 1 1 0 O
A7 | Register 7 14 1. 1 =g
A8 Register 8 1 0 0 0 1
A9 Register 9 3 0 0 1 1
Al0 Register 10 5 | 0 1 0 1
All Register 11 7 0 1 1 1
Al2 Register 12 9 100 1
| Al13 Register 13 11 1 01 1
Al4 Register 14 13 1 1 0 1
Al5 | Monitor Stack Pointer 15 1 1 11

bit 5 6 7 8 in the
instruction format.

Condition Register

The Condition Register is a 2-bit hardware register, the contents of which are
determined by the result of the most recently executed "effective'" instruction.
By "effective'", it is implied that not all instructions affect the contents of
the CR. Thus the contents of the CR reflect the result of, for example, a
foregoing compare instruction.

By matching these contents with a condition value (range 0 - 7), or a condition
mnemonic (see syntax description), a conditional program branch may be set up.

FUNCTIONAL OPERATION OF INSTRUCTIONS

Load and Store Instructions

Load Instructions

Before the programmer can perform an operation on the contents of a memory
location or a register, its contents must be placed in one of the registers Al
through Al5, an operation which is performed by the load instructions. The
contents of any memory location or any register are loaded into any register or
memory location where the operation will take place.

The contents of a number of memory locations may be loaded in the same number
of consecutive registers by means of a multiple load instruction. The first
register to be loaded is always register Al.

When working in system mode on a POOM with MMU board (see also "Memory

Management Unit", in Chapter 6), locations beyond 32K can also be loaded, as
their addressing is taken care of by the MMU.

775 1~16 May 1983.

Store Instructions

Companion to the load instructions mentioned above are the store instructions
which store the contents of a register, or a number of consecutive registers,
containing the result of an operation, into a register or a memory location or
a number of memory locations.

Arithmetic Instructions

Arithmetic instructions perform the normal arithmetic functions such as add,
subtract, multiply and divide. The instruction operand operates upon the
contents of the specified instruction.

This type of instruction includes also the double add and double subtract
instructions, where operations take place on the contents of two consecutive

memory addresses and registers Al and A2.

Logical Instructions

Instructions described under this heading are called logical instructions
because they operate on binary information according to the rules of logic.

The first operand, which may be a memory location, a register (Rl or R3), or a
constant, is compared with the second operand, register R2. The result is
placed in a register or possibly in memory. 1In the instruction set, for each
logical instruction is described in which way the contents of a memory location
is ANDed or ORed.

Character Handling Instructions

Character handling instructions operate on a character level. Characters may
be exchanged or compared, or 8 bits of a constant may be placed in 8 bits of a
register.

Branch Instructions

These instructions cause a branch to an address in memory, either when a
certain condition is fulfilled or unconditionally. In branch instructions on
condition the instruction mnemonic is followed by a number ranging from 0 to
6,enclosed in brackets. When the number is (7) or omitted, the branch is
unconditional.

These numbers are compared with the contents of the condition register set by
the previous instruction.

The condition number has the following meanings:

(0) branch if CR =
(1) branch if CR =
(2) branch if CR =
(3) branch if CR =

(4) branch if CR # 0
(5) branch if CR # 1
(6) branch if CR # 2
(7) unconditional branch

wN =0

T75 1-17 May 1983.

Example:

LDK A2 ,4

LABEL SUK A2,1

RB(4) LABEL Branch if CR # 0.

The Assembler allows the programmer to write, instead of a number, a condition
mnemonic, e.g. Z, E, A (see the Condition Table in Chapter 3).

Unconditional branches are made by the following instructions:

= Absolute or relative branch instructions, without a condition indicator or
when (7) is specified.
= CF, RTN, EX instructions.

Long format absolute instructions permit branching, forwards as well as
backwards, to any address in the program. Short format absolute branch
instructions may only branch to locations /0000 to /OQOFE. Relative forward and
backward instructions may not skip more than 127 locations backwards or 128
locations forwards.

The Assembler gives an error indication if the permissible branch range is
exceeded.

The address to which control is to pass may be indicated in various ways:

1. By means of a symbolic address expression
ABL(3) LABEL

2. By an absolute address held in a register
ABR(7) A5

3. By using a constant to indicate an absolute memory address
(short constant)

AB /84

4. By means of a displacement value added to or subtracted from the
instruction counter value (RB and RF instructions only). This displacement
value is computed by the Assembler from an address expression used in the
operand, and may not exceed more than 128 words forwards or 127 backwards.

TWENTY EQU 20
RB(0) TWENTY

Another group of branch instructions are the Call Function and Return from
Function instructions. The Call Function instruction provides a link to a
subroutine by branching to the first instruction of the subroutine. To be able
to resume the execution of the main program after the subroutine has been
executed, the contents of the P~register and the Program Status Word are stored
in the stack. When the last instruction of the subroutine (RTN) is executed,
the contents of P and PSW are restored.

A special group within the branch instructions is formed by the instructions
EX, EXK and EXR. These instructions allow the programmer to address a memory
location whose contents are the binary representation of another instruction.
The latter instruction is executed before the program continues with the next
instruction in sequence.

T75 1-18 May 1983.

Example:

LDKL A3,CIO

LDKL A4 ,SST
CIO CIO Al,1,TY
EXR* A4 EXECUTE SST
RB(4) =2
EXR* A3 EXECUTE CIO
SST SST X7, TX
RB(4) *-2

The Execute instruction may not refer to another EX, EXK or EXR instruction,
nor to Call Function, RTN or double format instructions.

Shift Instructions

Shift instructions operate on a bit level. These instructions allow to rotate
the contents of ome of the registers Al to A7 by n positions in the direction
and manner specified in the instructions. Double shift instructions permit
operation on two registers.

Control Instructions

These instructions perform the control of the program by allowing the program
to be interrupted or not, or to reset an internal interrupt. Except for the
LKM instruction, control instructions should only be used in Stand Alone
programming.

