17. Blocks and scopes

We have just seen how to initialise variables in a data brick. Within a procedure, one of the first
things we often do after our declarations is to ensure that some of our variables contain particular
values. Such declaration followed by assignment can be combined into an initialisation — a
convenient shorthand and a means (which can be checked at compile-time) of ensuring that
ref-variables contain sensible objects. It is important to remember that since local variables only
exist when the procedure is being executed, a dynamic assignment will occur; because of this,
the value of our initialisation is now allowed to be a general expression — that is any expression
that is a valid right hand side of an assignment to the variable. Dereferencing, type-changing and
operators are therefore allowed. No default values are defined, and on entry to a procedure a
non-initialised variable will contain whatever value happens to be in that particular location in
the run-time stack.

The syntax is precisely as in a data brick (though, of course the question of initialising arrays
cannot arise since they cannot be declared locally):

PROC LOCAL (INT I, REAL R, REF REAL P)3;
INT Je=I%20, K:=d=2, Li:=I*[+INT Rj
REAL A:=3,1, B;=C:=R/I, D:=SQRT(R):
% PROCEDURE SGRT DEFINED ELSEWHERE X
REF REAL Q1:=Q2:=A, Q3:=p; % NOTE DEREFERENCING OF P %

ENDPRQC;

Note that we can use variables initialised in the heading (in particular any parameters which will
be initialised by a call), but that the following declaration is ridiculous:
INTT:=S+7,S:=+1;

We are trying to use S before it has been declared (and an initial value put in it) and the compiler
will generate an error message to this effect.

As in data bricks, it is obligatory to initialise reference variables; the reasons are those given in
the last section, though perhaps it is even more important here, since we have no idea what the
original contents might be when a random cell on the stack is associated with such a variable.
The value that we really wish to have in a reference variable may not be known at the point

of declaration; for instance it may be an array element whose subscript value has not yet been
calculated. It is irritating and inefficient to have to store dummy names (and perhaps have to
create them!) just to satisfy this rule. (I1t's not so bad in a data brick, since it consumes no effort
at run-time).

To overcome this, we introduce a further kind of statement which is allowed to contain
declarations (and hence initialisations) which we can then place at the desired point in our
program. This also has other useful properties. This statement is the block-statement. 1t is
introduced by the keyword BLOCK and terminated by the matching keyword ENDBLOCK
(recall the comments about matching keywords and indentation in Section 11). Between these
delimiters, the rest of the statement consists of a number of declarations (including initialisations
as above) followed by a sequence of statements. These embedded statements, as usual, can be as
complicated as we like: assignments, procedure-calls, goto statements, conditional statements
and further block-statements.

Example:

BLOCK

INT K:=23

REF INT Qi=K;

IF XK=Q THEN GOTO L:¢ END:
ENDBLOCK;

83

The internal structure of the block-statement can be pictured as:

Declarations

Statements

Declarations and statements may not be mixed.

This configuration is called a blockbody. A moment’s thought (plus a turn back to section 8
perhaps) will show that this is precisely the form of the body of a procedure and indeed the
body of a procedure definition is a blockbody. Variables declared at the head of a procedure
definition are local to that procedure or blockbody; similarly variables declared at the

head of a blockbody are local to that blockbody; we shall return to this point below.

We now construct a more useful illustration of the use of the block-statement by rewriting our
earlier ‘order’ example using blocks and initialisations.

PROC ORDER (REF ARRAY REAL A):

INT I:=1, % COUNTER %
LEN;=LENGTH A;% COMPUTE LENGTH ONCE %
NEXTEL:
BLOCK
REF REAL MIN:=A(I):; % ASSUMED MINIMUM %
INT Ji=1+1; % COUNTER %
CHECK:
IF ACJISKMIN THEN MIN;=A(J); END3J
1=+
IF J<=LEN THEN GOTO CHECK: END:
BLOCK

REAL TEMP:=A(I)s X% TEMPCRARY LOCATION %
ACL);=MIN;
VAL MIN;=TEMP;
ENOBLOCK:
ENDBLOCK}
li=1+1;
IF I<KLEN THEN GOTO NEXTEL; END:
ENDPROC?

This illustrates nested block-statements; all variables are initialised on declaration, and the use
of block-statements allows us to declare our local variables at just the points where we want to
start using them.

Variables declared in a block-statement are local to the block; as locals, they exist as cells in the
run-time stack. Similarly, a name set as a label within the block-statement is local to that block.
If we have two (or more) non-overlapping block-statements, the local storage for each will be
shared. This is best illustrated by an example ignoring the actual statements of the procedure.

84

I, REAL R);

L3 BLOCK
INT Ki=g;
REAL A:=B8:=2,0;

BLOCK
REF INT RI;
REF REAL RR

=K
1=

R

ENDBLOCK;
ENDBLOCK
BLOCK
INT Ge=1y
REF INT RQ:=G;
REAL ALPHA;:=21,6;
REF REAL GAMMA:=ALPHA}

ENDBLOCK]

GOTO L3
ENDPROC

On entry to P (by a call of that procedure, say P(1, 0.0)) the stack will appear as:

link
cell ! R J
E
B
121100
- E
5 g
0
lvp

The first statement to be obeyed will initialise J.

On arrival at L, we enter a new block, and on the stack we now gain access to the variables K, A, B:

link
ceil | R J K A B
g
g 2] 1|00 3
- | E
s | &
1\
lvp

Notice that there is no change to the local variable pointer (lvp) and no creation of a new link
cell; the locai variables already in existence on entry to the block appear as globals within the
block.

85

The initialisations to K, A, B will now be performed. On encountering the next block statement

storage is made available for RI, RR:

link

cell | R J K A B RI RR
E
Y

g o 1 100]| 3 4 | 20 20

- =

3|38

lvp
Rl and RR are then initialised:

link

el I R J K A B Rl RR
E

£ 2| 1|o0| 3| 4|20|20| K| R

e 'S

[e] 0.

lvp

As soon as we reach ENDBLOCK, the block-statement containing Rl and RR is terminated, and
these variables are lost; the actual cells and their contents are still in the stack of course, but no
names are associated with them, and they are inaccessible.

g
ink I R J K A B
cell

3
e | 5|1]00| 3| 4|20[20| K|R
® | 5
o Q

lvp

Similarly on reaching the next ENDBLOCK, K, A, B are lost:

link
cell bR

5

A
e | S| 100 3| 4 |20[20] K| R
b o=
2| 5
o [o

Ilvp
We next encounter a new block-statement; storage is made available for Q, RQ, ALPHA, GAMMA:
link S\al\a
l IR 4o Ra NS
E

21 % 1]00| 3|4 |20[20] K|R

Kone =

3|3

86

lvp

The initial values are those that happen to be in the stack from the last uses of those locations;
in some cases the value is incompatible with the mode of the variable — hence the need for
initialisation:

\glR\ 4
link XD
cell : B 4 a RS Y o
8 <
e | 2| 1000|331 1]|al216| | R
= c wd
) §S) <
(o] Q
)
lvp

On leaving this block, Q, RQ, ALPHA, GAMMA will be lost, and we will transfer control to L,
where K, A, B will again be made accessible. They will use the same cells as before, but in the
meantime these have been used by Q, RQ, ALPHA; hence, again the importance of initialisation.
To ensure that this initialisation is performed, entry to a block-statement is only allowed through
the keyword BLOCK: this will be elaborated below.

We have seen the sharing of storage in the stack. The total amount of storage is allocated on
entry to the procedure, the association between a variable and a particular cell having been
organised by the compiler. On entry or exit to a block-statement (or /nner block to distinguish it
from the block represented by the whole procedure definition) there is no overhead as there is
on procedure entry/exit when link cell and certain other housekeeping manipulations must be
performed.

We use the concept of blocks to define completely where a variable may be used and hence to
enable us to formulate rules for the declaration of a variable using a name used elsewhere in the
program for a different purpose — we have already seen an example of this in section 9 where we
used DIAM as the name of a parameter for both CIRCLE and P2.

The scope of an identifier name (that is ““where you can use it”’) is a lexicographic and dynamic
constraint on its legal use : the scope of an identifier is the block in which it is declared or set as
a label plus any inner blocks, unless the identifier is re-declared or reset as a label within such
an inner block. This explains why we were able to continue using |, LEN in our inner blocks in
ORDER : they were still “in scope’” — in terms of the stack they were still accessible. An
attempt to use a variable outside its valid scope is termed ‘‘taking out of scope’’ and is illegal.

A simple example is:

BLOCK
INT I

]
ENDBLOCKS

1:=3;

The assignment to | is not in the scope of | — this is a simple lexicographic error.

87

A more difficult case can arise:

BLOCK
INT Jy:=23;
REF INT RI:i=Js

L]
BLOCK
INT K3

)
RI:=K;

ENDBLOCK;
VAL RI:=73;
ENDBLOCK;

Here, there is no lexicographical illegality — all the variables are used within their scopes.
Dynamically, however, when we come to perform the final assignment, R| will be dereferenced
to yield as destination K, a variable no longer in existence. The fault occurs in placing the name
of K in a reference variable which is declared in an embracing block, so that the name may be
taken out of scope dynamically. It is not possible for the compiler to decide absolutely in this
case, but it can recognise the potential danger inherent in the assignment R1:=K and issues a
warning; such warning messages will be mentioned later, but the advice not to ignore them is
given now!

We can deduce from our definition the scopes of variables declared in a block-statement and in a
procedure heading (including the parameters). What about the other names in our program? The
scope of the names of bricks (i.e. used to name a data brick or a procedure definition) and the
scope of variables declared in a data brick is the whole program; that is we regard the beginning
and end of our program as defining the outermost block of our nested structure. This scope of
data brick variables and the names of procedures fits in with our earlier global usage of them.

In this way, a block structure is imposed upon our program.

We can now see why we can only jump to a label in our current procedure:

PROC F1 ()3

ENDPROC:

PRCC F2 ()

GOTO Ls

ENDPROC:

88

The statement GOTO L is illegal since L is not in scope at this point. Similarly

BLOCK

ENDBLOCK;

GOTO Ls

is illegal; L is again out of scope in the goto-statement. This means that we cannot jump into a
block; we can only enter it through BLOCK or through the normal procedure entry. We have
already seen that this is a desirable restriction, since we wish to ensure that all initialisations
(particularly of reference variables) are performed.

Of course, jumping within a block or out of it is permissible; in the case of a block-statement
no housekeeping on the stack is required; in the case of a procedure we can only jump out via
RETURN anyway. Thus the following are all legal:

BLOCK

GOTO Ls % L IS IN SCOPE %
ENDBLOCK
BLOCK

GOTO M3 % M IS IN SCOPE %
ENDBLOCK

BLOCK

RETURN; % EXITS FROM ALL INNER BLOCKS AND THE PROCEDURI
ENDBLGCK)

In the case of multiple declaration or definition of use of names we have a problem; when we
encounter such a name in a statement of our program, we have to decide which variable it
identifies. The rule ““work outwards through the block structure until a declaration of a variable
or a setting of a label with that name is found’’ solves it. If no such declaration or setting is
found, either the variable is out of scope, or a declaration/setting has been omitted. Naturally we
wish to avoid ambiguity in this process (if we end up with an integer variable and a label we will
not know what to do) and this together with our scope rule leads to the following constraints
(embodying our earlier rules), each of which is illustrated by incorrect and correct programs

(the outermost block in each could be PROC. . .ENDPROC):

89

1. No identifier name may be declared as a variable or set as a label more than once in a block.

ILLEGAL

3LOCK
REAL Az
REF INT

ENDBLOCK:

BLOCK
REAL L;

L

GOTO L:

ENDBLOCK:

LoCK

=

Ls
50TQ L3

ENCBLOCK:

90

A;

VALID

BLOCK
REAL Ay

BLOCK

REF INT A;

ENDBLOCK:

ENDBLOCK;

BLOCK
REAL L;
BLOCK

GOTO L3

ENDBLOCK,

ENDBLOCK?

BLOCK
L:
BLCCK

L % o* %

GOTO L3

ENDBLOCK:

ENDBLOCK?

%

GOES TO «*

%

2. Avariable declared, or label set, in a block cannot be referenced outside that block; i.e.

cannot be taken out of scope (lexicographically or dynamically).

ILLEGAL

BLOCK
BLOCK
INT I3

ENDBLOCK;
1:=7:
ENDBLOCK;

BLOCK
BLOCK
L:

ENDBLCCK;
GOTO L3
ENDBLOCK:

BLOCK
REF INT RI:=I;
BLOCK
INT J3
Rl:=J:

ENDBLOCK?
VAL RI1=7:
ENDBLOCK?

