PART 3 LINKAGE EDITOR

175 3=1 May 1983.



T75 3-2 May 1983.



INTRODUCTION

A program may consist of a (large) number of modules. After having been
assembled or compiled, these modules must be processed by the Linkage Editor to
match existing external references in the modules with entry points in these
modules, or in modules in a user or system library (e.g. Fortran system
modules), to create an executable program.

If the program is so large that it occupies most of the memory available during
execution, it is advisable to restructure the program and divide it into
segments with the overlay technique. This is necessary if the program is too
big to fit in the available memory.

The Linkage Editor can handle both segmented and non-segmented programs.

The overlay technique makes it possible to load into memory only those parts of
the program which are required at a certain moment. They will be overlaid when
their presence is no longer necessary.

Compared to a non-segmented program, a segmented program requires some extra
words which are added to the load module. At execution time, however, a
considerable memory space is gained.

The size of the Linkage Editor is approximately 5 pages of 2K words for the

longest path of the Linkage Editor, plus the remaining free memory (up to 32K
words) for tables.

T75 3=3 May 1983.



175 3-4 May 1983.



MULTI-MODULE PROGRAMS

Programs may consist of more than one object module for one or more of the
following reasons:

Modular programming techniques have been used.

Part of the program has been written in Fortran and part of it in Assembly
Language.

An overlay program has been developed.

In all the above cases each source module has been assembled or compiled
separately. Linking such a multi-module program involves:

T75

Resolving inter-module references. EXTRN symbols in a module are replaced
by the addresses of ENTRY symbols in other modules.

Resolving any remaining unresolved references by scanning either the system
or user library, or both, to find the modules having ENTRY symbols
corresponding to the unresolved EXTRN symbols. The modules selected by this
scan are automatically included by the Linkage Editor in the load module,
and each EXTRN symbol which caused the scan is replaced by the address of
the ENTRY symbol in the module selected by the scan.

Positioning COMN areas in the load module. Each labelled common is placed
at the end of the segment containing the first module referring to it. All
blank commons are treated as the same area, and the Linkage Editor places
the largest one encountered at the end of the load module.

A blank common block can be implicitly allocated behind the longest path of
the overlay structure, or explicitly at an absolute address.

Segmenting an overlay program according to user commands, using either disc-
resident or memory-resident overlay segments. The Linkage Editor may also
link several small modules into one larger one, which will be re-input at a
later date.

3-5 May 1983.



T75 3-6 May 1983.



3 OVERLAY TECHNIQUE

This chapter contains a general description of the overlay technique and gives
some definitions of terms.

The overlay technique is a programming technique which allows to reduce the
memory space needed for program execution.

The program’s object modules must be linked and organised in such a way that

modules are loaded only when their presence is required. To this end the
program is divided into segments.

To obtain this goal, a overlay tree structure can be designed which is the
graphical representation of the program’s organisation.

Segment

A segment is a part of the program and consists of one or more modules. Each
segment is separated from another segment on the LKE input file by a NOD record.

A program may consist of up to 128 segments. The order in which they are
placed on the Linkage Editor input file is determined by the user, and depends
on the program and the references the segments may make among each other.

Disc—Resident Overlay

A disc-resident overlay is a segment kept on the disc as part of the generated
load module. It is loaded into the program area when required, and is in turn
overwritten by the next overlay segment when no longer needed.

Memory—-Resident Overlay

A memory-resident overlay (ROV) is a segment which is loaded at machine
definition time and then remains in memory. The MMU Page Table is manipulated
by the MAS system in order to bring the segment into the program-visible area,
or to remove it when no longer required. Each ROV segment of a program forms
one secondary load module.

If a ROV segment is re-entrant, it may be used by more than one program
simultaneously.

Root

An overlay structure has as its basis a root, which is that part of the program
that will always be in memory as it exercises the control of the program. It
must be the first segment on the LKE input file.

Path

The branches of the tree, called paths, constitute, together with the root, the
way along which the program is executed. Each path of the tree consists of one

or more segments. A path is terminated when, while scanning the input file:
= the end of the object input file occurs, or
~ a NOD command is read which has the same name as a preceding NOD record.

No path may comprise segments whose cumulative size exceeds 32K words.

T75 3-7 May 1983.



Node

Each segment on the input file, except for the root, commences with a node,
i.e. a NOD record. The NOD record has the following format:

NOD <name>[,{<ROV segment name> | *}[,<absolute address>]]
where <name> may consist of up to 6 ASCII characters of which the first one

must be a letter, specifying the name given to this node. Different segments
may use the same node-name.