INH and ENB are two companion instructions. The program part between these two
instructions is not interruptible, as INH inhibits all interrupts. ENB sets the
machine status to allow interrupts.

Examples:
IDENT TEST

OUT EQU *
RORG OUT+/600

START HLT)
INH)
LDK A5,0)
LDKL All,BUF)
LDK A2,0)

AGAIN CIO A2,1,/30) program inhibited
RB(NA) AGAIN)
LC A3 ,BUFPT, A5)
:)
ENB)

The RIT instruction is used to reset an internal interrupt which was previously
set by an interrupt from the control panel, power failure/automatic restart,
real-time clock, or by a program error.

T75 ~ =19 May 1983.

The programmer may specify a 5-bit hexadecimal value in the operand of this
instruction to clear specific interrupts.

INTRTC RIT /1B Reset the real-time clock interrupt.

I/0 Instructions

I1/0 instructions handle the data transfer between the CPU and peripherals, the
operation of contrl units for these peripherals and status control.

In Monitor-controlled programs the I/0 functions, initiated by these
instructions, are taken over by a general I/0 routine which is called each time
an LKM instruction, followed by a DATA directive, is used. The user need not,
therefore, write his own I/0 routines.

When the programmer has to write a Stand Alone program, he must write his own
I/0 routines. Since there is no memory protection option, except when working
with Memory Management Unit MMU, the programmer must be careful not to
overwrite parts of a program already in memory.

External Transfer Instructions

These instructions may only be used in system mode. The instructions RER and
WER may be used to address an external register. The function of these
instructions is described in Chapter 6.

The remainder of the instructions in this group are instructions involving the
operation of the MMU in the P857M. They permit to load the 16 registers on the
MMU board with information pertaining to the up to 16 pages into which a
program can be divided.

Example:

SEGTAB DATA /0000
DATA /0400
DATA /3000
TL SEGTAB

A Table Store (TS) instruction writes the contents of these registers in the
MMU, which are updated during the program execution, back to the specified
reserved locations.

Move Table Instructions

The instructions under this heading are only accepted on the P800 models fitted
with an MMU. They allow copying of a string of consecutive memory locations
into another area, or when working in system mode with MMU, a string of
consecutive memory locations from a user area to a system area and vice versa.

String Instructions

The instructions under this chapter are only accepted on the P854, P858 and
P859. They allow moving, filling and comparing strings of consecutive byte
locations.

T75 1=20 May 1983.

ADDRESSING MODES

In Volume II we see how addressing takes place from a hardware point of view.
The conditions an instruction must fulfil to meet the requirements of the
Assembler are explained on the preceding pages. Specific examples, with source

statements and explanation concerning the arithmetic instructions AD and ADR,
are given to show the operation within the CPU.

See Volume II for the hardware operation of these instructions. The order in
which these examples are given is in accordance with the description on those

pages.

Direct Addressing

AD Al ,LABEL The contents of the memory location with symbolic address
LABEL are added to the contents of register Al. The result
is placed in Al.

ADS Al,LABEL The contents of the memory location with address LABEL are
added to the contents of register Al. The result is stored
in LABEL.

Indexed Addressing

AD A2,LABEL,Al1OQ The contents of register AlO are added to the address
LABEL. The result gives an address whose contents are added

to the contents of A2. The result of the latter operation is
placed in A2.

ADS A2 ,LABEL,AlOQ The contents of register AlO are added to the address
LABEL. The result gives an address whose contents are added
to the contents of A2. The result of the latter operation
is stored in the address: LABEL + contents of AlO.

Indirect Addressing

AD* A2 ,LABEL The contents of LABEL point to an address whose contents are
added to the contents of register A2. The result is placed
in A2.

ADS* A2 ,LABEL The contents of LABEL point to an address whose contents are

added to the contents of register A2. The result is placed
in the location whose address is in LABEL.

Indexed Indirect Addressing

AD* A2 ,LABEL,AlOQ LABEL is added to the contents of register Al0. The result

points to a location whose contents are added to the
contents of register A2. The result is placed in register A2.

ADS* A2 ,LABEL,Al0 LABEL is added to the contents of register AlQ. The result
points to a location whose contents are added to the

contents of register A2. The result is placed in the address
obtained by adding LABEL to the contents of AlO.

Register to Register Operation

ADR Al ,A2 The contents of A2 are added to the contents of Al. The
result is placed in Al.

T/5 1-21 May 1983.

T75

Al,A2

> Al ,A2

The contents of the address pointed to by A2 are added to
the contents of register Al. The result is placed in Al.

The contents of the address pointed to by A2 are added to
the contents of Al. The result is stored in the address
pointed to by A2.

1-22 : May 1983.

5 : ASSEMBLY DIRECTIVES

Directives are used to provide a framework for a program and to guide the
assembly process. The directives are written in the program, and are printed on
the assembly listing if the listing option is specified in the ASM command.

PROGRAM FRAMEWORK

The directives IDENT and END form respectively the first and last statements in
the module. They are mandatory.

The IDENT directive is used for identification purposes and the END directive

generates the END cluster, after which the assembly process is stopped and a
symbol table is printed.

LINKAGE CONTROL

Some modules which must grouped into one larger program contain references to
identifiers defined in other modules.

By means of the directives ENTRY and EXTRN, the user is able to refer to
certain parts in other modules, whereas the directive COMN allows to transfer
data among several modules either written in Assembly Language or in FORTRAN.

By using a COMN, the programmer can define one or more common blocks. Each
common block may be divided into a number of subfields of varying length, each
having a symbolic name which can be referred to directly, but only in the
module in which it is declared.

COMN blocks may be labelled or blank; a COMN block is labelled if a name is
attached to it.

The Linkage Editor allocates a space to the blank common block at the end of
the link-edit run (see Linkage Editor). This block is placed at the end of the
entire program. A labelled common is placed at the end of the first module
that refers to it.

The ENTRY, EXTRN and COMN directives must always follow immediately after the

IDENT directive and in this order, though it is not necessary for all of them
to be specified.