PROC P () REF INT:

INT I3
RETURN (I)3:
ENDPROQOC

3. A variable declared, or label set, in a block is not accessible in an inner block if the name
has been re-declared or re-set therein. The entity represented by the name is still technically in
scope, and continues to exist, but becomes temporarily (in the inner block) inaccessible.

ILLEGAL

BLOCK
REAL L2
BLOCK
kg
L:=0s13
GOTO L3
ENDBLOCK;
ENDBLOCK;

VALID

BLOCK

BLOCK

INT I:
1:27:

ENDBLOCKS

ENDBLOCK?

BLOCK

BLOCK
L3

GOTOD L3
ENDBLOCK;

ENDBLOCK:

BLOCK
REF INT RI:=I3

BLOCK
INT J3
RIz=J:

ENDBLOCK;:

ENDBLOCKS

VALID

BLOCK
REAL A;
BLOCK
L3
A:=0,13
GOTO L
ENDBLOCK?
ENDBLOCKS
BLOCK
REAL L,M;
BLOCK
L
M:=0,13
GOTO L
ENDBLOCK?
Li=My
ENDBLOCK?

% COMPILER WARNING
VAL RI:=7;

%

91

In general, the multiple use of names should be restricted as far as possible; it should certainly
be avoided whenever it leads to loss of clarity in the program text.

The use of inner blocks is recommended. It leads to efficient use of storage on the stack and
increases legibility since declarations occur at appropriate points rather than in a messy muddle
at the head of the procedure. It also removes the need for dummy initialisations in procedures
and, in fact, leads to less errors caused by using a variable (thought not to contain anything
significant) for temporary calculation purposes. We can also now see that a procedure call is /n
effect an inner block:

PROC SWAP (REF REAL A,B);
REAL TEMP:=A;

VAL A:=B;

VAL B:=TEMP;
ENDPROC

PROC MAIN ()3
REAL P,Q;

SWAP(P,Q);

ENDPROC
is equivalent to:

PROC MAIN ()3
REAL P,Q;

L]
BLOCK
REF REAL A;=P,B:=0Q;
REAL TEMP:;=A;

VAL A;=B;

VAL B:=TEMP;
ENDBLOQOCK

ENDPROC:

Finally, in this section, we introduce two concepts connected with the implementation of RTL/2
through the use of a run-time stack. We are interested here in establishing the meanings of two
words, rather than a detailed investigation.

If, in the body of a procedure, a call is made of that same procedure, it is said to be a recursive
procedure. The simplest example is:

PROC P ()
P();
ENDPROQOC:

This example is futile in that when P is called it will simply call itself ad infinitum. Consider the
following:

PRCC FACTORIAL (INT N) INT;
RETURN(IF N=1 THEN 1 ELSE FACTORIAL(N=1)*N END)3J
ENDPROC:

92

This procedure calls itself (provided N#1) and is therefore recursive; it computes factorial N,
i.e. the product N(N—1)(N—2)...3.2.1. This is possible since successive calls generate new
incarnations of the local variables in the run-time stack. Let us follow the stack through a call
FACTORIAL (4):

old Ivp
point of call
S

lvp

4#1 hence FACTORIAL (3) will be called:

link link
cell N cel N
5 =
Q Q
G G
(o8 a
> - 4 > — 3
= k= - £
o o i) o
o a o a
lvp

This generates a new link cell and a new N.
Similarly FACTORIAL (2) and FACTORIAL (1) will be called:

link R link link link
cell cell N cell cell
8 8 8 8
N L b L g
a S 4 a o 3 a S 2 a o 1
S - > - > - > -
- = - £ — £ _ £
= o = <) o <) = <)
(s} a o a [6) 8 o 1o

lvp

On this call, N=1 and so a result of 1 is returned; we unwind and now form the product 1*2 in
the incarnation FACTORIAL (2); this is returned and we unwind again to form (1*2)*3 in the
incarnation FACTORIAL (3); one further procedure exit gives us 1*2*3*4 which is then
returned as the result of FACTORIAL (4).

Recursion is made possible by the stack mechanism. It can be very powerful and useful; it can
also be very wasteful of time and stack as the following example shows. You are invited to sketch
the stack manipulations for a call FIB(99).

PROC FIB (INT N) INT;
% GENERATES THE NTH FIBONACCI NUMBER X%
% UCN) = U(N=1) + U(N=2) %
RETURNCIF N=1 THEN 1 ELSEIF N=2 THEN 1
ELSE FIB(N=1) + FIB(N=2) END):
ENDPRQC?

This concept should not be confused with a call of a procedure one of whose parameters involves
a call of the procedure; SQRT(SQRT(81.0)) is not a recursive situation. The root of 81.0 is
evaluated and then becomes the parameter for a second call of SQRT; SQRT does not call itself.

93

Recursion can.be hidden in the sense that P1 ¢alls P2 which calls P3 which calls P1 which calls ...
This situation is termed mutual recursion.

As a final example of recursion, we re-present our earlier example of extracting the highest
common factor written in a recursive manner:

PROC HCF C(INT A,B) INTy
RETURNCIF B=0 THEN A ELSE HCF(B,A MOD B) END):
ENDPROC

If we consider two users running two proagrams iri two independent stacks (or if we simply
consider our case of recursion above) who use a common procedure (we investigate how this is
made possible in a later section) we can see that a situation can arise in which a procedure which
is already in use can be called and entered. We have seen that the stack(s) make this possible for
the local variables. We must alsc ensure that the actual instructions in the procedure are the same
whenever we call it. This is achieved by making the code read-only; i.e. no procedure (including
itself) affects the instruction sequence. These two properties (read-only and separate incarnation
of locals) make RTL/2 procedures re-entrant. Thus if a procedure is being executed it can be
interrupted, another program can call the same procedure, and on return (re-entry) nothing will
have been affected and processing can safely continue. This is not true, however, if the procedure
manipulates data brick variables, since new incarnations of these are not created on a procedure
call.

Section 17 examples

1. Rewrite the procedure solving a quadratic equation (coping with real and complex roots)
using blocks to code the evaluation of the square root within the procedure.

2. Smoothing of data points in an array F is to be performed (except on the first and last
points in the array) to reduce the effect of random errors using

Fi:=Fi.1 + Fi+ Fisg
3

Write a procedure to do this.

3. Write a procedure to evaluate the mean and standard deviation of a set of values supplied
in an array parameter.

Rewrite the earlier matrix product example using inner blocks.

5. Write a procedure to return the valueof a real number raised to an integer power. Attempt
to write a recursive procedure to do this. (Hint: to reduce multiplication, decompose the
exponent into a suitable form).

6. Recursive procedures provide a neat way of coding integers in punched card code prior to
physical output to a card punch in card column order. Given that the card codes for the
digits 0, 1, ..., 9 are 512, 256, 128, ..., 2, 1, write a simple procedure to output the
appropriate codes to a card punch (via a second procedure PROC CARDCOLUMN
(INT CD);) for a positive integer, X. No formatting is required. Digits are determined by
successive division of X by 10 and use of the remainders to index an array of codes. It is
worthwhile to attempt this with and without the use of recursion.

94

18. Loops |: While statement

From section eleven onwards, we have seen a number of examples where a problem has been
solved by an iterative approach (e.g. extraction of square root, ordering an array). In general, an
iterative loop consists of a series of actions to be obeyed a specified number of times (as in the
case of ordering elements) or until a given condition is satisfied (as in reaching an acceptable
degree of accuracy.). The former case can always be cast into the latter form. The conditional
situation is treated in this section.

Up to now we have programmed loops by a combination of conditional statements and goto
statements. We now develop a shorthand form called a while-statement or while-loop. The
while-statement programs the situation represented by the simple flowchart:

le

TRUE

SEQUENCE OF
STATEMENTS

FALSE

In the syntax for this, we require three delimiters; one to mark the beginning of the statement,
one to mark the end, and one to terminate the condition and thereby indicate the beginning of
the statement sequence. These delimiters are the keywords WHILE, REP (for repeat), DO
respectively. We can represent the syntax in the symbolic form:

WHILE condition is true DO
sequence of statements
REP;

WHILE and REP are matching keywords. As we have now encountered a number of such pairs,
it is appropriate to point out that such compound statements formed by the use of matching
keywords must be strictly nested within one another; interleaving is not allowed.

Thus IF A<B THEN
BLOCK

END;
ENDBLOCK;

is illegal, since the inner block statement has not been terminated when we attempt to terminate
the outer conditional statement by END. Legal versions are

IF A<B THEN BLOCK
BLOCK IF A<B THEN
ENDBLOCK: END:;

END: ENDBLOCK:

%NOTE THE INDENTATIONS%

The condition in the while-statement is of precisely the same form as that used within a
conditional statement.

95

Example:

LET OPEN=z1;
LET SHUT=0:

DATA PLANTDATA;
ARRAY (NOOFVALVES) INT PCSITION;
ENDOATA;

WHILE POSITION(VALVENQ)=0PEN DO
CLOSECVALVEND); % ATTEMPT TO CLOSE VALVE WITH GIVEN NUMBER)
% AND UPDATE POSITION IF SUCCESSFUL %
DELAY(10); % DELAY FOR 10 TIME UNITS %
REP;

This behaves precisely as indicated in the flowchart. The contents of a particular element of the
array POSITION is inspected; if it is the value OPEN then we call the procedure CLOSE which
initiates an attempt to close the valve in question and if successful sets POSITION (VALVENO)
to the value SHUT. We then delay for a specified time period (to allow the physical action to be
performed). Encountering REP sends us back to evaluate the condition; if it is still true, a further
attempt is made to close the valve; otherwise, we continue our processing with the statement
immediately following REP. Hence we have a loop terminated as soon as a condition fails to be
satisfied (or as soon as the opposite, the valve being shut, is satisfied).

We can re-write our square-root extraction procedure using a while-statement:

LET EP5=0,001;

PRCC SGRT (REAL X) REAL:J
REAL OLDGUESS:=1,0, NEWGUESS:=(X+1,0)*%0.5;
% FIRST ITERATION PERFORMED IN INITIALISATION %
WHILE ABS(NEWGUESS=OLDGUESS)>EPS*NEWGUESS DO
OLDGUESS:=NEWGUESS:
NEWGUESS:s(NEWGUESS + X/NEWGUESS)*C.5;

REP3
RETURN(NEWGUESS)

ENDPROCS

Clearly the while-statement

WHILE condition DO
sequence of statements
REP;

is equivalent to the following labelled if-statement:

L: IF condition THEN
sequence of statements
GOTOL;

END;

All we have done in introducing the while statement is to leave the burden of organising the
label control to the compiler (it may be able to do this more efficiently). We have also added to
the clarity, and explicitly indicated the iterative nature of the situation.

96

Section 18 examples

Rewrite the program to order the elements of an array using while-statements.

It is known that the equation f(x)=0 has just one root in the range x=a to x=b. This is
characterised by the fact that f(a) and f(b) have different signs. One method of finding the
root is by ““repeated bisection’’; at each iteration the range is reduced to a half of its
previous value but such that the function values at the end points have different signs. As
soon as the range is less than the desired accuracy, either endpoint (or the midpoint of the
range) is an approximation to the root required.

Write a program to do this for some arbitrary function (which you need not define) using
while-statements.

A procedure PROC SCAN () REAL reads a value from an instrument. PROC DELAY
(INT N) delays for a time interval of N centi-seconds. Write a loop which reads the
instrument at suitable intervals until switch-on transients have decayed to some small
percentage level.

97

19. Loops lI: For and to statements

A more complex structure in RTL/2 provides the form of iterative scheme in which the number
of times the loop is performed is important. A for-statement signifies that a series of values is
given in succession to a variable (of mode integer) and that for each value a sequence of
statements is to be performed. As before this is a shorthand, and in many situations where up to
now we have used if-statements and goto-statements, we would normally write a for-statement.
The following example recodes the initialisation of the tables in the iterpolation example
(section 14, number 4) using a for-statement, and will be used to indicate its structure and rules.

FOR I:=1 BY 1 T0 100 DO

REAL XVAL:=I*0,1;
X(I);=xXVALS
YCI)e=F(XVAL):

REP:

In a similar way to the while-statement, three keywords delimit the statement; it is introduced by
FOR and terminated by REP (FOR, REP form another matching pair); the keyword DO
separates the heading of the statement from its body. This body starts with the initialised
declaration of a real-variable XVAL; the main body of a for-statement is a blockbody and thus
consists of declarations followed by a sequence of statements; of course, a blockbody doesn’t
have to contain declarations — we may have a null set of declarations. The heading specifies the
sequence of values to be given to the control/ variable; in this case the variable is named | and

will take the values 1, 2, 3, ..., 99, 100. The syntax of the heading is:

1. The keyword FOR introducing the statement.

2. An assignment to an integer control variable; the right hand side is any integer expression
and is the /nitial value for the loop. The nature of the control variable will be discussed in
more detail below.