<ROV segment name>, if present, specifies explicitly the name of the ROV
segment being started.

* (if present) tells the Linkage Editor to allocate an implicit name to the
ROV segment.

{absolute address>, if present, specifies the absolute address at which the
ROV segment will be loaded. Doing this makes it possible for more than one
program to share the segment.

If only the <name> parameter is present, the node defines the start point of a
disc-resident overlay.

Level

The level of a segment in a path is the number of nodes between that segment
and the root in a path.

Ascendant

In a path, segments with a lower level are called ascendants.
Descendant

In a path, segments with a higher level are called descendants.
Exclusive

A segment located in another path is called exclusive.

Example

A program consists of 10 modules which we will label A through J. Of these
modules, A and B form the root (segment 0).

In the program we can distinguish 6 paths and 9 segments (root included).
Segments 0O, 3 and 8 are built of more than one module. The paths are:

T75 3-8 May 1983.



| A | | A | | A | A | A | A |
| SO { { S0 | S0 S0 S0 SO
I I -
= B ’ : B | | B B r B | | B
| C | | C D D | D E
| S1 || S1 | S2 || S2 | | S2 | |
I 11 1 | |————
| F | G I
l || F G | H
| s | | 85 I || l I S3
l || Ll s6 | | s7 || l
| _ I | || Il s8 || |
| | I O
| === J
I ||

Fig. 3-1. Example of Paths

From these paths the following overlay tree may be built:

level 0 |
(root) | so |
| I
| NODE 1
l l
I l
| | | | | l
level 1 | Sl | level 1 | 82 | level 1 | 83 |
| I | | | l
| NODE 2 | NODE 3 path 6
I I
| l I | l
I | | I |
I | | || | |
level 2 | sS4 | s5 | | s6 | | s7 | | S8 | level 2
| | I I || || I
path 1 path 2 path 3 path 4 path 5

Fig. 3-2. Example of Overlay Tree

In this example, path 1 will be executed first, and then path 2. Of the latter,
Segments O and 1 are already in memory; Segment 5 overlays Segment 4. In path 3
Segments 2 and 6 will overlay Segments 1 and 5, and so on.

T75 3-9 May 1983.



Example Showing ROV-Segments

The commands down the left of the page produce the overlay structure on the
right, which is built up from the same modules as in the previous example:

INC A
INC B -
NOD N1 A
INC C
NOD N2,F
INC F -
NOD N2,G
INC G N1 B
NOD N1

INC D |
NOD N3,F |
INC F |
NOD N3,G N2 |
ine 0 mme——
NOD N3 | N3
INC H
INC I | G ||
NOD N1 |
INC
INC
INC
LKE I I
OPT - |

o

s
| ———— | —————— | ——
[}

Fig. 3.3 Example with ROV Segments

The secondary load modules F and G are treated as identical wherever they occur.

T15 3~-10 May 1983.



4 PROGRAMMING CONSIDERATIONS

Though no specific programming requirements are necessary to have a successful

linking and production of a segmented program, the following rules should be
obeyed:

- Segmented programs are not re—entrant, as segments will be overlaid during a
run. Only the root and blank common are never overlaid.

- Avoid references to exclusive segments.

- Avoid excessive loading, overlaying and reloading of segments; otherwise the
program will run very slowly.

— Use common areas as often as possible for inter-module communication.

- Overlay programs to be run in a foreground machine must not be declared by
an FCL RON command. In other words, they may be middle-ground, memory-
resident (declared by FCL LOD or FCL REP) or swappable (declared by FCL SWP).

- It is not possible to return to the interrupted program part, by means of an
RTN instruction or RETURN statement, from an exclusive segment if that
segment has been called by a CF instruction or CALL statement. The reason is
that the stack may not contain the right information for a proper return, as
the segment is overlaid by the exclusive segment.

The segment causing the overlay (by a CF instruction) is not reloaded at the
return from the exclusive segment.

- A block data subprogram must be in the segment with the highest level using
the common.

T75 3-11 May 1983.






5 CALL THE LINKAGE EDITOR

The input file for the Linkage Editor can be created using the standard
processors ASM or FRT, and with the BCL INC and NOD commands. The first time
the object file is used in a Job it is created in the area for the :JOB DAD and
Userid, and is assigned to filecode /D5. Subsequent object modules will be
added to the end of the file by BCL INC commands, or ASM or FRT processor calls.

The object file is removed by the BCP from the background machine filecode
table when the Job ends. This will also free the granules on the DAD.