So: IDENT, ENTRY, EXTRN, COMN or
IDENT, EXTRN, COMN or
IDENT, ENTRY, COMN etc.

ASSEMBLY CONTROL

When it is necessary to check whether a certain condition is satisfied before
assembling a number of source lines, the user may include the directives IFT,
IFF and XIF. The assembly of the IDENT, END and XIF directives is never
bypassed by IFT or IFF.

By means of the STAB directive the user may specify one or more internal
symbols which are to be used for Debugging purposes. All these symbols must

have been defined previously in the current module.

Common block names are handled as externals.

T75 1=23 May 1983.

The RORG and AORG directives are used to reset the location counter to a
relocatable or absolute value indicated in the operands of those two directives.

The AORG and RORG directives are respectively used to define an absolute module
section and a relative module section. The AORG and RORG directives are only to
be used for self-contained executable programs. If the Linkage Editor
encounters an absolute address specified by an AORG directive, it issues a
warning message and treats the address as relative.

The RORG directive is used to reset the location counter to a relocatable

value, indicated in the operand of this directive, after the AORG directive has
set the location counter to give absolute addresses.

VALUE DEFINITION

The directives DATA and EQU are used to define certain values in a module.

AREA RESERVATION

The directive RES can be used to skip over an area in memory. The RES directive
saves a memory area of a given length, specified in the operand, advancing the
location counter by twice the number of words specified.

LISTING CONTROL

The Assembler normally produces an output listing for each assembly. By means
of the directives EJECT, NLIST and LIST, the programmer may determine which
parts of the modules do not need to be listed.

SYMBOL GENERATION

Two directives, FORM and XFORM, allow the user to make a number of special
instructions for a specific purpose or program. In the FORM directive the user
may define the bit configuration and the mnemonic of the special instruction.
If two FORM-defined instructions are to be specified, which differ only in the
contents of certain fields, the programmer may use the XFORM

directive to specify the second instruction.

Any useful pseudo-instruction or system macro can be defined once and
thereafter used without having to be generated by a FORM directive in every
program where it is used.

T75 1-24 May 1983.

| IDENT | Program Identification | IDENT |

Syntax: __IDENT <module name)
where:
<module name> A symbol which is specified according to the rules for a label.

The IDENT directive specifies the name to be given to the object module output
by the Assembler. It is used for identification purposes in selective loading
or updating (see Part 3, Linkage Editor, and Part 4, Update). This directive
must always be present, and must be the first statement in a module.

| END | End of Assembly | END |
Syntax: [<label>] END [<predefined expression>][,<{symbold>]

where
<label> The label is given a relative value equal to the length of the

relative section of the generated object program. This length
includes the length of the optional symbol table (see STAB
directive). The length is 0 if this module is absolute.

{predefined expression>
This expression, if present, gives the address of the first
instruction to be executed in the program after loading.

<{symbol> This parameter gives an entry point name to the internal symbol
table of the generated object program when the STAB directive has
been assembled. The internal symbol table consists of a list of
all relocatable symbols defined, with their numerical
equivalents. The STAB directive must immediately precede the END
directive.

This directive must be the last statement in a module, and terminates the
assembly by writing an :EOS mark.

I75 1=25 May 1983.

| ENTRY | Define Entry Point Name | ENTRY |

Syntax: _ENTRY <entry name>[,<{entry name>] ...
where:

<{entry name> 1is a label in this module, which can be referred to by an operand
of an instruction in another module. The maximum number of entry
names which can be specified in one ENTRY directive is determined
by the length of one line (up to column 72, inclusive).

The ENTRY directive is used to declare entry names, i.e. labels which are
defined in the current module and used as operands in another module.

Examples:
IDENT PROG IDENT PROGA
ENTRY NUMB1,NUMB2 ,NUMB3 ENTRY LABEL, REFER
EXTRN LABEL, REFER EXTRN NUMBL ,NUMB2 ,NUMB3
START : i
NUMB1 LDKL A3 ,LABEL GO LDK1 A2,0
NUMB2 éT A6 ,REFER LABEL éT* A4 ,MEMO
NUMB3 CF Al4,EOS REFER AD A3, TOTAL
ﬁND START TOTAL éU A5 ,TARRA
END
|_£;;;;—| Define External Reference |—£;}£§-|
Syntax: _EXTRN <external>[,{external>] ...
where:
{external) is the name of an external reference (a label in another

module). The maximum number of external names which can be
specified in one EXTRN directive is determined by the length of
one line (up to column 72, inclusive).

The EXTRN directive is used to declare external names, i.e. labels which are
defined in another module and used as operands in the current module.

Example: see ENTRY.

T75 1-26 May 1983.

| COMN | Declare Common Block | COMN |

Syntax: [<label>] COMN <common field definition list>
where:
{common field definition list)> ::= <common field definition>[,{common field

definition>] ...

{common field definition> ::= <common field name>[<common field lengthd>]
{common field name> ::= <{identifier>
<common field length)> ::= (<predefined absolute expression)>)

If the parameter <{common field length> is omitted, the default value assumed by
the Assembler is 1. The field length must be given in words.

The COMN directive facilitates communication between modules written in
Assembly Language and FORTRAN.

Example:

A COMN FVALI(3),FVAL2(3),INTGV(10)

which defines a labelled common, named A, with length 3 + 3 + 10 = 16 words.

A is defined as an external reference and common block name. Either the common
block name itself or the subfield names may be referred to in the same module.
The subfield names are then considered to be equivalent to:

{common block name> + <absolute displacement)>

For examples:

LD Al,FVAL2 is equivalent to LD Al,A+6

ST A2,INTGV+18 is equivalent to ST A2,A+30

The displacements in this example are counted in characters. Blank commons can
only be referred to by the subfield names defined in the operand field.

_COMN VAL1(3),VAL2(4)
_COMN_VAL3(9) ,VAL4(10)

These directives define a blank common of 3 + 4 + 9 + 10 = 26 words.
VAL2, for instance, may be used in symbolic expressions and is equivalent to:

blank common "name" + 6

More than one blank common may be specified in one module.