3. The keyword BY introducing a step value; this value is specified by an arbitrary integer
expression, which may be positive or negative.

The keyword TO introducing the final value; this again is specified by an integer expression.
The keyword DO terminates the heading.

If the initial value is i, the step s, and the final value f, then the sequence of values taken by the
control variable is:

i, it+s, i+2s, i+3s,... while i+ns<f (s>0)
i+ns=f (s<0)

Clearly the terminating condition depends on whether the step value is positive or negative. The
three integer expressions in the heading are evaluated once upon entry to the loop, and we can
now present a flowchart of the action of the for-statement.

L evaluate step l

1
[evaluate final4]

A

evaluate initial
and assign to

control variable
le

tontrol <final
(step >0)
control = final

Declarations and S | increment control
Initialisations tafenents variable by step

\. /
Vv

blockbody

Note the order of evaluation: step, final, initial. This is important if any of the integer
expressions contain procedure calls which have side effects or manipulate data brick
variables affecting the remaining expressions. It needs to be emphasised that, although the
values are dynamic (i.e. expressions calculated at run-time) they are only evaluated once
on entry to the loop.

The sign of the step will affect the nature of the termination test to be performed; if it is
positive we check that the current value of the control variable does not exceed the final
value; if it is negative we check that the control variable is not less than the final value.
The action if the step is zero is not defined — the program may well loop infinitely.

Note the inclusive nature of the loop: we do not actually have to hit the final value; as soon
as the control variable passes it, the loop is terminated. On termination, of course, the next
statement is the one immediately following REP. Since the control variable is integral, there
are no cumulative error problems should we wish the final value to be taken.

The control variable is declared by its presence after FOR and, of course is always initialised.
It is deemed to be declared of mode integer in the blockbody of the loop. This means that
on exit from the loop, (either by normal completion or by explicitly jumping out), the
control variable is inaccessible since it is out of scope.

FOR I:=1 BY 2 T0O 20 DO

IF A=B THEN GOTO L2 END3

REP3S
[EXITVALUE:=1; % ITLLEGAL; I OUT OF SCOPE %

We must write:

FOR I;=1 BY 2 TO 20 DO

IF A=B THEN EXITVALUE:=1; GOTO L; END;

REP;
EXITVALUE:=21} % NOTE TERMINATION VALUE OF 1 %

L3

The control variable has one other property; it is read-only. This means that an assignment
cannot be made to it, neither directly nor by assigning its name to a reference variable. The
programmer cannot therefore corrupt the loop control nor play funny games with it!
(Naturally, there is assignment to the control variable in the ‘increment-by-step’ stage, but
this is out of the control of the programmer).

As the body of a for-statement is a blockbody, we cannot jump into it; entry must be
through its heading. Thus the following is illegal.

FOR I:=A BY B TO C DO

REP:
GOTQ M;
% ILLEGALs M OUT OF SCCOPE %

Yowever, as usual, we can jump out of the block.
99

6. Note that, as with the while-statement, the loop may be performed zero times. The loop
test is at the head of the loop, and if the condition is false on first entry, then the loop
sequence will not be obeyed; the next instruction will be the one following REP.

We now present some examples (some of them familiar) illustrating the use of the
for-statement.

%k 1 *%
PROC TRACE (REF ARRAY (,) INT Q) INT:
% RETURNS SUM OF THE DIAGONAL ELEMENTS OF Q@ ASSUMED NON=NULL AND %
% SQUARE MATRIX Z%
INT SUM3=0;

FOR I:=1 BY 1 TO LENGTH Q@ DO

SUMs=SUM + Q(C(I,1);

REP;

RETURN(SUM) ;
ENDPROC?

Tk 2 *%
PROC ORDER (REF ARRAY REAL A):
% PUTS ARRAY INTO ASCENDING NUMERICAL ORDER %
% NOTE THAT FOR A NULL ARRAY THE ACTION IS NULL %
FOR 1:=1 BY 1 TO LENGTH A « 1 DG
REF REAL MIN:=A(1);
FOR Js:=]+1 BY 1 TO LENGTH A DO
% NOTE THAT THE INNER LOOP'S INITIAL VALUE IS A FUNCTION OF %
% THE OUTER LOOP VARTABLE AS IN OTHER CONSTRUCTIONS %
IF A(J)SMIN THEN MIN:=A(J); END:
REP;
BLOCK
REAL TEMP:sA(I);
ACL) e=MINg
VAL MIN:=TEMP;
ENDBLOCK:
REP;
ENDPROCS

100

ok 3 *%

LET PRIME=1;

LET NONPRIME=(;
LET NCOFELS=100;

DATA NUMBERS:
ARRAY (NOCFELS) INT P:=(PRIME(NQQOFELS)):
ENDDATA;

PROC SIEVE ()3
% FINDS PRIME NUMBERS UP TO NOOFELS; P(I)=PRIME IF I IS A PRIME %
% NUMBER, METHOD IS THE SIEVE OF ERATOSTHENES %
% 1 IS ASSUMED PRIME; SO IS 2 %
FOR 1:=¢ BY 1 TO NOOFELS DO
IF P(I)=PRIME THEN
% MARK ALL MULTIPLES OF I AS NON=PRIME %
FOR J:=1 BY I TC NOOFELS DO
% NOTE DYNAMIC STEP %
P(J):=NONPRIME;
REP;
END;:
REP;
ENDPROCS
% THIS IS A VERY CRUDE METHOD AND IS SLOW FOR LARGE VALUES QF NOOFELS %

e 4 *%
% ILLUSTRATES NEGATIVE STEP %

FOR COUNT:=10 BY -1 TQ 0 DO

WRITEINTEGER(CQUNT); % QUTPUT NUMBER %
IF COUNTHO THEN
PELAY(100) % WAIT FOR 1 SECOND %
END:
REP;

BLASTOFF();

In many examples the step value will be 1; as an additional shorthand, the ‘BY step’ part of the
heading may optionally be omitted; if it is omitted, a step value of +1 will be used by default.
Note that if the initial value is greater than the final value and the BY part is omitted, a default
value of —1 will not be assumed; +1 is assumed and the loop will be obeyed zero times.

For instance, a very crude method of calculating the nth power of a real would be:

PROC POWER (REAL A, INT N) REAL:
REAL POW:=1,.0:

FOR l:=1 T0 ABS N DO ¥ NOTE LACK OF BY ELEMENT %
POW:=POW*A;
REP:
RETURNCIF N<OQ THEN 1.,0/PQW ELSE POW END)3
ENDPROC?S

101

Another situation which occurs is that in which a loop is to be performed a fixed number of
times and in which no control variable is required.

A further shorthand form of the loop is provided for this case; it has the syntactic form

TO integer expression DO
blockbody
REP;

It is equivalent to a standard for-statement with initial and step values of 1, and final value the
given expression. Note that it still defines a new block.

Hence we can write

PROC POWER (REAL A, INT N) REAL:
REAL POW:=1,0;

TO ABS N DO POW:;=POW®A; REP;

RETURN(CIF N<O THEN 1,0/POW ELSE POW END):
ENDPROC

This form can often be compiled more efficiently; in particular the compiler can take advantage
of any loop instructions in the computer’s instruction set. Whenever the control variable is not
required explicitly in a loop, a simple TO construction can always be used, the required number
of iterations being given by

(FINAL—INITIAL):/STEP + 1

102

Section 19 examples

Rewrite the matrix product example using for-statements.

2. Rewrite the example calculating the mean and standard deviation of a set of values using
for-statements.

3. Write.a procedure to return the mean of a set of values and replace each element of the set
by its deviation from the mean.

Rewrite the smoothing example (section 17 number 2) using for-statements.

A look-up table (similar to the function tables for Y in section 14 number 4) is provided
by means of two arrays, one containing integer index values, the second the corresponding
real value of some parameter. (Thus given an index q, if integerarray (i}=q then realarray(i)
is the required value). Write a procedure to derive the value of the real parameter from a
given integer index.

6. Two arrays INPUT and OUTPUT are in a data brick. A tape containing N + 1 integers where
N is the value of the first integer on the tape can be read sequentially by calls of the
procedure PROC IREAD() INT.

Each integer, in the range 1—5 specifies one of the following actions:
1: Read in a new array
2: Print out the array OUTPUT

3: Replace the values in OUTPUT by their deviations from the mean of their values
(use example 3).

4: Scale the input array into the output array, the conversion being from Fahrenheit to
Centigrade.

5: Smooth the contents of the input array (use example 4).

(The procedures PROC ARRAYIN (REF ARRAY REAL Q) and PROC ARRAYOUT
(REF ARRAY REAL Q) perform the necessary input/output).

Write a procedure to read the tape and perform the required actions.

103

20. Transfer of control: switch statement

The last example of section 19 used an integer read from a tape to select a particular processing
strategy. This is another fairly common requirement in programming, to deal with situations
where there are several different paths or strategies at a given point, one of which must be chosen
on the basis of some parameter. One way of doing this was illustrated in the solution: a complex
if-statement simply churned through all the possible values until it found a match:

NEW INPUT
ARRAY

OUTPUT ARRAY

REPLACE BY
DEVIATIONS

SCALE TO°C

If the number of possibilities becomes large, the number of tests involved is also large, and this
method becomes inefficient both in terms of the space occupied by the instructions, and the
time taken to execute them. The fundamental property of such a situation is the need to transfer
control to the correct set of instructions given a simple index.

RTL/2 provides such a construction in the form of a switch-statement. It is a transfer-of-control
statement which causes the flow of control to pass to one of a set of labels, the decision being
based on an integer index value. The syntax consists of the keyword SWITCH followed by an
integer expression (as usual as complex as you like provided it delivers an integer value) which is
used as the index; the keyword OF separates this from a list of labels (separated by commas)
which are the ““destinations’” and may be regarded as being numbered from 1 to n where n is the
total number of labels in the list.

Examples:
SWITCH I OF LMoL, M,EXIT,M, M, L1}

SWITCH MARK OF INAR,OUTAR,DEV,SCALE,SM;
104

There is no reason why a label should not appear more than once in the list; the restriction on
the labels in the list is the usual one for all names — each label must be in scope at the point of
the statement.

The required action of the statement is obviously to branch to the i th label of the list where i is
the value of the integer expression. This is all very well provided i belongs to the set 1, 2, 3, ...,
n-1, n. We must define what will happen when the integer expression yields a value out of this
range. In such a case (i<O or i>n) there is no action, in the sense that the next statement to be
performed is the one following the switch-statement; that is control ‘drops through’ the switch
and there is no transfer. Thus, unlike the goto-statement, we can arrive at an unlabelled
statement immediately following the switch, and unlike arrays an out-of-range index is valid. In
our example, when we had exhausted the tests MARK=1, MARK=2, we signified an error
condition; this condition will now follow the switch. Our example now becomes:

LET LA=100;s Z LENGTH OF MESSAGE ARRAYS X%

DATA MESSAGES;
ARRAY (LA) REAL INPUT,QUTPUT:
ENDDATA:

PROC PROCESSTAPE ()
% READ NUMBER QF INTEGERS ON TAPE FOR LOOP CONTROL %
TO IREAD() DQ
INT MARK:;=]READ();
SWITCH MARK OF INAR,QOUTAR,DEV,SCALE,SM;
% SUITABLE ACTION FOR UNDEFINED INTEGER VALUE %

INAR: ARRAYINCINPUT) ; GOTO NEXT:
OUTAR: ARRAYOUT(OUTPUT); GOTO NEXT:
DEV; MEAN(QUTPUT) GOTO NEXT?

SCALE: FOR 1:=1 TC LA DO
QUTPUT(I) s=(INPUT(I) = 32,0) / 1,83

REP3;
GOTO NEXT
SM: SMOOTHC(INPUT) :
NEXT:
REP:;
ENDPROC:

To prevent the various actions from running into one another we have to program the
continuation at a common point explicitly. This is done by appending a goto-statement at the
end of each sequence and labelling a common point; in this case the common point is the REP
causing the next iteration of the loop to be performed. Note that the last sequence, at SM, does
not need a GOTO NEXT since control will proceed to that point automatically.

If we have no need of the value of MARK in the various sequences, we could simply write

TO IREAD() DO
SWITCH IREAD() OF INAR,OUTAR,ss.ETC

IREAD delivers an integer which will be used as index. In the case when this value is out of
range, we will drop into the error sequence. Note, however, that we cannot regard the action of

105

the switch-statement as null; the call of IREAD has read the next integer; this is a typical
example of the side effect of a procedure call.