Since the object modules on the file may make references to other modules in
the user or system library or to both, these libraries have to be scanned by
the processor to look for missing references. To facilitate this scanning, an
object library directory is created and kept up to date each time a module is
kept with a KOM command or deleted by a DOB command. The directory is placed in
the object module library by the system.

SEGMENTED PROGRAM

To produce a segmented load module, the program modules must be placed on the
object file according to the overlay design. The first segment on the file must
be the root. Next, the following segments must be loaded, as follows:

-  When several (exclusive) segments have the same immediate ascendant, their
common beginning location is called a node. To define the node on the
object file a NOD command must be given, specifying the name of the node.
The name is recorded as an ASCII record occupying one sector in the object
file and is used by the Linkage Editor, but it is not included in the load
module,

= When several modules form one segment, as many ASM, INC or FRT commands may
be given as necessary, up to the next NOD command.

In this way up to 128 segments may be specified for one run. At the end of
this Chapter, examples are given of how to proceed.

When all segments are on the temporary object file, the Linkage Editor must be
called with the BCL command input from the device assigned to /E0 or /EE:

LKE [DUMP={ALL | PROG | NO}][,SIZE={MAX | <n>}]

The parameter DUMP indicates whether a dump must be made after an abort or an
exit (LKM 3).

ALL Dump the Monitor and the background machine in case of an abort, or if
bit 8 is set in register A7 for LKM 3.

PROG Dump only the background machine.

NO No dump required. This is the Default.

The parameter SIZE reserves a work area of n pages of 2K words for the Linkage
Editor. It is only useful when the parameter SIZE is not specified in the
‘Declare Batch Processing Machine’ command BCP.

MAX The system will reserve 32K words (16 pages) of work area for the
Linkage Editor.

n A number, ranging from O through 16, specifying the number of
additional pages required as work area. Default = 0 pages.

75 3-13 May 1983.



If the LKE command is accepted and /E0 is assigned to an interactive device
such as console keyboard or display, the message:

LKE:
is output to that device. The user may now input the OPT command described in
this chapter.

If the LKE command is rejected, then:

= If /EO is assigned to an interactive device, a message explaining the error
is output on this device, followed by the message:
LKE:

requesting the user to enter the correct LKE command.

= If /EO is assigned to a non-interactive device (such as a card reader), an
error message is output on the ERR device, followed by the message:
LKE:

requesting the user to input the correct command from the device assigned
to ERR.

- If /EQO is assigned to a non-interactive device and there is no ERR device
defined for this Job, the error message is output to the device assigned to
/02 and the Linkage Editor exits. The BCP is reloaded and reads all
subsequent commands on /EQ until one of the commands :E0J, :EOB or :STP is
encountered.

Error Messages:

PARAM. NOT VALID The parameter is 1) erroneous
2) <n> greater than 16
PROCESSOR NOT CATALOGUED
DAD ASSIGN ERROR
I/0 ERROR
SEARCH DIRECT. NOT POSSIBLE

LKE OPT STATEMENT

The OPT control statement must be given immediately after having called the
Linkage Editor with the LKE command, and must be present on the device assigned
to /E0 or /EE.

OPT [STAD=<name>][,CBLK=<addr>][,CREF={YES | NO}][,MAP={YES | NO}]
[,SLIB={YES | NO | <name>}][,ULIB={YES | NO | <name>}][,CATL~<name> ]
[ ,DBUG={ENTR | STAB | NONE}][,GENE={LM | OB}][,KEEP=(<ident list>)]
[ ,FRGT=(<ident list>)][,ONAM=<name>][ ,DLST=<name>][,INTC=(<ident list>)]
[ ,ROVP=<name>] [ ,CROV=(<ident list>)]

STAD= <name> is the start address of the load module, which must be an entry
point in the root. Default = last start address encountered in the
root.

This option must be supplied if GENE=0B and neither KEEP nor FRGT is specified.
CBLK= <addr> is the absolute address of a blank common. The blank common is
loaded at the specified address. Only applies if GENE=LM.
Default = last region address. (See also Map and Symbol Table.)

CREF= YES: a cross reference listing is printed.
NO: no cross reference listing is printed. (Default.)

I75 3-14 May 1983.



SLIB=

ULIB=

CATL=

DBUG=

GENE=

KEEP=

FRGT=

ONAM=

DLST=

INTC=

ROVP=

T75

YES: a MAP listing will be output.
NO: no MAP listing will be output. (Default.)

YES: The system library is scanned to resolve external references.
Only applies if GENE=LM.

NO: the system library does not need to be scanned. (Default.)

<{name>: specifies the name of the system library to be scanned.

YES: the user library "USRLIB" must be scanned to resolve external
references. Only applies if GENE=LM.