75 - 1-27 May 1983.

| IFT,IFF ,XIF| Conditional Assembly | IFT,IFF,XIF|

IFT (IF True)

Syntax: _IFT <{predefined absolute expression>={predefined absolute
expression>

If the first parameter # second parameter, the source line(s) following IFT
up to the next XIF directive are not assembled.

IFF (IF False)

Syntax: _IFF <{predefined absolute expression>={predefined absolute
expression)

If the first parameter = the second parameter, the source line(s) following IFF
up to the next XIF directive are not assembled.

XIF (End of Conditional Assembly)

Syntax: XIF

This directive allows all subsequent statements to be assembled until a new IFT
or IFF statement is encountered.

These directives are used to indicate that a block of statements is to be

assembled only if a certain condition is fulfilled. The assembly of the IDENT,
END and XIF directives is never bypassed.

T75 1-28 May 1983.

| STAB | Define Internal Symbol Table | STAB |

Syntax: _STAB [<internal symbol list>]
where:
<internal symbol list)> ::= <internal symbol>[,<{internal symbol)>] ...

The STAB directive outputs, at the end of the relocatable program section of
the generated module, one or more internal symbols to be used for Debugging
purposes (the internal symbol is the address given to a symbol in the program

after assembly). All symbols must have been declared previously in the current
module.

STAB must immediately precede the END directive.

If the STAB directive does not contain a parameter in the operand field, all
internal symbols of the module will be included.

The programmer may not specify entry points, external reference names or
commons. This directive is only taken into account when in the END directive
the parameter <symbol)> is specified, giving the name of the internal symbol
table.

T75 1-29 May 1983.

| AORG | Assign Absolute Origin | AORG |

Syntax: _AORG <predefined absolute expressiomn)

This directive assigns an even absolute value to the location counter. The
location counter receives the value specified by <predefined absolute
expression>.

From the time AORG is given and until a RORG directive is given, the location
counter is incremented in the same way as if it were relative, i.e. by
increments of 2 or 4 depending on the length of the instruction. All labels
are given an absolute value, unless they are equated to a predefined relative
value by an EQU directive.

RB and RF instructions in an absolute program section cannot refer to an
address in a relocatable program section, as the displacement cannot be
calculated.

* The user should be aware of the fact that the Disc Assembler accepts
absolute addresses, but that the Disc Overlay Linkage Editor does not, and
will output a warning message and treat the address as relative.

e e e o o o o e o

| RORG | Assign Relative Origin | RORG |

Syntax : _RORG [<predefined relocatable expression)]

The RORG directive allows the user to specify the beinning of a relocatable
module by assigning a relative value, which must always be even, to the
location counter. Its value may never become negative. If RORG has no operand,
the location counter is given the last relocatable value it has previously
received. This value is equal to the length of the relocatable module at the
time this directive is assembled.

L5 1-30 May 1983.

| DATA | Data Generation | DATA |

Syntax: [<label>] DATA <data expression>[,{data expression>]
where:
<{data expression> ::= {<character string> | <expression)>}
<label)> is given the address of the first or only word of data.

<data expression> either an expression, or a character string consisting of
from one to thirty-two ASCII characters enclosed by single
quote marks. A series of words is generated, of two
characters each, left justified. When the number of
characters is odd, the rightmost character of the last word
is a space.

The DATA directive is used to assign a value to one or more words in the
module, for inclusion in the object module. The maximum number of words

assigned by one DATA directive is 16.

Note: Though * points to the current value of the location counter, * refers
always to the first word of a generated sequence (multiple word
instruction, FORM defined instruction, DATA directive).

Examples:
_DATA ‘ABC’,/0AOD,1,/A,2,’DEF’

will generate the following words (in hexadecimal code):

| 4142 | 4320 | OAOD | 0001 | O00A | 0002 | 4445 | 4620 |

‘A B cC_ " 1lf ecr 1 /A 2 'DE F_’
An ECB may be built as follows:
ECB_DATA 1,BUF2,6,0,0,0

ECB

| 0001 | xxxx | 0006 | 0000 | 0000 | 0000 |

(in which /xxxx is the address of BUF2).

_DATA -(128,+12,/3AB,~/A,LABEL, TEXT:’

%
generates the following:

| FF80 | 000C | O3AB | FFF6 | xxxx | 5445 | 5954 | 3A20 |

-128 +12 /3AB -/A LABEL ‘T E X T : !

T75 - 1=-31 May 1983.

| EQU | Equate Symbol to Value | EQU |

Syntax: <label> EQU {<register expression> | <{predefined expression>}

Labels are normally defined by being assigned memory values as they appear in
the label field of an instruction. The EQU directive may be used to define a
label in a direct manner by assigning to it the value of an expression in the
operand field. The symbol in the label field is made equivalent to the value in
that operand field. This value may be absolute or relocatable.

A symbol, provided it differs from standard mnemonics and FORM-defined
mnemonics, may be used as an operation mnemonic, but may not be followed by an
operand. The Assembler generates one code word each time this mnemonic appears
in the operand field.

Examples:
CT EQU /41C4 CT may now be used anywhere in the program to represent
the value /41C4 or the instruction CIO Al,l,/04.
CT - /41C4 represents an instruction.
LDKL Al,CT - CT is loaded as a constant.
VAL EQU 10 VAL receives the value 10. (Short constant.)
LDK Al,VAL
LAB EQU * LAB receives the value of the location counter.
C:l1 EQU 25 Each time the Assembler encounters C:1 or REG:3, they
REG:3 EQU A3 are replaced by 25 and A3, respectively:
LDK Al,C:1 --=> LDK Al,25
LDK REG:3,1 -—=> LDK A3,1
LDK REG:3,C:1 ---> LDK A3,25

T75 1-32 May 1983.

| RES | Reserve Memory Area | RES |
Syntax: <{label> RES <{predefined absolute expression)

where:
<label)> receives the address of the first word of the reserved area.