Diagrammatically we can present the statement as:

Evai JI 1 ?
valuate integer
expression k 2 ?
" 3 —
4
|
:
gotokth | —7 :
label |
)
1
n2 —
n-1 pb—_>
—_—

The advantage of the switch-statement clearly lies in the reduction of the number of tests
required and, perhaps, a slight increase in clarity for the reader. The disadvantages are the need to
program explicitly continuation to a common point from the various possibilities (sometimes, of
course, this is not required anyway) and the fact that valid indices must form a consecutive

range of values. This latter problem can be solved by using a suitable expression to return a series
of consecutive integers or by a look-up table; any ‘holes’ in a sequence can be filled by labelling
the default path and using that label.

SWITCH I OF L1,L2,FATL L4, L5,FAIL,L7,L8;
% 1=3,6 SHOULD NOT ARISE %

FAIL: ERRORACTIONC();
% FAIL IS REACHED FOR 1<=0,1>8,1=3,6 %

SWITCH N+3 OF P1,P2,P3,P4,P5;
% VALID FOR N IN THE RANGE =2 TO +2 %

This is the tenth kind of RTL/2 statement (including the dummy one) that we have described,
and in fact we have now covered all but one of the RTL/2 statement types (the last one occurs
in section 31). It seems appropriate to point out that the range of statements can give
considerable flexibility in the method of coding a particular program, some ways being more
efficient than others; which is more efficient in a given case will depend on the situation and
the criteria for ““efficient’’. We re-iterate the comment made in the introduction that our
examples (and answers) usually show only one of the possible methods that could be used for a
particular solution.

Section 20 examples

1. Write a procedure which, given two real parameters will return the sum, product, difference,
quotient, average or the greater or lesser of them depending on the value of a third (integer)
parameter.

106

21. Worked example

PROBLEM: A man borrows £200 to be paid back over 2 years by monthly instalments. Interest
is charged on the remaining debt at R% per annum, compounded monthly. Calculate R for the
following monthly instalments:
£8.50, £8.70, £8.90, £9.10, £9.30, £9.50.
Write the program in such a way that the following problems can also be solved:
i) Calculate the value after 5 years of an initial investment of £100 with monthly
deposits of £10 at an interest rate of 5% per annum compounded monthly.
ii) Calculate the monthly repayments required to repay a mortgage of £4000 over 25
years, the rate of interest being 8%2% per annum charged once a year.
iii) Calculate the initial investment required in a deposit account if £10 is to be drawn
monthly for 20 years (when the account is exhausted) interest being at 6% per annum
compounded monthly.

DISCUSSION: This problem is basically concerned with compound interest. If a principal value
(P) is invested at time zero for a number of years (N) with additional deposits (Y) made at the
same rate (T times per year) as interest is compounded (the interest rate being R% per annum)
then the five quantities P, N, Y, T, R and the final value F are related by the formula:

F=(P+Y.100.T) (1+ R NT _v.100.T.
R 100T R

The case of repayment of a loan is covered by the same formula; P in this case is the amount
borrowed, Y the periodic repayment (negative to indicate this) and F will be zero.

All the parts of the problem require us to find one of the quantities given the other five. A
cursory glance shows that the formula will look much simpler if we put a new variable r equal to
R/100T):

F=(P+Y/r) (1+r)NT —Y/r
This formula gives us F in terms of the other five; rearranging, we can obtain expressions for P,
Y in terms of the remaining five variables.

P=(F+Y/r) (1+r)NT —Y/r

Y=r{F—P1+nNT}/{ (1+nNT -1}

When it comes to calculating the value of r (and hence R), we cannot make r the subject of the
formula, nor is there a simple algebraic expression for a solution. However, we know that a
practical solution (if one exists) will satisfy 0<R<<100 and we can approximate a solution by
using the method of repeated bisection of [0, 100] to yield a range (as small as we please) that
contains the required solution. Any range containing a solution will have the property that the
signs of the expression

P+Y/r) (1+)NT —vY/r—F

evaluated at the end points of the range will be different. |f the signs are not different

for the initial range, we know that our problem has no solution.

Mathematically, we now know how to solve our problem. Next we must plan our program. To
make our solution flexible and cope with all the problems presented, we choose to have a
procedure to calculate the missing piece of information, signalling which item is required by an
integer parameter. We could pass the other variables as parameters and return the unknown
quantity as a result; instead we choose to have F, P, Y, R, N, and T as global variables which we
initialise before a call of our procedure, and use our procedure to “’fill in’’ the missing value.
Using this approach makes it simpler to communicate values to other procedures.

Our procedure COMPOUND will also test that the various quantities supplied are sensible; the
unknown quantity is given a default value of 1.0 so that it will pass these tests — this means that
we can make all the checks in one place before we decide {in COMPOUND) which is the
unknown. From practical considerations, the sensible ranges of the variables are as follows; we
can also decide on their mode at this stage:

F Can be positive or negative — no constraints REAL
P P=0 REAL
Y Again positive or negative — no constraints REAL
R O<R<100 (not allowing end points is arbitrary) REAL

107

N N>0 We choose a whole number of years INTEGER
T IST<365 INTEGER

We can now draw a flowchart for COMPOUND: in doing so we see that we will need procedures
to calculate a power of a real number, and that it will be efficient (in the bisection calculation)
to provide a procedure to return the sign of our expression — this is where the communication
of the problem’s parameters through data variables is valuable — the values are available without
passing them all as parameters.

ENTER

NO

Constraints

orryatialilas Suitableerror | o ey

satisfied S
Declare and initialise
better working variables
than R, Y
Switch on
parameter
[I | I 1
1 2 3 4 OTHER
L | | I |
Evaluate R Evaluate F Evaluate P Evaluate Y Suitable message
J v ¥ J J
EXIT EXIT EXIT EXIT EXIT

Finally we write the RTL/2, expanding the flowchart and discussion above into a program,
annotated with comments to enable the reader to follow it. Incidentally, as it stands, the program
contains examples of every RTL/2 statement that we have discussed.

% COMPOUND INTEREST PROBLEM %

DATA GLOBALy

REAL P, % PRINCIPAL %
Fo % FINAL VALUE %
Yo % INSTALMENT : NEGATIVE IF REPAYMENT X
R3 % RATE (PER CENT) PER ANNUM %
INT Ny % NUMBER OF YEARS %
T % NUMBER OF TIMES PAID AND COMPOUNDED PER ANNUM %
ENDDATA;

PROC MAIN ()3
% RATES CALCULATED %
P;=200.0; Fi:=0,0; N:=2;3 T:=12:
R:i=1.0: % DEFAULT %
FOR 1:=850 BY 20 10 950 DO
Yiz=]1/100,03
COMPOUND (1)
PRINT(R):
% WE ASSUME SOME OUTPUT FUNCTION PRINT TO SUPPLY THE RESULTS
REP;
108

% PROBLEM 1 TO FIND THE FINAL VALUE OF INVESTMENT %
P:=100.0; Y:=10.,07 R:=5,07 N:=S; T:=12;
% NOT STRICTLY NECESSARY TO RESET T %
Fi=140; % DEFAULT %
COMPOUND(2)
PRINT(F)}

% PROBLEM 2 TO FIND MONTHLY REPAYMENT %
P:=4000.03 F:=0.02 R:=8,50; N:=251 T:=13
Yi=1.07 % DEFAULT %

COMPOQUND(4) 2

% SETS ANNUAL REPAYMENT AS A NEGATIVE QUANTITY %
PRINT(=Y/12,0):

%X PROBLEM 3 TO FIND INITIAL DEPOSIT %
Fi=0s,07 R3=6,07 VY:=w10,05 Ni=20; T:=212s
Pi=1.0: % DEFAULT %
COMPOUND(3)
PRINT(P)

ENCPROC:

PROC POWER (REAL X, INT M) REALJ
% POSITIVE POWER ONLY : RETURNS X TO THE MTH %
RETURN (IF M=0Q THEN 1,0 ELSEIF M=1 THEN X
ELSE POWER(X*X,M:/2)*POWER(X,M MOD 2) END);
ENDPROC?

PROC SIGN (REAL R) INT:
% RETURNS =1,0,+1 ACCORDING TO SIGN OF THE EXPRESSION %
REAL NEWR:=R/T%(0,01,
NEWY:=Y/NEWR,
Qi=POWER(NEWR*1,0,N*T)*(P+NEWY) = F = NEWY;
RETURN(IF Q<0,0 THEN =1 ELSEIF @>0,0 THEN +1 ELSE O END))
ENDPROQC?

PROC COMPOUND (INT MARK):
% MARK=1 FINDS RATE %
% MARK=2 FINDS FINAL VALUE %
% MARK=3 FINDS PRINCIPAL %
% MARK=4 FINDS MONTHLY INSTALMENT %

% CHECK RANGES OF PARAMETERS; DEFAULT OF 1,0 ALWAYS WORKS X%
% SEE SECTION 26 FOR A NEATER METHOD X%

IF T<1 THEN GOTO FAILs ENDy

IF T>365 THEN GOTO FAIL: END;

IF P<0+0 THEN GOTO FAILs ENDy

IF R<=0,0 THEN GOTO FAILs END3s

IF R>=100,0 THEN

FAIL: % SUITABLE ERROR MESSAGE %
% UNKNOWN STILL CONTAINS DEFAULT VALUE 7%
RETURNJ
END3J

109

BLOCK
% NOW SAFELY CALCULATE BETTER VARIABLES %

REAL NEWR:=R/T%0,01, % PERIODIC FRACTIONAL RATE %
NEWY:=Y/NEWR,
FACT:=POWER(NEWR+1,0,N*T) % RATE FACTOR %

SWITCH MARK OF RATE,FINAL,PRIN,MONTH?
% OUTPUT SUITABLE MESSAGE FOR ILLEGAL PARAMETER IN CALL %

RETURN;
RATE:
BLOCK
REAL BOT:=0e1,TOP:599,9; % INITIAL SEARCH INTERVAL %
INT ST:=SIGN(99.9)7; % INITIAL SIGN FOR TOP OF RANGE %

IF ST=SIGN(0,1) THEN
%Z NO SOLUTION IN RANGE C,1 TO 99.9 : SUITABLE MESSAGE %
RETURN}
END;:
WHILE TOP=BOT>C,01 DO
BLOCK
REAL MID:=s(TOP+BOT)*0,5; % BISECT RANGE %
INT SM:=SIGN(MID); % SIGN OF MID=POINT %
IF SM=(0 THEN
% EXACT SCLUTION %
Ri=MID;
RETURN;
END:
% DECIDE NEW RANGE %
IF SMEST THEN
% SOLUTION IN TOP HALF CF RANGE %
BOTs=MID;
ELSE
% SOLUTION IN BOTTOM HALF QF RANGE %
TOPs=MID;
END:
ENDBLOCK;
REP:
Re=(TOP+BOT)*0,5; % TOP AND BOT DIFFER BY LESS THAN 0,01 %
% CHOOSE MID=POINT AS SOLUTION %
RETURN;
ENDBLOCK:

FINAL:
F:=(P+NEWY)*FACT = NEWY3
RETURNJ

PRIN:
Pi=(F+NEWY)/FACT = NEWYy
RETURN?

MONTH
Y:=(F=P*FACT)/(FACT=1,0)*NEWR}

ENDBLOCK:
ENDPROC)

110

22. Binary

Up to this point, all numbers in this manual have been written in decimal notation, and in
describing the action of operators we have been working implicitly in decimal. Computers store
numbers, not in decimal notation, but as binary patterns. By means of operators to be

described later, such binary representations can be used for the compact storage and manipulation
of data.

Binary numbers use just two digits, 0 and 1; the use of binary digits is more natural within a
computer since the digits 0, 1 can be used to represent a two state electronic component: i.e.
either “off’ or ‘on’. The binary pattern representing a number is simply a shorthand for a
decomposition of the number into a sum of powers of 2; thus

1100=1x23+1x22+0x21+0x2°
(= 12 in decimal)

1011=1x21+0x209+1x21+1x22
(= 2.75 in decimal)

The binary point fixes the position of the digit representing the multiple of 20 (= 1).

We can devise rules for converting integers and fractions from one number system to the other:

1. To convert a decimal integer to binary we divide repeatedly by 2; at each division, we write
down the remainder, starting from the right; the sequence generated is the binary number.

e.g. 279

Divide by 2 gives 139 remainder 1
o " 69 K 1
o " 34 " 1
oo " 17 " 0
o " 8 " 1
oo " 4 g 0
o " 2 " 0
oo "’ 1 ” 0
o " 0 " 1

And 100010111 is the required binary pattern.