NO: mno user library needs to be scanned. (Default.)

<{name>: specifies the name of the user library to be scanned.

{name>: the name under which the load module is catalogued. <name>

must consist of 1 through 6 alphanumeric characters. Only applies if
GENE=LM. Default = the file is not catalogued.

This debugging parameter is only useful when a load module must be

created which will be debugged. In a non-segmented program, all entry
points and commons are placed in the table which will be added to the
module. In a segmented program, only the entry points of the root are
saved. The option only applies if GENE=LM. Default = NONE (no table).

ENTR: a symbol table containing only entry point names is generated.
STAB: a symbol table, containing all symbols originally kept by the
Assembler, is generated.

specifies whether a load module (LM) or an object module (OB) is to be
generated. Default = LM.

specifies a list of entry names which have been resolved, but are to
be kept by the Linkage Editor. Only applies if GENE = OB; may not be
used if the FRGT option is present.

Default = only the start address is kept - see the STAD option.

specifies a list of entry names which have been resolved, and may be
forgotten by the Linkage Editor. Entry names not in the list will be
kept. Only applies if GENE = OB; may not be used if the KEEP option is
present.

Default = only the start address is kept - see the STAD option,

specifies the name of the generated object module, up to six
alphanumeric characters. Only applies if GENE = OB. Default = ‘NONAME’.

specifies the name of the generated internal symbol table, containing
the names of resolved entry points which are no longer known
externally. Only applies if GENE = OB. The table need only be kept if
the final Link Edit for this generated object module will use the DBUG
option. Default = no table is kept.

specifies the names of labelled common blocks which will be made
internal to the generated object module. Only applies if GENE = OB.

specifies a prefix of one or two letters for implicit names of ROV
segments. For example, if the prefix is ‘XX’, the Linkage Editor
assigns ‘XX00’ to the first ROV segment, ‘XX01’ to the second, and so
on; ROV-segments whose names are given explicitly in NOD statements
are not counted. This option only applies if GENE = LM.

3=15 May 1983.



CROV= specifies a list of ROV-segment names; each ROV segment is catalogued
under the current <userid> with the specified name, which then becomes
a secondary load module name. This option only applies if GENE = LM.

Error Messages

When the OPT control statement is processed, one of the following error
messages may be printed on the error message listing device:

I/0 ERROR <filecode> <status)

KEYWORD OCCURRENCE ERROR

INCORRECT /D6 ASSIGNMENT 1) no source file could be assigned;
2) disc overflow

OPTION STATEMENT MISSING

INVALID KEYWORD

TWICE THE SAME KEYWORD

= NOT FOLLOWING THE KEYWORD

, NOT FOLLOWING THE PARAMETER

INVALID BLANK COMMON BASE

INVALID START ADDRESS NAME

INVALID USER LIBRARY NAME

INVALID SYSTEM LIBRARY NAME

INVALID USER LIBRARY ASSIGNMENT

INVALID SYSTEM LIBRARY ASSIGNMENT

INVALID DBUG KEYWORD VALUE

INCORRECT /D5 ASSIGNMENT no object file could be assigned.

PARAMETER VALUE MISSING

INVALID INTEGER

/D5 NOT AN OBJECT FILE

YES OR NO NOT FOUND

NO OBJECT CODE FILE

ERROR WHEN WRITING AN EOF ON /D5

INVALID OPTION STATEMENT

INVALID PARAMETER FOR CATL OPTION

See also Fatal and Non-Fatal Errors.

If an erroneous OPT control statement is given, the user may input the correct
one on the device assigned by ERR or on /EO.

PROCESSING

The processor starts reading the whole input file, storing relevant
information in tables. All external references encountered during reading are
placed in a symbol table, at the same time indicating whether the reference is
absolute or relative. The external references may consist of entry points and
labelled commons.

The Linkage Editor now tries to match the references according to the overlay
structure of the program, obeying the following rules:

- References are first looked for in the segment. If they cannot be found in
the segment, the ascendants are searched and next the descendants. If a
double definition was given in an ascendant, the first one encountered is
taken and a non-fatal error message is printed. If a reference is made to
one or more descending segments, the reference is defined the first time it
is encountered. The external reference in that case is not replaced by the
entry point’s address, but by the address of a link block which points to
the segment loader.

T75 3-16 May 1983.



= Depending on whether the user has specified the relevant parameters or uses
the default, the processor starts looking for the missing references in the
user library, the system library, or in both (user library first).

Such a library has a directory containing all relevant information as given
in clusters 2, 5, 6 and 7 concerning the entry points, externals or
commons, in each module in the library file.