<{predefined absolute expression>
specifies the length of the area to be reserved,

If <{predefined absolute expression> is 0, the location counter
if <label> is specified, the statement is equivalent to:

<{label> EQU *

The RES directive is used to reserve a number of memory words.
may specify this number in the parameter. The location counter
or decremented, depending on the positive or negative value of
If positive, a memory area of the specified value is reserved.
memory area of the specified size is reserved before the place

in words.

is not updated;

The programmer
is incremented
the parameter.
If negative, a
identified by

<label>. The value of the latter is not changed, but the location counter is
reset to a lower value by subtracting twice the value specified.

Examples:
location
counter
0000 RES 4 Reserve 4 words.
0008 LAB1 RES -2 Reserve two words before LABI.
0004 INS RES 0 INS receives the value of the location
counter.
Symbol Table:
LABI 0008 INS 0004
Example of Stack Reservation
STACK RES 4 STACK -=>| |
BASE EQU *-2 | |
| I
I |
BASE *-2 —=>| |
« - |
LDKL Al4 ,BASE

Load stack base address into Al4.,

Ti5 1-33

May 1983.

| EJECT | Continue Listing on New Page | EJECT |

Syntax: _EJECT _

This directive causes the remainder of the current page of the line printer
paper to be left blank; the listing is continued at the top of the next page.

| NLIST | Suspend Listing | NLIST |

Syntax: _NLIST

The NLIST directive causes the Assembler listing to be suspended from the point
where this directive is given until either the END directive or a LIST
directive.

Lines which contain errors will continue to be printed during this phase.

| LIST | Resume Listing | LIST |

Syntax: _LIST

The LIST directive causes the Assembler to resume the listing after it has been
suspended by an NLIST directive.

T75 1-34 May 1983.

<label>

<field length

Format Definition | FORM |

<label> FORM <field definition>[,<{field definition>] ...
{field definition>[/<field number list>]

<field definition> ::= <field length definition>[{= | :}<field
value definition)]
<field number list)> ::= <field number>[,<{field number>] ...

<field number> {decimal constant>

Defines the new instruction mnemonic. The operand field of the
directive must then contain values to be placed in any non-
predefined fields. The last non-predefined value is the default.

definitiond>

Specifies the number of bits to be allocated to a field of the
word, in the range 1 to 16. If several fields are defined inside
a word, the sum of the field lengths must be 16. The maximum
number of consecutive words defined by a single FORM directive is
eight.

<field value definition)>

{field number

T75

If the value is preceded by an equals sign (=), may be used to
place a value into the field to which it refers.

If the value is preceded by a colon (:), the value indicates the
address of a word relative to the first word of the expansion
defined by FORM. The value definition itself may be a predefined
expression, an external reference without any displacement, or a
predefined absolute or relocatable expression. If a particular
field has not received a value definition, it will be filled with
zeroes.

list>

If the programer wishes to put the values of the operand field of
the FORM-defined mnemonic in an order different from that of the
non-predefined field they are to occupy, or if the user wishes to
alter the values held by any of the predefined fields, he must
use the <field number list> parameter in the FORM directive.

Each field generated is given a number, beginning with O for the

first field, 1 for the second field, up to n-1 for the nth
field. n may not exceed 15.

The <field number list> must be preceded by a / (slash), and be
placed after the last field definition on the FORM directive. All
fields not predefined in the field definition must be specified
in the <field number list>, if it is used.

A field number is represented as a decimal integer.

If a <field number list> is specified after a FORM directive, the
operand expressions following the pseudo-mnemonic will occupy the
fields specified in the field number list in the given order. In
this way, the contents of predefined fields may be altered while

blank fields may be left blank.

1-35 May 1983.

This directive is used to define the format of a group of from one to eight
words named by an identifier, which can be used as an instruction mnemonic
later in this module. The directive is written as follows:

Example: MNEM FORM 16=/85A0,16:14,16=/8141,16=INST,16,16,16

MNEM i*;g;ga--= -~> arithmetic or logical value
-QEEQ;IZ_ —-> address of word following this block
l‘;gzzz—u_|——> arithmetic or logical value
| INST |--> identifier
oo |
—;6556_—_| ; 3 words containing zeroes
oo 1)

The parameter 16:14 indicates a word address seven words from the beginning of
the expansion defined by FORM. The programmer has to specify this address, as
the last three words are left zero.

Example

Suppose the user has specified in his program, by means of a FORM directive, a
16-bit word of the following format:

5=2 2 =1 1 =1 8 =2
| 0 0010 | 01] 1] 00O0OO0OO0OTUO0OT1O0 |
field no O 1 2 3

He wishes to have this word changed to:

5=2 2 =3 1=0 8 =1
| 00010] 11] 071 00WO0O0TUO0OTGO0U 01 |
field no 0 1 2 3

He may do so by using the following instruction sequence in his module, using
the <field number list> in the FORM directive.

IDENT EXAM
WORD EORM 5=2,2=1,1=1,8=2f2,1,3|
&ORD 0,3,1 {=——mmmom .::I__
éND

T75 1-36 May 1983.

The Assembler will now change the fields as follows:

- field no 2 (1=1) will be changed to contain the value 0
- field no 1 (2=1) will be changed to contain the value 3
- field no 3 (8=2) will be changed to contain the value 1
- field no 0 (5=2) will keep the value 2.

The operand expressions following a pseudo-mnemonic are positional parameters.

If one parameter is omitted (other than the rightmost one), its position must
be indicated by a comma.

If a FORM defined mnemonic is identical with a standard instruction mnemonic,
the pseudo-mnemonic is given priority.