2. To convert a decimal fraction to binary we use an iterative technique:
a) multiply the fraction by 2.
b) the digit to the left of the decimal point is the next binary digit in the binary fraction.
c) the fraction part of the product is the new fraction.
d) return to a).

The process is terminated as soon as sufficient digits have been generated; in general, the
fraction will not be exact in binary.

e.g. 0.72
Multiply by 2 1.44 giving digit 1
Multiply fraction by 2 0.88 “ " 0
" 1.76 " " 1
i 1562 " " 1
” 1.04 ~ " 1
"’ 0.08 ” " 0
"’ 0.16 " " 0
“ 032 *” " 0
" 0.64 ” o 0
" 1.28 " " 1

To ten binary places the fraction is .1011100001.

3. To convert a binary integer to decimal start from the left-most digit; multip_ly_ it by_ two and
add in the next digit; continue multiplying by two and adding in the next digit until the

11

digits are exhausted.

e.g..11010101
1 multiply by 2 gives 2 + next digit 1 gives 3

3 6 " 0 " 6
6 » 49 = °f & :fg
Ji— 12 = wgE i ¥l
26 " n 52 " 1 n 53
Bg. 2 © 106 " 0 " 106

106 " " AR T ciieRE 1208

And 213 is the required decimal number.

4. To convert a binary fraction to decimal, we start from the right, divide by 2 and add in the
next digit in a similar way; the last digit added in (the left most one and hence the leading
digit of the fraction) must also be divided.

e.g. .010111011

digit 1 divide by 2 gives 0.5 add digit 1 gives 1.5
1.5 " " 0,78 g 0 " 0.75
0.75 " * 0375 " 1 " 1.375
1.375 i " 0.6875 " 1 " 16875
1.6875 e " 0.84375 i 1 " 1.84375
1.84375 " " 0.921875 " 0 ” 0.921875
0.921875 " " 0.4609375 o 1 " 1.4609375
1.4609375 " " 0.7304875 " 1 " 1.73046875
0.73046875 " " 0.365234375

And 0.365234375 is the required fraction.

In the computer, integer binary patterns may be thought of as being held in precisely the form
used above. Each binary digit is termed a bit which may thus be 0 or 1. Starting from the right
the bits represent the multiples of 20, 21, 22, etc. and the binary point is conceptually at the
right hand end of the word (the collection of bits).

24 23 22 21 20

0 0 1 0 1) (representing 5)

The top bit (or left-most bit) is special; it behaves as a multiple of —2M (where m + 1 is the
number of bits in the word). Hence if our word has 6 bits:

«38 - 24 23 22 21 20

1 0 0 0 0 0 (representing —32)
1 0 1 0 1 1 (representing —32 + 8+ 2 + 1 =-21)
0 1 0 1 0 1 (representing +16 + 4 + 1 = +21)

This method of holding negative and positive numbers is called 2’s complement form. RTL/2
states explicitly that integers will be held in this form.

For our 6 bit word, the smallest integer is clearly

1 0 0 0 0 0 (representing —32+0=—32)

and the largest integer is:

0 1 1 1 1 1 (representing —32x0+16+8+4+2+1=31)

Thus the range of integers is —32 to +31.
112

In general, if our computer has (m + 1) bits in its word, the integer range is —2™ to 2M—1. Now
convince yourself that whatever the value of m, the integer —1 will always be held as a pattern
consisting of ones in every bit.

We can now understand the choice of our ranges [—, «), [—0<2, «2) for the discussion of integers
and big integers. The big integer effectively occupies two words and our ranges are [—2M, 2M),
[—22m, 22M)- it might be argued that we now have 2m+2 bits and hence our range should be
[—22m*1 22m+1): however because of the common machine treatment of double length
quantities and their sign bits, we have the more restricted range.

If, in our 6-bit example “machine”” we perform
INT I:=17*5;
we will generate two integer patterns

0 1 0 0 0 1 0 0 0 1 0 1

-—

multiply them together to give a big integer occupying an 11 bit word

0 0 0 0 1 0 1 0 1 0 1

We must then narrow our big integer to an integer for assignment to |. Clearly this is impossible,
as 85 does not belong to the range [—32, 31]. Overflow has occurred: our binary pattern will not
fit into the available space. On addition, similarly we can generate (by performing the addition
theoretically) patterns that will not fit in and the overflow condition arises.

The number of bits in a word (the word/ength) varies from computer to computer: hence the
integer range [—2M, 2M—1] also varies and this explains why the range of integer values is said
to be machine dependent. RTL/2 specifies a minimum of a 16-bit word, and hence a minimum
range of integer values of [—215, 215_1] or [-32768, 32767]. When designing machine-
independent (transportable) programs, and particularly when using logical representations (see
section 27) the wordlength must be borne in mind, in particular (at this stage) the consideration
of overflow.

RTL/2 allows integer constants to be written in binary form — this being of particular use when
binary patterns are required for logical manipulation. This new form of the integer constant
consists of the keyword BIN (for binary) and a ‘number’ formed of binary digits 0, 1. A problem
arises here; BIN is a keyword and must be terminated, neither O nor 1 would terminate it, they
would create names BINO... or BIN1... . Our integer constant is an item (refresh your memory
with section 3 if necessary!) but now we allow layout characters to separate the keyword BIN
from its digit sequence; indeed not only allow but demand that at least one layout character
(space, tab or newline) occurs. After any layout characters the item is terminated as soon as a
non-binary digit is encountered.

g8IY 1011
BIN 10

PIN 11011010

We can think of such integer constants either as numbers represented in their binary form, or as
simple patterns.

A list of binary digits can become quite long, and is difficult to read and somewhat error prone.

If we take a binary integer, and, starting from the right, partition the bits into groups of three
and replace each group by its decimal equivalent we obtain an octal representation.

Thus 1011101101011 partitioned is 1/011/101/101/011 is octal 13553
11011110 partitioned is 11/011/110 is octal 336

The maximum value of a group is 111 in binary, i.e.7.

Thus the octal representation of a number is simply its representation using a base of 8: it bears
a direct relationship to the binary form since 8 is an integral power of 2.

113

Similarly we can partition the bits into groups of four. In this case the maximum value of the
groups is 1111 in binary which is 15 in decimal; we now represent the decimal equivalents

10, 11, 12, 13, 14, 15 by the letters A, B, C, D, E, F and the resulting representation (expressing
the number to a base of 16) is called a hexadecimal representation.

Thus 1011101101011 partitioned is 1/0111/0110/1011 is hexadecimal 1768
11011110 partitioned is 1101/1110 is hexadecimal DE.

The conversions from octal or hexadecimal to decimal follow from our earlier methods by
replacing 2 by 8 or 16, and conversion to binary is achieved simply by rewriting each group in
binary.
hexadecimal 71B is binary 0111/0001/1101
is decimal 7 x 162+ 1 x 161 + 11 x 160=1819
octal 5034 is binary 101/000/011/100
is decimal 5x 83 + 0 x 82 + 3 x 81 +4 x 80 = 2588

Octal and hexadecimal forms of integer constants are allowed in RTL/2; their syntax is similar
to the binary form with the keywords OCT and HEX being used. The allowed ‘digits’ in the
number are 0, 1, ...,7 and 0, 1, ..., 9, A, B, ..., F respectively.

Examples:

HEX 718

GCT 5034

HEX 1768

neT 135532

We cannot say how real numbers will be held in a particular implementation, except that some
binary form will probably be used. We do not stipulate a particular form or minimum range in
RTL/2 and hence no other forms for the real constant are available. It is worth pointing out at
this stage that a consideration of the number of binary digits used to store information about a
real is needed to decide the degree of accuracy to which a real can be held. The reader is referred
to the documents on individual implementations for this information. In general, a real number
will occupy more space than an integer.

Fractions and conversions between decimal and binary have been mentioned in this section. The
manipulation of fractions in RTL/2 is covered in section 23.

Section 22 examples

1. Rewrite the following decimal integer constants in binary, octal and hexadecimal forms.
6
27
84
317
2120
32677

114

23. Fractions

In section 22 we discussed how an integer is held within the computer as a binary pattern with
a conceptual binary point at the right hand end of the word; we can picture this as a box:

—om om-1 ..2120

sign

The range is a function of the word-length of the-machine; if the word has m+1 bits then the
integer range is —2M<{integer<2™M and the accuracy that can be obtained is clearly integral, that
is any integer is a multiple of 1. A big integer is a similar form, having a larger range:

—22m 22m-1 ..2120

sign

range: —22m < big integer < 22m
accuracy: 1
We also saw in the last section how conversions between decimal and binary fractions can be

achieved. RTL/2 possesses an arithmetic mode to cope with fractions in a fixed point way. This
mode is the subject of this section.

In elementary terms, a fraction value is something less than one in magnitude. In a computer
a fraction consists of a binary pattern with a conceptual binary point at the left hand end of the
word; in this case the sign bit now represents multiples of —2© that is of —1.

~50 o1 32 2'm

sign

If we have m + 1 bits in our word again, the range that can be held is clearly —1< fraction <1 and
the accuracy is now in terms of multiples of 2-M (that is 1/2™). Any implementation of RTL/2
will use the same word-length for fractions as for integers. The range is independent of m

though, and this is one of the advantages of fractions; if we change machines, there is no change
of range (as there may be for integers and reals); the penalty may be a change of accuracy. Many
machines do not possess hardware for performing floating-point arithmetic and such operations
can be lengthy (in space and time) and inefficient. Fractions provide a means of writing fixed
point arithmetic in a machine independent way.

Fractions are normally fractions of something. For instance we may have an instrument which reads
a voltage between 0 and 24 volts. For a reading of 18 volts, we can either regard this in absolute
terms or as a reading 3/4 of full-scale. With the second viewpoint, we can record readings as
fractions, and keep the full-scale value elsewhere as a scaling factor. In working with fractions
the aim will be to maintain scale factors at appropriate points in order that the fraction range
—1to 1 is maintained and to ensure no loss of accuracy — this will entail keeping as much
information as possible in the most significant bits of the word. Note that any tuning performed
on a program to ensure that scaling achieves these objectives is stable in the sense that the same
tuning is applicable to all machines because of the independence of the range. Before exploring
this further, we will investigate the syntax of fractions in RTL/2.

Fraction is a mode (like integer or real) in which the objects manipulated are fraction values in
the range [—1, 1):

1. The form of a fraction constant is a real constant together with a scaling factor. This factor
consists of the letter B followed by a (possibly signed) integer and specifies a binary scale
factor by which the value is to be multiplied (compare the decimal exponent in the real
constant). Thus the number 10.2B—4 will be held as the fraction 10.2 x 24 or 10.2/16.
Note that as usual no layout characters may occur in the sequence (these would terminate
the item). For a fraction constant to be valid, the value obtained from the combination of
the real constant and binary scale must lie in the range [—1, 1).

115

116

% EXAMPLES OF VALID FRACTION CONSTANTS : %
0.282 0«7E0B+0 13E28~11

THE FOLLOWING EXAMPLES ARE INVALID : %
0e4 B=¢ % CONTAINS LAYQUT CHARACTER %
7B=4 % INITIAL CONSTANT NOT A REAL %
4+s93E=1B2 % VALUE OUT OF RANGE %

Variables, reference variables and arrays of variables to contain fraction values or the names
of fraction variables may be declared as for the integer and real modes. The mode fraction
is specified by the keyword FRAC.

Example:

DATA GLOBAL;
FRAC F:=F1:=20,280, G, H;
REF FRAC RF:=F1;
ARRAY (7) FRAC AF:=(0,1B0,0,2BC,0.,0B0(5));
REF ARRAY FRAC RAF:=AF3;
ENDDATA)

PRCC ACTION (REF FRAC X) FRAC:;
FRAC LF;=0,080:

The rules for declarations, initialisations, use as parameters and as result mode, use in
conditional expressions, dereferencing and the use of VAL all follow in a similar way to
those for integer and real variables.

The usual monadic operators are available for fractions:

OPERATOR OPERAND RESULT INTERPRETATION
+ Fraction Fraction Identity: no action
— Fraction Fraction Negate the operand
ABS Fraction Fraction Negate the operand if it is negative,

otherwise no change.

When we come to consider dyadic operators between fractions, multiplication and division
again present problems. Two numbers in the range [—1, 1) when multiplied together will
give another fraction in the range (except for the case of —1 times —1); however if we
multiply two values of order 1/2M together, the result will be of order 1/22M and we need
twice as many bits to retain accuracy in the calculation.

We again have an intermediate mode to cater for this situation and to mirror the double-
length operations available on most machines. In this case our double length quantity will
again have 2m + 2 bits of which 2m will be available to hold the value, but now the binary
point is at the left hand end (note that the unused bit may occur at either end of the word
or indeed in the middle, but this will not concern the user):

—20 21 22 ..2-2m

sign

Range: [—1,1)
Accuracy: multiples of 1/22m
Because the accuracy is greater this mode is termed a fine fraction.