If the entry point is found in a library, the module which contains the
entry point is included in the program. If the module in which the entry
point appears is referred to by more than one segment, the module is
included in the segment with the lowest level (i.e. nearest the root).

- If the external reference is not yet found after scanning one or both
libraries, the Linkage Editor will look for it in the exclusives. As the
referencing to exclusives may cause stack problems, a warning message is
outpute.

When the reference is found in an exclusive segment, the external is not
replaced by the address of the entry point but by the address of a link
block. Should the entry point be present in more than one exclusive
segment, the first time the entry point is encountered is taken as the
definition. If the external reference is not resolved at all, an error
message 1s output.

Processing of Commons

Commons may be labelled or blank. The Linkage Editor processes them in
different ways:

Labelled Common

Labelled commons have a fixed length. They are allocated by the processor at
the end of the segment in which they are referenced. Consequently, they can be
overlaid during a program run, but the initial values, given by a block data
subprogram, are reloaded each time the segment is loaded.

When a reference is made to a labelled common whose label is used in several
segments, the common is allocated to the segment with the lowest level.

Blank Common

The largest blank common encountered in the program is placed at the end of the
program, and is never overlaid. The user must, however, take care not to
destroy this area when he is using a Get Buffer request. The beginning address
of this buffer must point to a location after the last address of the blank
common. See also the example in Map and Symbol Table.

When the user has given an absolute address to a blank common, the blank common
is located at the address specified.

LOAD MODULE

At the end of the processing a load module, segmented or not, is built. When
the load module is generated, the object code is taken from the modules on the
input file and relocatable words and external references are replaced by their
real addresses.

T75 3~17 May 1983.



When a segmented program must be generated, the Linkage Editor adds, each time
a segment is created, a segment load block to the root. This block contains
information on where the segment is to be loaded, its length and the sector of
the disc where the segment can be found.

The last segment load block is followed by a segment loader, which at program
execution time controls the loading of segments not already in memory.

NON-SEGMENTED PROGRAM

If the user wishes to produce a non-segmented program, the Linkage Editor
operates as if all modules placed on /D5 by ASM, INC and/or FRT are a segment
of level 0. In fact, it should be considered to have one path of one segment.

No NOD commands are used, and no segment loader or link block is added to the
load module.

OBJECT MODULE OUTPUT

The user may wish to combine several smaller object modules into one larger
object module, which will be re-input to the Linkage Editor later on. The
Linkage Editor combines all the object modules placed on the /D5 input file by
ASM, FRT or INC commands. The NOD statement is meaningless and should not be
present.

The user may specify which ENTRY symbols, already resolved by EXTRNs, should be

kept in the entry point table for the generated object module, and which may be
forgotten.

T75 3-18 May 1983.



OUTPUT OF THE LINKAGE EDITOR

The output of the Linkage Editor consists of:

a load module

a MAP (optional)

a Symbol Table (optional)
error messages.

LOAD MODULE

The load module is an executable program in object format. The module is

output on the load module file /D6. Each sector of the file contains 188 code
words and a 12-word relocation table (RTB), of which:

bit 0 of word O = 1 if the first word is relocatable, or

0 if the first word is absolute.

bit 1 of word O is associated with the second code word

bit 0 of word 1 is associated with the 17th code word

.

etcs

The first six code words of the load module, which are stored in the first
locations of the program, have the following meaning(s):

T75

Word O

Word 2

Word 4

Word 6

Word 8

Word A

for non-segmented programs:
Program start address.
for segemented programs:

Program start address increased by 1, pointing to a location in
the root.

for non-segmented programs:
Number of sectors on the disc occupied by the load module.

for segmented programs:
Number of sectors on the disc occupied by the root.

Effective length of the load module (blank common, if not given
an absolute address, included).

Symbol Table address.

for non-segmented programs:
First code word of the first module of the program.

for segmented programs:
Length of the program area (which may be longer than the
effective program length; see example in MAP and Symbol Table).

for segmented programs only:
The number of segments of the program, the root not included. The

following n * 4 words contain n segment load blocks. The last 4-
word item is followed by the Segment Loader.

3=19 May 1983.



MAP AND SYMBOL TABLE

An example of a MAP is given at the end of this Chapter; it contains the

following items:

START Start address of the program.

LENGTH  Length, in characters, of the longest path.

REGION The length of the longest path as loaded from n sectors. Since the
segments are loaded one disc sector at a time, an entire sector may
therefore have been loaded without that sector being completely filled
with the contents of a segment.

last sector

of segment

I

I

Fig. 3.4 Example of Region

Example:

common

area destroyed when loading
segment, but not used at |
run time.