Example:

This example shows how the programmer may make an I/0 request if not all

parameters are known. Without the FORM directive he would have to write the
instruction sequence:

LDK A7 ,order
LDKL A8 ,DECB
LKM
DATA 1
00000 IDENT FORM
00001 INOUT FORM 8=/07,8,16=/80A0,16,16=/2804,16=1
00002 0000 BUFFER RES 10
00003 0014 0008 DECB DATA 8,BUFFER,20,0,0,0
0016 0000 R
0018 0014
001A 0000
001C 0000
001lE 0000
00004 0020 0782 START INOUT /82,DECB
0022 80AO
0024 0014 R
0026 2804
0028 0001
00005 002A 2804 LKM
00006 002C 0003 DATA 3
00007 END START

SYMBOL TABLE

BUFFER 0000 R DECB 0014 R START 0020 R
ASS.ERR 00000
:EOF

From now on the programer may use INOUT /82,DECB instead of LDK A7, ...

In this example, the newly FORMed INOUT instruction creates the same coding as
the four instructions at the top of the page. Note that fields 2 and 4 are left
blank in the initial definition of the function, as these will be specified
when used. (They indicate, respectively, the type of I/0 required and the
address of the Event Control Block (ECB) of the device concerned.)

T75 1-37 May 1983.

| XFORM | Extension of a FORM Directive | XFORM |

Syntax: <{label> XFORM <label of FORM directive>,{field list>

The XFORM may be used each time two FORM-defined pseudo-mnemonics have to be
defined which do not differ in their format, but only in the values of the
predefined fields.

{field list> 1is a series of field definitions, giving the format of the new
pseudo-mnemonic and the contents of its fields.

The field length definitions must be the same as those of the FORM-directive
referred to, and appear in the same order.

Example:
INSTL FORM 8=/FF,4,4,16/1,3,2
INST2 FORM 8=/33,4,4,16/1,3,2

The XFORM directive may be used to generate an INST2 instruction as follows:

INST2 XFORM INST1,8=/33,4,4,16

T75 1-38 May 1983.

6 PROGRAMMING CONSIDERATIONS

Data transfers between input/output devices and the central processor are
controlled by device control units, each of which may have one or more devices
attached to it, depending on the type of device. Control units are attached to
the central processor by an interrupt or break line, by address lines and by

other signal lines, which are used by the computer to determine whether a data
transfer can be performed.

Data transfers take place through a channel, the General Purpose Bus. The
actual programming of the data transfers may be on a character or word basis,
where either each word (or character) is programmed and transferred
individually via the Programmed Channel, or the user may program blocks of
words or characters via the I/0 Processor. In the latter case, external
registers on the I/0 Processor must be addressed.

STAND-ALONE OR MONITOR PROGRAMMING

The basic difference between Stand Alone programming and Monitor controlled
programming is caused by the fact that in Stand Alone programming the user has
to write his own input/output routines, whereas in Monitor controlled
programming the user may call certain Monitor functions by means of Links to
Monitor which execute the input/output. For information on programming in
either mode, refer to the P80OM Software Training Manual (Publication No. 5122
991 1243X); see also later in this Chapter.

INTERRUPT SYSTEM

When working in interrupt mode, each interrupt program may be connected to an
interrupt level. As the actioning of an interrupt involves the direct
accessing of the interrupt level’s start address from its hardware interrupt
location, the contents of this location must have been previously loaded with
the correct address.

The start addresses loaded in these locations are not fixed and must be defined
by the programmer.

Interrupt Level Interrupt Location

0 to 62 /0000 to /007C

where level 0 has the highest priority and 62 the lowest. The first 16 levels
are hardware interrupt levels, of which level 0 has the highest priority.

For example, if the control panel interrupt is wired to interrupt level 7, the
start address of the corresponding routine should be placed in location /E.

T75 1-39 May 1983.

SYSTEM STACK

To save the contents of registers when the main program is interrupted, the
hardware interrupt routine automatically uses register Al5. This register
addresses the stack which is to hold the contents of the P-register and the
Program Status Word at the time the program was interrupted. It is, therefore,
necessary to reserve sufficient space for the stack and to load register AlS
with its start address. This may be done by using the appropriate assembly

directives and by defining the start address by means of an identifier. The
start address is the highest address reserved, as the stack is filled from the
higher towards the lower addresses.

Apart from the contents of the P-register and PSW, the stack may be used to
save the contents of other registers as required by the program. These
registers are saved by means of Store instructions (one for each register).
Before returning to the main program, Load instructions are required to restore
the contents of the stack, prior to RTN. During the hardware action further
interrupts are inhibited. If the user wishes to allow the specific routine to
be interrupted, he must give an ENB instruction.

USER STACK

We have seen that with the Al5 stack the P-register, the PSW and any other
registers are saved with Store instructions in this stack towards the lower
addresses. Now, if a user calls a subroutine with a CF instruction, the
contents of the P-register and the PSW are automatically stored in a stack he
has set up previously, for example as follows:

RES 20
STB EQU *-2
LDKL Al4,STB then the subroutine is called:
CF Al4 ,SUBR and the P and PSW are stored in the Al4 stack (other

registers may also be used as stack pointers).

For example, for a program with two subroutines, one subroutine calling another
one, the saving may be done as follows:

IDENT MAIN IDENT SUBRL IDENT SUBR2
SAREAlI RES 3 ST Al , SAREAI ST Al,SAREA2
SAREA2 RES 4 ST A2 ,SAREA1+2 ST A2,SAREA2+2
: ST A3, SAREAl+4 ST A3,SAREA2+4
(1) CF Al4,SUBRI
(2) CF Al4 ,SUBR2 ST A4,SAREA2+6
END
LD Al , SAREAIL LD Al,SAREA2
LD A2 ,SAREA1+2 LD A2,SAREA2+2
LD A3, SAREAl+4 LD A3, SAREA2+4
LD A4,SAREA2+6
(4) RIN Al4 (3) RIN Al4
END END

T75 1-40 May 1983.