Division, again regarded as the reverse of multiplication, has a fine fraction as its first
operand, a normal fraction as its second and, naturally, produces a result of mode fraction.
The compound separator / / is used as the symbol for fraction division.

We can now draw up our table showing the dyadic operators for fractions:

OPERATOR PRECEDENCE OPERAND 1 OPERAND 2 RESULT INTERPRETATION
+ 1 Fraction Fraction Fraction Form the sum of the
operands
— 1 Fraction Fraction Fraction Subtract the second
operand from the first
= 5 Fraction Fraction Fine Fraction Form the product of the
operands
/1 5 Fine Fraction Fraction Fraction Quotient on dividing
first operand by second
Notes: i) Asusual, overflow is possible in all four cases.
For example: 0.5B0 + 0.5BO
—0.6B0—-0.6B0O
—1.0B0 * 1.0BO

0.1B0*0.1B0// 0.001B0O

ii) Division is like integer division in terms of its accuracy and the possible

existence of a remainder.

5. The comparators = #, <, >, <=, >= may also be used to form conditions involving

fractions in the normal way.

6. The rules governing mode transfers are the same as those we encountered when considering

the combination of integers and reals:

i) Mode transfers between normal and intermediate modes are automatic.

ii) Mode transfers in which there is no loss of information are performed automatically.

Thus the diagram for automatic transfers is:

REAL

N\

FRACTION «——> FINE FRACTION

iii) Mode transfers in which information is lost must be programmed explicitly.

In the case of a transfer from real to fraction, the keyword FRAC is used as a monadic operator.
As in the case of INT, this is also defined for completeness for a fraction operand.

OPERATOR OPERAND RESULT INTERPRETATION
FRAC Fraction Fraction Identity: no action
Real Fraction Rounds real to fraction

This operation can clearly give rise to an overflow condition. Rounding is to the nearest fraction
value; if the original real value lies midway between two fraction values, then the algebraically

greater fraction is the result.

117

Hence:

FRAC F3

REAL R:

R:=0.72 % FAMILIAR X%

R:=0,1B0; % RIGHT HAND SIDE DELIVERS A FRACTION %
% AUTOMATICALLY WIDENED TO 0.1 %

Ri=0,4B0#0,1B0; % RIGHT HAND SIDE DELIVERS A FINE FRACTION %
% AUTOMATICALLY WIDENED TO 0.04 ¥
% NCTE DIRECTs NO INTERMEDIATE NARROWING ¥%
% TO FRACTION OCCURS %

Fe=0.1B0; FAMILIAR %

F:=0.4B0%0,180; RIGHT HAND SIDE DELIVERS FINE FRACTION %

NARROWED AUTOMATICALLY TO NORMAL FORM %
RIGHT HAND SIDE INITIALLY DELIVERS A REAL %
THIS IS EXPLICITLY NARROWED %

F:=FRAC 0477

M e 3 e

The combination of integer and fraction values will be discussed in a later section.

As in the integer/real case, the same rules apply when considering the evaluation of an expression
involving both reals and fractions. The presentation of ordered operator tables is postponed
until section 25.

Examples:

0.6B0%0,1B0//042890 % PERFORMED DIRECTLY %
0.06B0//0.,380 % WIDEN TO FINE FRACTION 7%
0.6B0/0,38B0 % WIDEN TO REALS %

0.6/(0.3B0%0,28B0)
0.6B0#%0,1B0//042B0%0,4B0

WIDEN FINE FRACTION TO REAL %
FINE FRACTION NARROWED TO FRACTION ¥

a2 e

The problem of using an appropriate binary scale, and the use of scaling to retain accuracy will
be discussed in subsequent sections. The following example uses fractions in a simple way, where
the scaling involved is of a simple O to full-scale reading form:

In an exothermic process, temperatures are read as positive fractions representing actual values
between 0 and 80°C (full-scale reading). The temperature (EXITTEMP) of the effluent fluid is
kept near a desired value (TARGET) by setting the temperature of the incoming fluid according
to a feed-forward control equation of the form:

SETPOINT =A/L2+B/L+C

Where A, B, C are real constants and L is the plant load. In practice the setpoint is also required
as a fraction. To this setpoint is added a trimming term given by a feed-back proportional control
equation:

NEWTRIM = OLDTRIM + K (TARGET — EXITTEMP)
where K is a fraction derived from some expression which caters for the change in residence time
of the fluid with plant load, plant characteristics, frequency of updating etc. The absolute values
of the trim term and the setpoint are to be restricted as follows:

—B50C<TRIM<+ 50C

100C<SETPOINT<70°C

Our procedure calculates the new values of the trim term and setpoint and imposes these
constraints; variables are assumed to be global. The full scale value is presented ina LET
statement, this value being used to scale the setpoint (without trim term) to a fraction.

118

LET TEMPSCALE=80,0;

DATA CONTROL;s
FRAC TARGET,
EXITTEMP, % BOTH AS FRACTIONSs SCALE IS O TO TEMPSCALE %

TRIM,
Ko % PROPORTIONAL CONSTANT %
SETPOINT;

REAL A,B,C, % FEED FORWARD CONSTANTS %
LOAD;

ENDDATA?:

PROC TEMPCONTROL ()3
FRAC SP1
TRIM;=TRIM 4+ K«(TARGET=EXITTEMP);
IF TRIM<=0,0625B0 THEN TRIM:=«0,0625B0; END;
IF TRIM>+0,04258B0 THEN TRIM:;=+0,0625B0s END3s
% APPLY ABSOLUTE LIMITS OF =5 T0O +5 DEG,C %
% IN TERMS OF TRIM THIS 1S =1/16 TO +1/16 OF FULL=SCALE %
SP:;=FRAC(((A/LOAD+B)/LOAD + C) / TEMPSCALE) <+ TRIM;
IF SP<0.125B0 THEN SP:=0,125BC;: END3;
IF SP>0,875B0 THEN SP;=0,087580s END3;
% APPLY ABSOLUTE LIMITS OF 10,0 TO 70,0 ON INPUT SETPOINT X
% IN TERMS OF SP THIS IS 1/8 TO 7/8 OF FULL~SCALE %
SETPOINT;=SP; % UPDATE SETPOINT %
ENDPROC

Section 23 examples

1. Which of the following fraction constants are illegal, and why?

a) 0.2B0O

b) 2B-3

c) 0.7

d) 75E-2BO

e} 27.B-7

f) 0.01E +1B-0
g0 38.7B-5

h) 0.0625B3

i) 2.2B + -2

i) 38.1B—7E—1

2. Write procedures to perform the conversion between absolute values and fraction values
for an instrument reading in terms of the fullscale reading.

119

24. Arithmetic shifts

We are all familiar in elementary arithmetic with moving the decimal point to the right or left to
effect multiplication or division by a power of ten:

34.56

3.456

3456.

We could regard this operation as one in which we keep the position of the point fixed and move
the digits:
34.56
3.456
3456.

Naturally we can perform the same operations with binary numbers, though in this case, the
effect is multiplication or division by a power of two:
110.101
.110101
110101.

This operation is known as shifting and can be performed in RTL/2 by the use of dyadic
operators, the second operand specifying the number of places the first operand is to be shifted.
In a computer, however, there is the problem that the word-length is finite, and therefore we
must define very carefully the actions to be taken. This will involve extensive considerations of
intermediate modes.

A right shift is specified by the keyword SRA (Shift Right Arithmetic); this has the effect of a
division by a power of two (supplied in the second operand). If we shift an integer to the right,
we obtain significant digits (binary digits hence bits) to the right of the point

before:

after:

e

The part to the right is a fraction, whilst the part to the left of the point is an integer; we thus
have, as the result of shifting, a mixed number. We introduce a new intermediate mode to cope
with this; it will have the same range as an integer, but its accuracy is that of a fraction: because
of this increased accuracy it is termed a fine integer.

—2m omi1 - 20 : L 2'm
sign o

range: —2M < fine integer < 2M

accuracy: multiples of 1/2M

If we write
INT 1 :=17;

=| SRA 2;
What is store(inl? Inltlally I will contain 7; a shift right of 2 places is equivalent to a division by
22(=4) yielding the fine integer 1%. This double length quantity cannot be stored in an integer
so we must define the nature of the narrowing operation (performed automatically since we are
dealing with an intermediate mode) that is required. The mode transfer from fine integer to
normal integer is one of rounding, that is to the nearest normal value, the algebraically greater
being taken in the case when the fine value lies midway between two normal values. Thus 2 will
be stored in I.

This shift operation is not defined when the second operand is negative or greater than the
number of bits in the word; what happens in practice will vary from machine to machine and

may be unpredictable.

One of the uses of shifts is to accomplish scaling and the manipulation of double length
quantities. For this reason, we define the action of shifts on intermediate modes also. There is

120

no extension to triple or greater length quantities; the resemblance to actual machines is retained,
and only double-length intermediate modes are involved. If we shift right a big integer (formed
by a multiplication) we obtain a big integer as a result, any bits going beyond the binary point
being irretrievably lost and hence no question of rounding arises; any mode transfer from big
integer to normal integer is the familiar contraction of range (with the possibility of overflow).
Thus (3* 3)SRA 2 gives the result 2. If we shift right a fine integer (formed perhaps by a shift),
we obtain another fine integer as result. The right shift on the normal integer is in fact
performed as a shift on a fine integer, the widening to the fine form being carried out first by

the addition of a zero fractional part. 1:=7 SRA 2 may be pictured then as:

0 0 ..0111 . 7

0 0 .01 . 000...0 WIDEN TO FINE FORM

0 0 w01 . 110...0 SHIFT RIGHT 2 PLACES

0 0 ...10 . ROUND TO NORMAL FORM

Note that zeroes appear in the word at the left; if the number had been negative, and hence the
sign bit a one, ones would have appeared; this ensures that the sign is maintained and the
division nature retained and is embodied in the fact that this is an arithmetic shift (see also
section 26).

With the additional information that the precedence of all shifts is 6 — the highest precedence
of all and hence the most tightly binding of dyadic operators — we can draw up a table for the
SRA operator:

OPERATOR PRECEDENCE OPERAND 1 OPERAND 2 RESULT INTERPRETATION
SRA 6 Fine Integer Integer Fine Integer Shift operand 1 right
arithmetically
Big Integer Integer Big Integer by operand 2 binary
places

Note the way that the normal integer case (for the first operand) with its immediate widening to
the fine form is catered for by making the fine integer case the first entry and using the
typechecking rules already discussed in section 13. No overflow condition can arise from the
right shift operation itself, but may occur on storing the result in an integer variable.

A mode transfer from a fine integer to a real will proceed directly (and not via an integer) as in
the big case; in this way maximum accuracy is retained. In the cases of automatic transfers
between the big and fine forms, these will occur via the normal form (and of course overflow is
possible when a big integer is converted to fine and rounding occurs when a fine integer is
converted to big). Our diagram depicting automatic mode transfers between integer and reals

becomes

BIG INTEGER FINE INTEGER

Hragy

INTEGER

REAL

121

Examples:

INT I3
REAL R:

13=(3+3) SRA 2; % BRACKETS ESSENTIAL FOR PRECEDENCE %

% BIG INTEGER RESULT NARROWED TOQ 2 %
[:=7 SRA 2; % WIDEN TO FINE SHIFT AND ROUND TO 2 %
I:=17 SRA 2 SRA 2 % FIRST SHIFT PRODUCES FINE 4 1/4 %

% SECOND SHIFT GIVES 1 1/16 ROUNDS TO 1 %
R3=(3%3) SRA 2; % BIG INTEGER WIDENED TO 2.0 %
R:1=7 SRA 2; % FINE RESULT 1 3/4 WIDENED TO 1,75 %
Re=17 SRA 2 SRA 23 % FINE RESULT 1 1/16 WIDENED TO 1.0625 %

The left shift follows a similar pattern. The keyword SLA specifies an arithmetic shift left;
operating on a normal integer is equivalent to multiplication and hence will produce a big
integer result; this is performed by first widening the integer to the big form and then shifting
it.

l:=7SLA3
0 0 L0111 | . 7 as normal integer
0 0 L0111 . widen to big integer
0 0 ...0111000 | . shift left 3 places
0 0..0111000 | - narrow to normal (56)

Zeroes will be introduced in the right-hand end of the word. With a left shift (as a multiplication)
there is always the possibility of overflow. The rule that “‘if the second operand is negative or
greater than the word length of the machine then the action is undefined’’ again holds. Shifting

a fine integer left will give another fine integer, and so our table appears as

OPERATOR PRECEDENCE OPERAND 1 OPERAND 2 RESULT INTERPRETATION
SLA 6 Big Integer Integer Big Integer Shift operand 1 left
arithmetically by
Fine Integer Integer Fine Integer operand 2 binary places
Examples:
INT I3
REAL R