REGION

The following examples explain the difference between the length and the
region. The first program contains an absolute blank common and in the other
example the program contains a relocatable blank common.

Absolute Blank Commog

Program

unused
sector space

absolute
blank
common

T75

egion

| — g —— |

3-20

Here Length < Region, but
it may happen that Length
= Region if all sectors
were entirely used.

May 1983.



Relocatable Blank Common

Program

Lengt

unused |

l
|
|
| Region
I
|
|
I
sector space |

relocatable |
blank
common

| — g ——— |

Dynamic First Address of
Allocation Get Buffer.
Area |

Fig. 3.5 Examples of Length and Region

Then the segments are printed in ascending level number order, where:

SEGMENT # number of the segment in the overlay tree
ADDRESS # address of the segment in memory
SECTOR # number of the sector in which the segment is written

ASCENDANT # number of the segment’s immediate ascendant. For the root this is
always /FF.

Then the IDENT of each module in the segment is printed, with the module
address.

The list of segments is followed by the Symbol Table. All entry points and
common blocks belonging to a segment are listed in alphabetical order.

The symbol table is built of the following items over 4 columns:

TYPE SEGMENT ADDRESS NAME
where:
TYPE A = absolute entry point
B = absolute address of blank common as given in the OPT statement
C = relocatable blank or labelled common
D = symbol table entry point
E = relocatable entry point.

SEGMENT number of the segment in which the symbol appears.

ADDRESS address of the symbol.

NAME entry point name. If the same name is defined in several segments, the
name is printed each time it is encountered, but with a different
segment number.

T75 3-21 May 1983.



ERROR MESSAGES

During and after processing, error messages may be printed which may or may not
influence the processing and output of a correct load module. At the end of

processing the number of errors are printed, if there were any, followed by the
error message(s).

Fatal Errors

Fatal errors cause the temporary load module file to be scratched; no load
module is produced.

CORE OVERFLOW not enough space for the processor.
DIRECTORY AND SYSTEM LIBRARY NOT CONSISTENT
DIRECTORY AND USER LIBRARY NOT CONSISTENT
END MISSING (EOF FOLLOWING IDENT)

END MISSING (NOD FOLLOWING IDENT)

END MISSING (2 CONSECUTIVE IDENT)

FIRST ROOT RECORD IS EOF

IDENT MISSING (END FOLLOWING NOD)

IDENT MISSING (EOF FOLLOWING NOD)

IDENT MISSING (FIRST OF ROOT)

IDENT MISSING (2 CONSECUTIVE NOD)

IDENT OR NOD RECORD MISSING OR INVALID
1/0 ERROR <ECBO> <ECB8>

NOD NOT ALLOWED BEFORE THE ROOT

PROGRAM LENGTH EXCEEDS 32K

2 CONSECUTIVE NOD

KEYWORD OCCURRENCE ERROR

INCORRECT /D6 ASSIGNMENT

OPTION STATEMENT MISSING

INVALID KEYWORD

TWICE THE SAME KEYWORD

= NOT FOLLOWING THE KEYWORD

, NOT FOLLOWING THE PARAMETER

INVALID BLANK COMMON BASE

INVALID START ADDRESS NAME

INVALID USER LIBRARY NAME

INVALID USER LIBRARY ASSIGNMENT

INVALID SYSTEM LIBRARY NAME

INVALID SYSTEM LIBRARY ASSIGNMENT

INVALID DBUG KEYWORD VALUE

INCORRECT /D5 ASSIGNMENT

PARAMETER VALUE MISSING

INVALID INTEGER

/D5 NOT ASSIGNED TO AN OBJECT FILE

YES OR NO NOT FOUND

NO OBJECT CODE FILE

ERROR WHEN WRITING AN EOF ON /D5

INVALID OPTION STATEMENT

INVALID PARAMETER FOR CATL OPTION

NO PREFIX SPECIFIED FOR ROV SEGMENT

ROV SEGMENT IS NOT A LEAF

INVALID ROVP KEY WORD VALUE

IMPOSSIBLE TO ASSIGN FILECODE /D1 FOR SECONDARY LOAD MODULE
TEMPORARY FILECODE /D1 FOR SECONDARY LOAD MODULE CANNOT BE DELETED

T75 3~22 May 1983.



Non-Fatal Errors

These errors are, in fact, warning messages for the user. The Linkage Editor
continues processing, but the produced load module may or may not be
executable. The hexadecimal number of errors is printed on the listing device
assigned to /02 and on the operator’s console, after processing.