In this example the following save operations take place:

(1) SAREAL ‘
I
| | <=-- Al4 | Al (MAIN) | |
| | | I I
	PSW (MAIN)		I	
	P (MAIN)		A3 (MAIN)	
v				
Stored automatically Stored by user-written instruction
2) | | SAREA2
I
| {--- Al4 | Al (SUBR1) | |
I I | I |
| | PSW (SUBRL) | | |
| I |
| | P (SUBRL) | A4 (SUBRL) | |
| v
| | PSW (MAIN)
I I
| P (MAIN) |
I
Stored automatically Stored by user-written instruction
(3) SAREA2 I |
I
| | | {=—- Al4
I I I I
I | | PsSW (MAIN) |
| I I I
I I | P (MAIN) |
Registers restored for SUBRI P and PSW restored for SUBRI
(4) SAREAL | |
| | <{==- Al4
I I
I I
I I | I
Registers restored for MAIN P and PSW restored for MAIN

Note:

It is possible to return from SUBR2 directly to the main program, but in such a
case the user must update the Al4 register contents, i.e. the stack pointer,
himself (with 4, in this case).

T75 1-41 May 1983.

MEMORY MANAGEMENT UNIT (MMU)

The MMU extends memory addressing up to 128K or 512K words, depending on the
model of P800 to which it is fitted; only P854, P857, P858 and P859 models.

Owing to this facility the P800 and its Monitor are able to serve a number of
large programs, each of which may be up to 32K words. Programs of this size
usually will be segmented and stored on disc.

Apart from extended addressing, the MMU also provides for memory protection.

Coding a program for operation with MMU and Multi-Access Monitor requires no
specific rules compared to a machine without MMU as far as the memory

addressing is concerned, as the addressing in an environment larger than 32K
words is transparent to the user.

Instructions relating to the MMU are only accepted in system mode.

When the user program is called, a path of n segments is loaded into memory,
immediately after the Monitor. These n segments are divided over parts of
memory called pages, of 2K words each. As several programs may be running
simultaneously, the pages do not need to be loaded next to each other, but may
be spread out over the entire memory available.

The Monitor builds, for each program running, a table containing data where
each page may be loaded and information particular to the page. This table is

up to 16 words long, and is loaded by the Monitor in the l6-register Segment
Table, as follows:

LDR A4, Al where All contains the table address

TL A4 where the table is loaded.

To save the information in the MMU registers, an ES or ESR instruction may be
used (system mode only).

An address in the user program is divided in two parts. The four most

significant bits point to a word in the segment table. The MMU translates these
4 bits into a 6-bit or 8-bit physical page address, and takes the remainder of

the instruction address as an offset relative to the beginning of the page.

Layout of Segment Table Word

0 5 6 7 8 9 13 14 15

bits 0 to 5 Physical page address, as derived from the four most significant
bits in the instruction address.

bit 6 Page error indicator. This bit is set by the Monitor when a

program attempts to access a missing or wrong page. The MMU will
give a "Page Fault" interrupt. This bit is not used for system
programs.

T75 1-42 May 1983.

bit 7 Read-only page. When this bit is set, the page is protected

against overwriting. A '"Page Fault" interrupt is given when a
program tries to write into it.

bit 8 Modified page. This bit is set by the MMU when a write operation
took place in this page. Instead of being overlaid, the page is
first written back onto disc before the area is used again.

bits 9 to 13 Not used.

bits 14, 15 Not used with MMU’s which can access only 128K words; used as the
most significant two bits of the page address, in MMU’s which can

handle up to 512K words.

Memory Protect

The memory protect facility of the MMU is obtained by setting bit 7 in the
table containing the words to be loaded in the MMU segment table registers.
Remember, however, that instructions concerning the MMU are only accepted in
system mode. If an attempt is made to access a protected page, a "Page Fault"

interrupt is given. This interrupt has the highest priority, and causes storing
in the system stack of:

- the address of the instruction which caused the interrupt
- the PSW

- a word containing the page address of the page in which the fault was
detected, and the program level.

This interrupt is reset automatically after a branch has been made to the
interrupt routine address.

FLOATING-POINT PROCESSOR

The Floating Point Processor is an optional, high speed arithmetic processor
which may be included in the P857M system. It performs by hardware, single
precision, all floating point arithmetic operations.

Operation

The board contains three 16-bit floating-point accumulators (FPA’s) holding the
result of a floating point operation, or the floating point operand, or the
first floating point operand where the second floating point operand is
temporarily placed in three other 16-bit registers.

Program instructions are fetched and decoded by the CPU. The significant bits
of each instruction, i.e. op-code, mode, etc., are also copied to an
instruction register on the FPP board. When a floating point instruction is

encountered in the program, the Floating Point Processor is activated by the
CPU and the latter stops.

Some decoding of the instruction register contents takes place on the FPP
board, and an arithmetic unit on this board is signalled the type of operation
it has to perform. The arithmetic unit takes the information to be operated
upon from the contents of the FPA, registers Al and A2, or the contents of
consecutive memory locations.

The result is stored in FPA, or Al and A2, or a number of consecutive memory
locations.

T75 1-43 May 1983.

During or immediately after the execution, either a status register is reset to
zero (no errors) or bits in this register are set to 1. The contents of the
status register may be:

lojo fo o | | | o o o o | | | | {0
L Ll
————————— | underflow
| |
v | | overflow
indicates during which | |
instruction interrupt | division by zero
occurred l
unnormalised operand

Any abnormal condition gives an FPP interrupt and sets the CPU condition

register to 3. The FPP interrupt must be connected to one of the eight internal
interrupt levels. If no error was caused, the CPU fetches the next instruction.

Floating Point Format

Floating Point Data are real numbers contained in three consecutive 16-bit
words. The first two words contain the mantissa, which is a left normalised,
double precision number. The exponent is held in the third word as a single
precision integer.

0 1 15

| | mantissa ml |

sign bit of the mantissa.

0 1 15

| 0| mantissa m2 |
0 1 15

| | exponent ‘

sign bit of the exponent.

The sign bit of the second mantissa word is always zero. The mantissa scale is
between:

positive:+%_§ m < 17¢

-e where e =2

negative: -1 < m < —

2

Nt NS N

The exponent scale is between: -215 < E X +215-1

A floating point number is: (ml,m2) * 2E, where E = the exponent.