[:=(3+3) SLA 3; % BIG INTEGER NARROWED TQ 72 %

I1=7 SLA 33 % WIDEN TO BIG AND SHIFT THEN NARROW TO 56 %

14217 SRA 3 SLA 23 % FINE INTEGER 2 1/8 SHIFTED LEFT IS 8 1/2 %
% ROUND TO NORMAL INTEGER 9 %

R:=(3%3) SLA 3; % B1G INTEGER WIDENED TO 72,0 %

Ri=7 SLA 3y % BIG INTEGER WIDENED TO 56,0

e N

R3=17 SRA 3 SLA 2; % FINE INTEGER WIDENED TO 8,5

So far all our examples have involved explicit shifts, in the sense that the second operand has
been an integer constant in each case. There is no reason why the second operand should not be
a general expression; it must simply yield an integer value. Cases arise (in dynamic scaling) where
the direction of the shift is not known until run-time and depends on the value of some

122

expression. For this situation, a general arithmetic shift operator is provided; in this case (since
we do not know the direction of the shift) the normal integer is not widened before the shift;
the big and fine forms result in big and fine forms, whilst the normal integer on shifting gives

a normal integer. Naturally, overflow or loss of accuracy can occur. The direction of the shift is
defined by the sign of the second operand — left if it is positive, right if it is negative. The
number of binary places shifted is the magnitude of the second operand; if this magnitude
exceeds the word-length of the machine, the action is once again undefined. The keyword SHA
(Shift Arithmetic) is used for this operation:

OPERATOR PRECEDENCE OPERAND 1 OPERAND 2 RESULT INTERPRETATION
SHA 6 Integer Integer Integer Shift operand 1 by
Big Integer Integer Big Integer ABS (operand 2) binary

places, left if operand 2
Fine Integer Integer Fine Integer positive, otherwise right

Examples:

% IN PRACTICE THESE SHIFTS WOULD BE WRITTEN USING SRA OR SLA , %
% WE ASSUME HERE THAT THE VALUES USED AS SECOND OPERANDS ARE %
% DERIVED AT RUN TIME FROM SOME EXPRESSION %

INT I3

REAL B?

I:=(3%3) SHA =13 % BIG INTEGER NARROWED TO 4 %

1:1=7 SHA =2 % 13 NOTE NO FINE INTEGER IS FORMED AND NO %

% ROUNDING. COMPARE WITH 7 SRA 2 %
1:=(17 SRA &) SHA 23 % FINE INTEGER 8 1/2 ROUNDED TO 9 %

R1=(3+3) SHA 33
Ri=7 SHA =23
R:=(17 SRA &) SHA 2;

BIG INTEGER WIDENED TO 72.0 %
NO ROUNDING; WIDENED TO 1,0 %
WIDEN FINE INTEGER TQ 8,5 %

32 32 e

Scaling and hence shifting are required for fractions. The three operators SRA, SLA, SHA are
also defined on fractions; the second operand, specifying the number of binary places will still be
an integer. The rules are identical, the only difference in these operations being the position of
the binary point.

Shifting a fraction right gives a fine fraction, an intermediate mode already encountered.
Shifting left will generate digits to the left of the point and gives rise to the fourth (and last)
intermediate mode, the big fraction.

—om om-1 .20 o1 .2'm

sign J

range: —2M< big fraction < 2M
accuracy: multiples of 1/2M

A big fraction is thus a mixed number.
The tables for the operators now follow immediately:

123

OPERATOR PRECEDENCE OPERAND 1 OPERAND 2

RESULT

INTERPRETATION

SRA 6 Fine Fraction Integer
Big Fraction Integer
SLA 6 Big Fraction Integer
Fine Fraction Integer
SHA 6 Fraction Integer
Big Fraction Integer
Fine Fraction Integer

Fine Fraction

Big Fraction

Big Fraction
Fine Fraction

Fraction

Big Fraction
Fine Fraction

Shift operand 1 right
by operand 2 binary
places

Shift operand 1 left
by operand 2 places

Shift operand 1 by
ABS (operand 2) places,
left if operand 2 is
positive, otherwise right

As in the integer case, for SRA and SLA a normal fraction will be widened (by the addition of
suitable zeroes) to the f'ne and big form respectively, before performing the shift.

The automatic conversion from big fraction to fraction is similar to the integer case; the integer
part is simply ignored, though an overflow condition may arise. Big and fine fractions are
widened directly to reals if necessary, and so the automatic transfer diagram appears as

REAL

BIG FRACTION FINE FRACTION
\ FRACTION/

124

25. Mixed mode arithmetic: combining
integers and fractions

If you look at the two intermediate modes representing mixed numbers (i.e. big fraction and fine
integer) you will see that their internal representations, ranges and accuracies are identical; the
distinction is made to indicate which “‘half’’ we are primarily interested in, and to define
explicitly their behaviour under mode transfers. We introduce further uses of the monadic
operators INT and FRAC to perform the necessary transfers between big fractions and fine
integers:

OPERATOR OPERAND RESULT INTERPRETATION
INT Big Fraction Fine Integer Change mode of operand
FRAC Fine Integer Big Fraction to that specified in result

There is no change of value nor possibility of overflow or loss of accuracy with these operations.

Armed with these operators and the concepts of the four intermediate modes, we can now
investigate further the combination of integers and fractions in expressions.

If we multiply two integers together we obtain a big integer, if we multiply two fractions
together we obtain a fine fraction. What happens if we multiply an integer by a fraction or a
fraction by an integer? We are multiplying a value in the range [—2M, 2M) by a value in the range
[—1, 1) and hence the answer lies in the range [—2M, 2M] : in terms of accuracy we have a
multiple of 1 and a multiple of 1/2M and hence the result is a multiple of 1/2M. Thus the answer
is a big fraction apart from the case of multiplying together the most negative values (—2M and
—1) which will cause overflow. The result could have been chosen to be a fine integer, but we
must choose either big fraction or fine integer so that there is no ambiguity; it is felt that such a
multiplication will usually occur when we are primarily concerned with fraction arithmetic, and
so the big fraction result is the appropriate one.

OPERATOR PRECEDENCE OPERAND 1 OPERAND 2 RESULT INTERPRETATION
* b Integer Fraction Big Fraction Form product of
Fraction Integer Big Fraction operands

Let J, K be declared as integers, and F as a fraction; note carefully the difference between the
two expressions

J* (K *F)

J*INT (K * F)
In the first, K * F yields a big fraction which is narrowed to a fraction and a big fraction is the
final result; in the second the INT operator yields a fine integer which is narrowed to an integer
and a big integer is the final result.

In the reverse process, division, there is no ambiguity in allowing both fine integer and big
fraction as the dividend; this is basically because division is not a reflexive operation and hence
the two cases can be distinguished. The division operators (:/,// and MOD) are extended to cover
the reverse cases of the multiplication just discussed; which operator to use for division depends
on the nature of the result required:

thus :/ always yields an integer, // always yields a fraction; the result of MOD then follows by
considering the nature of the remainder in each integer division case:

OPERATOR PRECEDENCE OPERAND 1 OPERAND 2 RESULT INTERPRETATION
o 5 Big Fraction Fraction Integer Quotient on dividing
Fine Integer Fraction Integer Operand 1 by operand 2
MOD 5 Big Fraction Fraction Fraction Remainder on dividing
Fine Integer Fraction Fraction Operand 1 by operand 2
// 5 Big Fraction Integer Fraction Quotient on dividing
Fine Integer Integer Fraction Operand 1 by operand 2

The rules governing the divisions are as before, with truncation towards zero and the sign of the
remainder being the same as the sign of the dividend; note that overflow can occur in all cases.

125

We can use these operations to extract (in a machine independent manner) the integer and fraction
parts of a mixed number without the possibility of overflow, but we must form the mixed
number twice:

INT 1,43
FRAC F,G3

Jis =I*F :/ =»1,080;

Gi= I*F MOD =1,08B0;
% NOTE THAT Ji=INT(I*F) IS NOT SATISFACTORY SINCE ROUNDING OCCURS %
% ON ASSIGNMENT %

In section eleven when discussing conditional expressions we showed that dereferencing would
be applied where necessary to ensure that the expression delivered the same kind of object
whichever route is taken at run-time.

REAL R;
REF REAL RR:=R;
L}
Res=IF R=0.0 THEN RR ELSE R%«0,1 END;
Z RR DEREFERENCED TWICEs EXPRESSION YIELDS A REAL %

Similarly automatic typechanging is applied to ensure that an expression yields a definite unique
mode regardless of the run-time path; further, the typechanging is such that an intermediate
mode will not be yielded.

INT 13
FRAC F3
REAL R

IF I=0 THEN I ELSE R END % YIELDS REAL %

IF R=0.,0 THEN I+] ELSE I SLA 1 END
% YTELDS INTEGER EVEN THCUGH EACH ROUTE GIVES A BIG INTEGER %

IF R=0,0 THEN F*F ELSE I%F END % YIELDS FRACTION %

IF R=0.0 THEN I ELSE F END
% YIELDS REAL = ONLY MODE TO WHICH BOTH INTEGER AND FRACTION %
% CAM BE WIDENED %

This can cause some difficulties, since there may be undesirable loss of accuracy by the narrowing
to a normal form. To allow widening to be forced at the appropriate moment, we introduce the
monadic operator REAL which is the only explicit widening operator; this gives the ability to
float a fixed point number at the appropriate point in a program; it is also defined for a real
operand for completeness.

OPERATOR OPERAND RESULT INTERPRETATION
REAL Integer Real Floats the operand to
Big Integer Real give a real number
Fine Integer Real
Fraction Real
Big Fraction Real
Fine Fraction Real
Real Real Identity: no action

126

IF R=0,0 THEN I+l ELSE I ENDJ

IF R=0,0 THEN REAL(I*I) ELSE I END;

%# SECOND CASE AVOIDS POSSIBILITY OF OVERFLOW BY FORCING %
% EXPRESSION TO YIELD A REAL, IN THE FIRST CASE IT YIELDS %
% AN INTEGER WHICH IS THEN WIDENED %

-
-
-
-

Rs
R

Ry=IF R=0'0 THEN 3%0,5B0 ELSE 00,0680 // 011580 END3:

Z EXPRESSION YIELDS FRACTIONs FIRST ALTERNATIVE CAUSES OVERFLOW ¥
R:=1F R=0,0 THEN 3%0.,5B0 ELSE REAL(0,06B0 //0,1580) END;

% ONE EXPLICIT WIDENING TO REAL CAUSES EXPRESSION TO BE %

% EVALUATED AS A REAL %

Having seen so many typechange situations and operators in this section, we now present the
typechange diagram and operator tables as completed so far, to show the order in which
operations will be attempted, as described in section 13.

Mode Transfer Diagram

REAL

BIG INTEGER

FRACTION

INTEGER

FINE INTEGER INT BIG FRACTION
¢ ————~-= & — -
Automatic transfer =
o INT
Explicit transfer (with operator) ————————— >

127

Monadic Operators

OPERATOR OPERAND RESULT INTERPRETATION
+ Integer Integer Identity: no action
Fraction Fraction
Real Real
- Integer Integer Negate the operand
Fraction Fraction
Real Real
ABS Integer Integer Negate if the operand is negative,
Fraction Fraction otherwise no action
Real Real
LENGTH Array Integer Return length of array
INT Integer Integer Identity: no action
Big Fraction Fine Integer Change mode of value
Real Integer Round to integer
FRAC Fraction Fraction Identity: no action
Fine Integer Big Fraction Change mode of value
Real Fraction Round to fraction
REAL Integer Real Float the operand to give a real number
Big Integer Real
Fine Integer Real
Fraction Real
Big Fraction Real
Fine Fraction Real
Real Real Identity: no action

128

Dyadic Operators

OPERATOR PRECEDENCE OPERAND 1 OPERAND 2 RESULT INTERPRETATION
* 1 Integer Integer Integer Form sum of operand
Fraction Fraction Fraction
Real Real Real
- 1 Integer Integer Integer Subtract operand 2 from
Fraction Fraction Fraction operand 1
Real Real Real
* 5 Integer Integer Big Integer Form product of operands
Integer Fraction Big Fraction
Fraction Integer Big Fraction
Fraction Fraction Fine Fraction
Real Real Real
/ 5 Real Real Real Divide operand 1 by
operand 2; no remainder
/ 5 Big Integer Integer Integer Integer quotient when
Fine Integer Fraction Integer operand 1 divided by
Big Fraction Fraction Integer operand 2; truncation
, to zero
MOD 5 Big Integer Integer Integer Remainder when operand 1
Fine Integer Fraction Fraction divided by operand 2;
Big Fraction Fraction Fraction has sign of operand 1.
// 5 Fine Integer Integer Fraction Fraction quotient when
Big Fraction Integer Fraction operand 1 divided by
Fine Fraction Fraction Fraction operand 2; truncation to
zero
SRA 6 Fine Integer Integer Fine Integer Arithmetically shift
Big Integer Integer Big Integer operand 1 right by
Fine Fraction Integer Fine Fraction operand 2 binary places
Big Fraction Integer Big Fraction
SLA 6 Big Integer Integer Big Integer Arithmetically shift
Fine Integer Integer Fine Integer operand 1 left by
Big Fraction Integer Big Fraction operand 2 binary places
Fine Fraction Integer Fine Fraction
SHA 6 Integer Integer Integer Arithmetically shift
Big Integer Integer Big Integer operand 1 by ABS
Fine Integer Integer Fine Integer (operand 2) binary places;
Fraction Integer Fraction to the left if operand 2
Big Fraction Integer Big Fraction is positive, otherwise
Fine Fraction Integer Fine Fraction right.