ABSOLUTE ADDRESS IN MODULE <name> SEGMENT <number>
ABSOLUTE START ADDRESS IN MODULE <name)>
DOUBLE DEFINITION ON <name) The first one is taken.
ERROR IN MODULE <name>
EXCLUSIVE REFERENCE FROM SEGMENT <no> TO <name> IN SEGMENT <no)>
NO START ADDRESS
REF. TO UNSATISFIED EXTERNAL <{name> IN SEGMENT <no> AT ADDRESS <no>
The address is relative to the beginning of the segment.
UNDEFINED START ADDRESS NAME
The name specified in the OPT statement is not defined in the root.
<{no> UNSATISFIED EXTERNAL REFERENCE
<no> is in hexadecimal. The symbol table indicates which external
references could not be matched, by printing an asterisk.
ROV ADDRESS IS NOT A PAGE BOUNDARY

SEVERITY CODES

A severity code is output on the listing device when the Linkage Editor’s
processing is terminated.

0 Normal exit.

/10 The load file has been produced, but some minor errors, such as
unresolved external references, occurred.

/30 The load file has not been produced; an error message from the Linkage
Editor has been output to filecode /02.

/40 The Linkage Editor did not start processing because of an assignment
error or invalid OPT statement. An error message has been output to
filecode /01.

Examples

Two examples are given of how to proceed when a non-segmented or a segmented

program must be produced. Each example is followed by a MAP and by a Symbol
Table. The source modules are catalogued modules in MWSC:1 of DAD SSDOC2.

T75

DCB 16

FCD /EO,CRO6

FCD /1,TY10

FCD /CO Batch Machine declaration
FCD /Cl

FCD /C2

FCD /C3

FCD /2,LP07

FCD /E2,PR20

FCD /F0,/CO,SUPERV
FCD /F2,/C0,SSDOC1
FCD /F3,/C0,SSDOC2
DEN

BYE BATCH

3=23 May 1983.



followed by the :JOB command:
:JOB USID=MWSC:1,DAD=/F3
Next the commands for ASM and OPT are given:

ASM

OPT PROG=M:CMDS,LIST=NO
NOD LEVO

ASM

OPT PROG=M:CASS,LIST=NO
ASM

OPT PROG=M:CA,LIST=NO
ASM

OPT PROG=M:CC,LIST=NO
NOD LEV1

ASM

OPT PROG=M:MESS,LIST=NO
NOD LEV2

ASM

OPT PROG=M:GO,LIST=NO
ASM .

OPT PROG=M:PRNT,LIST=NO
ASM

OPT PROG=M:LIST,LIST=NO
ASM

OPT PROG=M:EDIT,LIST=NO
NOD LEV3

ASM

OPT PROG=M:SCRT,LIST=NO
ASM

OPT PROG=M:TERM,LIST=NO

The assembled source modules are now on the object file, which is the input for
the Linkage Editor.

LKE
OPT MAP=YES,SLIB=NO,ULIB=NO,CATL=EDITING

T75 3-24 May 1983.



The MAP is:

START = 024C LENGTH =&F&60 REGION =6014
%% 3% OVERLAY STRUCTURE * % %
* %% LEVEL # 0 * % %
SEGMENT # 00 ADDRESS = OORS8 SECTOR # 0000 ASCENDANT # FF
M:CMDS OOERS8
HHK LEVEL # 1 * %
SEGMENT # 01 ADDRESS = 0468 SECTOR # 0003 ASCENDANT # 00
MiCASS 0468 M:CA 04E8 M:CC 0546A
¥ 3% ¥ LEVEL # 2 * % %
SEGMENT # 02 ANDRESS = 06460 SECTOR # 0005 ASCENDANT # 01
MiMESS 06460
¥ % LEVEL # 3 * % %
SEGMENT # 03 ANDRESS = 0964 SECTOR # 0008 ASCENDANT # 02
M:G0 096A MIPRNT OA4E MILIST 1026 M:EDIT 5938
* 3% % LEVEL # 4 ¥* %%
SEGMENT # 04 ATIDRESS = SE7E SECTOR # 0042 ASCENDANT # 03
M:SCRT GSE7ZE M:TERM GSFOE

and the Symbol Table is:

* %% SYMEOL TAEBLE * %%

00 018A BUF3
01 04E2 CHKEOV
00 OOEBS8 CMICAR
00 01Eé E:RED1
01 0468 FLAGCT
03 OA4E LINFLG
01 046A M:CASS
03 096C M:GO |
04 SE92 M:SCR2
04 SEE4 M:SCR6
00 0350 M:TOP
03 ORO4 PRTRUF
03 OE70 SEARCH
01 04CE SYMR2 !
03 OALE SYME6