75 1-44 May 1983.

The absolute value is: | DATA | < 109898, mhe accuracy is 9 decimal digits.

The Floating Point Processor also allows the conversion of floating point data
to integer format and vice versa. In this case the Processor permits operations
with single precision integers (in 16 bits), and double precision integers (in
32 bits, the most significant bit of the second word being 0).

TRAP ACTION

Instructions input to the P80OM computer are checked and decoded by the CPU’s
hardware. If an unexecutable instruction is encountered, a trap action is
started, which consists of a hardware and software operation.

The hardware operation of the trap consists of the following actions:

B The CPU does not attempt to carry out the instruction.

= Interrupts are inhibited.

= Information which refers to the instruction’s address and processor status
(P and PSW) is saved.

- An indirect branch is made to location /7E (start of trap routine).

The software operation of the trap consists of:

= Save the address in P.
- Save the instruction’s bit pattern and its second word, if any.

STAND-ALONE INPUT AND OUTPUT PROGRAMMING

Programmed Channel

To control the data transfer between the device and the CPU, the following
instructions are, in general, available:

CIO Start Start input or output

CIO Stop Stop input or output

INR Input one character

OTR Output one character

SST Send status of the control unit
TST Test if the control unit is busy.

The register <r3)> used in the CIO instruction must always contain additional
information for the control unit, e.g. input, output, parity, echo. Which
information must be loaded can be found in the relevant hardware manuals
delivered with the system.

When the CIO Start instruction is accepted (test the condition register), it is
followed by an INR or OTR instruction. When the last character is transferred,
a CIO Stop instruction must be given. This instruction should be followed by an
SST instruction, which gives the status of the relevant control unit and may
reset an interrupt and switch a control unit to the Inactive State.

I/0 Processor

The I/0 processor allows the high speed transfer of variable length or fixed
length data blocks between a suitable control unit and the processor.

Up to eight I/0 processors may be connected to the General Purpose Bus, each of
which may control up to eight control units via eight subchannels.

T75 1-45 May 1983.

Each I/0 processor contains two working registers, which are used to effect
register to register exchanges with the CPU internal registers.

Before a data transfer can be realised, the user has to specify two control
words for two external registers. These external registers are addressed by two
WER instructions, in which the address part must be composed as follows:

0 | processor sub channel 0/1
| address address

8 9 10 11 12 13 14 15

| |
|

| control unit’s address

where processor and sub channel address are determined at system installation
time. Both addresses, which may range from O to 7, together form the attached
control unit address. Bit 15 determines which control word is sent:

bit 15 = 0: first control word
1: second control word.

- Format of Control Words

The format of the first control word is:

I I | o |0 | 1
0-- 1 2 3 4 15
where:
bit 0 = 1: exchange is in word mode
0: exchange is in character mode.
bit 1 = 1: exchange is from memory to control unit (output)
0: exchange is from control unit to memory (input).

bits 2 and 3 are O.
bits 4 to 15: specify the number of characters or words to be transferred.

The format of the second word is:

| start address |

0 15

When operating in word mode the first word of the block is always even (bit 15
= 0). In character mode, when bit 15 = 1, the right hand character is addressed

(odd address); when bit 15 = 0, the left hand character is addressed (even
address) .

175 1-46 May 1983.

Example:

LDKL
LDKL
WER
WER

CIO

Al,/8032
A2, BUF
Al,/A
A2,/B

A4,1,/01

word mode, input, 50 words
starting address of block
send control words (000 1010 and 000 1011)

start input (address: 000001)

The RER instruction may now be used to read a transfer’s effective length after
termination of the I/0 operation.

When the exchange is completed, an SST instruction should be issued, to check
the status of the control unit and set it to the Inactive state. The control
unit may now be re-initialised for a new transfer.

T75

1-47 May 1983.

Input/Output Programming Using a Programmed Channel

// TST

a) Without Interrupts

3 unknown

CR
addresg
ERROR
1
CIO
Start
S
INR
OTR

T75 1-48 May 1983.

b) With Interrupt Handling

INTERRUPT

INR
OTR

RTN

T75 1-49 May 1983.

Programming an I/0 Processor

3 Unknown

address

Interrupt

ERROR

LOAD 1st

RTN
control

word

v

LOAD 2nd
control
word

CIO
Start

T75 1=50 May 1983.

SOURCE PROGRAM CALLING A FORTRAN LIBRARY SUBROUTINE

When writing a program in Assembly Language, it may be useful to have some
operation performed by a subroutine, which has been specifically included in
the FORTRAN library to execute such a function.

The user may call this subroutine from his Assembly program in the following
way:

Suppose the user wishes to multiply two floating point numbers. The FORTRAN
library subroutine, which executes this multiplication, has F:RM as entry point,

The framework of the Assembly program, with only the relevant details, is
written as follows:

IDENT ASMPRO
EXTRN F:RM

FLNUM1 DATA =
DATA -
DATA -

FLNUM2 DATA -

DATA -
DATA -
LDKL Al13,PARLIS
CF Al4,F:RM
PARLIS DATA FLNUML
DATA FLNUM2

Before the CF instruction is executed, register Al3 must contain the address of
a parameter list. This list must contain the addresses of the two floating
point numbers to be used as operands.

Al3 parameter list first parameter

| =>

!

I
1
|

|

' —————
-|

l

l

l

second parameter

-->

l I
I I
| |
| |
| I

T75 1=51 May 1983.

The subroutine in the library contains the following relevant items:

IDENT FRTLIB
ENTRY F:RM
RTN Al4

This subroutine does not use the stack of the calling program, except for the
return. When values are to be returned to the main program, an integer value
will be returned to Al or a real value to the registers Al to A3 inclusive (the
mantissa in Al and A2, and the exponent in A3).

The main program must now be Link-Edited with the called subroutine from the
FORTRAN library. The Linkage Editor selects those modules required for program
execution.

75 1-52 May 1983.