00 0332 BELLZ2
03 4C20 RUFCH1
00 034A CHKTAR
03 5142 COMPRE
00 O1F2 E:=WRT1
03 092464 FLAGGO
03 OEB4 M:=ADl
01 036A M:CC
03 4CDA MILIST
04 SEAS6 MiSCR3
04 SEFA M2SCR7
00 00ON0 NOSIGN
03 OR1E PRTTY
03 ORO2 STRNG
03 5546 SYME3
01 0618 SYMR7

00 0O33E ERELL4

03 4C54 RUFCH2
03 S5A70 CKCMIDS
03 O9R8 COPYAL
03 5938 ENTFLG
03 1184 INDXEF
03 OEBA M:=AD24
00 024C M:=CMDS
02 0920 M:=MESS
04 GERA M:SCR4
04 GE7E MiSCRT
03 0AS5S2 NUMBUF
03 0ARZ2 RERUF1
03 OBO4 STRNG2
03 OERE SYME4

01 0544 SYMES

00 0138 BUF2
00 0312 CASS2
00 OOE46 CMIERUF
00 O1l'A E:=EBUF1
00 031E EOFREW
03 0ASA LINEERF
01 04E8 M:CaA
03 SA48 M:EDIT
03 OB4A MIPRNT
04 SECE M=S8CRS
04 SFOE M:TERM
03 10CE PAGERUF
03 0ADA RERUFZ2
00 0348 SYMEL
02 0942 SYMES
00 0306 VOLUME

memmmmmmmmmmmmmm
mEmmmmmmmmmmmmmm
mommmmmmmmmmmmm
Sgommmmmmmmmmmmm

m

T75 3=25 May 1983.



oo oo om Mmoo momomomom

If the same modules are Link-Edited without NOD commands, the following MAP and

Symbol Table are output:

START = S[4A LENGTH =509C
%%%  QUERLAY STRUGCTURE
%%  LEVEL # 0
SEGMENT % 00 ADDRESS = 0008
M:CMDOS 0008 M:CASS 0318 MzCA
M:MESS 0500 M:GO 080A MzPRNT
MIEDIT 5708 MISCRT SCEA M:TERM
%%%  SYMEBOL TAELE
00 0282 RELL2 E 00 028E BELL4 E 00 0088
00 4ACO BUFCH1 E 00 4AF4 BUFCH2 E 00 0262
00 029A CHKTAE E 00 5910 CKCMDS E 00 0036
00 4FE2 COMPRE E 00 0858 COPYAL E 00 0124
00 0142 E:zWRT1 E 00 S708 EDTFLG E 00 026E
00 080A FLAGGO E 00 1024 INDXBF E 00 O8FA
00 0024 M:zADl E 00 ODR2A M:AlR24 E 00 0398
00 041A M:CC E 00 019C M:CMIDS E 00 S8ES
00 4B7A M:LIST E 00 O7CO M:MESS E 00 O9EA
00 SCE2 M:SCR3 E 00 SCFé M:SCR4 E 00 SDOA
00 SD36 M:SCR7 E 00 SCEA M:SCRT E 00 SD4A
00 0020 NOSIGN E 00 08F2 NUMEUF E 00 OF&E
00 O9EE PRTTY E 00 0952 REBUFL E 00 0974
00 09A2 STRNG E 00 09A4 STRNG2 D[ 00 O2ES
00 53E6 SYME3 I 00 ODSE SYMB4 D 00 O7E2
00 04C8 SYME7? D[ 00 O3F4 SYMB8 E 00 0256
75 3-26

REGION
¥ 96 3%

* K

SECTOR # 0000
0398
08EE
all4A

3 X% 3%

BUF2
CASS2
CMOEBUF
E:sRUF1
EOQOFREW
LINEERF
M:CaA
M:EDIT
MEPRNT
M=SCRS
M:TERM
PAGRUF
REBUF2
SYME1
SYMEBS
VOLUNME

=3E1E

gommmmmmmMmmmmmm

ASCENDANT

M:CC

¥ FF

0414

M:LIST

(¢10)
00
00
00

00
00
00
00
00
00
00
00
00
00

o0onA
0362
0008
0136
0318
08EE
031aA
080C
SCCE
s5020
0240
09asb
0Al10
037E
08EE

May 1983.

OECS

BUF3
CHKEQV
CMICAR
E:RED1
FLAGCT
LINFLG
M:CASS
M:GO
M:SCR2
M=SCRé&
M:TOP
PRTEUF
SEARCH
SYMER
SYMEé6