129

Notes

1.

2.

The

The form of the first operand and result in the arithmetic shifts can be condensed into the
following table, entries showing the result:

OPERATOR SLA SHA SRA
OPERAND 1

BIG BIG BIG BIG
NORMAL BIG NORMAL FINE
FINE FINE FINE FINE

Fractions and integer values are only combined (the second operand in the shifts is
somewhat different) in multiplication and divisions. Thus for an integer |, and a fraction F,
the expression |+F will be evaluated as a real with appropriate widening performed.

following example illustrates the use of fractions. In it, instead of choosing to scale readings

(in this case integer readings) to a fraction of a full-scale value, we choose the first power of two
greater than the full-scale value; reduction to fraction form can then be achieved by a simple
shift rather than a division. The problem dealt with here is an electrical network with a number
of nodes and lines joining them. Sample procedures show how readings might be treated and how
the electrical properties of the network might be recalculated on switching into use an additional

line.

No details of the physics of the situation are given; it is hoped that the RTL/2 (with its

comments of course) will indicate the use of fractions and scaling and the mixing of these
variables with integers and reals.

LET
LET
LETT
LET

LET
LET

LET

DAT

END

130

ZERO=0.08B0) % FRACTION ZERO %

NODES®70; % NUMBER OF NODES %

LINES=100; % NUMBER OF LINES %

IMPPLACES=6 % FULL=SCALE IMPEDANCE 1S 50 OHMS %

% BINARY SCALE 1S THEREFORE 64 OR 6 PLACES %
CURRENTPLACES=14;% FULL SCALE CURRENT IS 10000 AMPS; BINARY 163
POTPLACES=19; % FULL=SCALE POTENTIAL IS 500000 VOLTS~=19 PLAC
DIFFPLACE=1: % THIS 1S THE SCALING DIFFERENCE BETWEEN %

% POTENTIAL AND CURRENTwIMPEDANCE %

A NETWORK:

ARRAY (NODES,NODES) FRAC IMPED;
% EFFECTIVE IMPEDANCE BETWEEN TWO NODES OF NETWORK %
% IMPED(I,J) IS THE IMPEDANCE BETWEEN NODES I AND J %
ARRAY (LINES) FRAC LINEIMP;
% IMPEDANCES OF UNLOADED LINES 7%
ARRAY (NODES) FRAC

CURRENT, % NET CURRENT ENTERING NODE %
POTENTIAL, % POTENTIAL AT NODE %
TEMP; % WORK ARRAY %

ARRAY (LINES) INT LONODE;=HINODE:=(=1(LINES));
% LINE NUMBER L JOINS LONODE(L) TO HINODE(L) WITH LONODE(L) %
% NUMERICALLY SMALLER, =1 INDICATES LINE NOT IN USE %

ARRAY (NODES) INT LINENDS:
% NUMBER OF LINES IN USE AT NODE %

DATA:

PROC READPOT (INT POT) FRAC;

% SCALES ABSOLUTE INTEGER READING INTO FRACTION OF CORRECT SCALE %
RETURNC FRAC(POT SRA POTPLACES))3

ENDPROCS

PROC QUTPOT (FRAC POTVAL) INT:
% RETURNS ACTUAL VALUE FROM FRACTION %

RETURNC INT(POTVAL SLA POTPLACES))3
ENDPROC?

% SIMILAR PROCEDURES FOR CURRENT AND IMPEDANCE X%

PRCC ADDLINE (INT LINE, % NEW LINE NUMBER X%
FROM, % LOWER NODE NUMBER %
ToP % UPPER NODE NUMBER X%)i

%“ THIS SWITCHES A NEW LINE INTOD USE %
% ASSUME A RETURN EXIT FOR ERROR ACTION %
IF LINEDLINES THEN
% ERROR 3 ILLEGAL LINE %
END s
IF FROM>NODES THEN
NOTNODE; % ERRCR 3 ILLEGAL NODE OR ORDER %
END;
IF TOP>NQODES THEN GOTO NOTNODE}: END:
IF FROM>=TOP THEN GOTO NOTNODE} END:
IF LONODE(CLINE)#=1 THEN
% ERROR ¢ LINE ALREADY IN USE %
END:

%# LINE INFORMATION NOW ACCEPTED %

LONODECLINE) :=FROMy % ENTER LINE INFORMATION %
HINODECLINE) :5TOP;
LINENDSCFROM) :=LINENDSC(FROM)+1} % UPDATE NODE INFORMATION %

LINENDS(TOP) ;=LINENDS(TOP)+1;

FOR I:=1 TO NODES DO
% CALCULATE INTERMEDIATE IMPEDANCE VARIABLE %
TEMP(1):=IMPED(I,FROM) = IMPED(I,TOP))

REP;

BLOCK
REAL MUTUAL:=LINEIMP(LINE) + TEMP(TOP):
% MUTUAL IMPEDANCE; REAL USED BECAUSE OF RANGE AND ARITHMETIC BELOW
% NOW UPDATE IMPEDANCE MATRIX %
Z THIS IS STRICTLY A TRIANGULAR MATRIX BUT WE REPEAT ENTRIES %
FOR I:=1 TO NODES DO
FRAC P:=TEMP(I1);
FOR J:=1 TO NODES DO
REAL PJe=P=TEMP(J)}
IMPED(I J)iSIMPED(I,J) = FRAC(PJ*PJ/(MUTUAL*4,0))
REP}
REP;
ENDBLOCK
ENDPROC

131

PROC SETPOTENTIAL ()3
% SETS UP THE POTENTIAL OF EACH NODE %
FOR Is=1 TO NODES DO
FRAC POTI:;=ZEROQs
FOR J3=1 TO NODES DO
% ADD CONTRIBUTION FROM EACH POSSIBLE LINE %
% IN PRACTICE FURTHER SCALING MIGHT BE NECESSARY HERE %
% IN THE ACCUMULATION = DEPENDS ON PHYSICAL CONSTRAINTS %
POTI:;=POTI + (IMPED(I,J)*CURRENT(J))SLA DIFFPLACE;
REPJ
POTENTIALCI):=POTIs
REP;
ENDPROC;

PROC LINEFLOW C(INT LINE) FRAC:
% RETURNS CURRENT FLOWING IN THE LINE %
% RETURNS ZERO IF THE LINE IS NOT IN USE %

IF LONODECLINE)==1 THEN RETURN(ZERO): END;

RETURNC (POTENTIAL(HINODE(LINE)) « POTENTIAL(LONODECLINE)))

SRA DIFFPLACE
% SCALE NOW AS FOR IMPEDANCE*CURRENT %
// LINEIMP(LINE))i

ENDPROC)

132

26. Extension of conditions

In the compound interest example, when we wished to check that a parameter was in a desired
range, we had to employ a number of conditional statements:

IF T<1THEN GOTO FAIL; END;

IF T>365 THEN GOTO FAIL; END;

The need to test whether a value lies within a range is common; it is also common to perform a
set of actions when some combination of conditions is satisfied. To combine conditions
together, RTL/2 has two keywords AND and OR which are formal versions of the natural
English words. Since any condition is an assertion which is true or false, we can describe the
action of AND as if it were an operation between the values true and false; that is we can
construct a truth table:

AND |TRUE FALSE
TRUE 'TRUE FALSE

FALSE| FALSE FALSE

Thus the combined condition formed by connecting two conditions with the keyword AND is
only true if both of the ‘subconditions’ are true.

oR |TRUE FALSE
TRUE | TRUE TRUE
FALSE| TRUE FALSE

The condition formed with OR is only false if both the subconditions are false. Our example then
becomes
IFT<10RT>365THEN GOTO FAIL; END;

If we want to perform some plant action if and only if some fraction variable Q lies between —%:
and +% then we would write

IF @>==0,5B0 AND Q<=+0,5B0 THEN
PLANTACTION ()3
END 32

in our earlier discussion on conditional statements, we pointed out that when we have a whole
list of conditions embedded within IF, ELSEIF etc, we would only evaluate conditions until we
found the correct path; this could cause trouble (or be used to advantage) when procedures with
side effects were involved in these conditions. Similarly, when AND and OR are used,
subconditions are only evaluated until we can decide the truth value of the whole condition; thus
if for example T is zero the first condition in our OR example (T<1) is true; we know T is
outside the range and we can immediately transfer to FAIL; similarly if the first condition in our
AND example (Q<—0.5B0) is false we know the value of Q is out of range, the whole condition
is false and we continue with the statement following END. The actions can be represented by
the following flowcharts:

AND:

PLANTACTION

133

OR:

!

FAIL

The similarity between the flow diagrams shows how by reversing the subconditions we could
rewrite the statements:

IF T>=1 AND T<=365 THEN
ELSE GOTO FAIL;
END;

IF @<=C,5B0 OR Q>+0,5B0 THEN
ELSE PLANTACTION ()
END;

However we have lost some clarity.

More complex conditions can be written by connecting a number of subconditions with AND
and OR; the fundamental rule that subconditions will be evaluated from left to right only until
the truth value of the whole condition is determined still holds.

IF A=1 AND B=2 AND C=3 THEN ess

% TRUE WHEN ALL THREE CONDITIONS ARE SATISFIED %

IF READ()=1 OR READ()=2 OR READ()=3 THEN .4«

4 1F READ READS THE NEXT VALUE ON A TAPE, NOTE THAT THE NUMBER %

%“ OF VALUES READ DEPENDS ON THOSE VALUES. THUS ONE VALUE IS READ %
% IF THE FIRST VALUE IS 1; IF IT IS NOT ANOTHER NUMBER IS READ %

% IF THIS IS NOT 2 THEN A THIRD NUMBER IS READ, THIS MAY OR MAY %
% NOT BE WHAT YOU INTEND %

%# THE NEXT EXAMPLE TAKES ADVANTAGE OF THE RULE %
IF J<sLENGTH P AND P(J)H#O THEN .ae
% P(J) ONLY ACCESSED IF J CONTAINS A VALID SUBSCRIPT %

As soon as we try to construct a condition containing AND and OR we encounter the precedence
problem, first met with + and *. In this case however we wish to preserve the strict left to right
evaluation of subconditions and be able to determine the truth value as soon as possible.
Bracketing of subconditions is therefore not permitted (though naturally a subcondition may
contain a normal bracketed arithmetic expression).

[F (A=8 OR A=(C) AND D=E THEN 4.
% THIS 1S ILLEGAL %
IF A=(B+(C) OR A=C AND D=E THEN ...
% THESE BRACKETS FORM PART OF AN ARITHMETIC EXPRESSION %

134

What is the meaning of the second condition? AND is regarded as having the higher precedence
(or to be the more tightly binding); thus AND, OR behave similarly to *,+. The condition is true
then if either A=B+C is true or A=C AND D=E is true (or if both are true).

5 false
path

Y
true
path

IF A>=1 AND A<=26 0OR B>=0 AND B<=9 THEN ,,.
% TRUE IF A IS IN RANGE 1 TO 26 OR B IS IN O TO 9.%

How would we write the example in which we attempted to use brackets? We could write it as a
compound condition
IF A=B AND D=E OR A=C AND D=E THEN...
in which we repeat one of the tests, or we could split it into two nested conditional statements:
IF A=B OR A=C THEN
IF D=E THEN...

In this section our examples so far have been conditional statements; complex conditions
involving AND and OR can be used whenever a condition is valid and hence we may use them in
conditional expressions and in while-statements:

P:=1F A=B AND C=D OR Q=R THEN 0.0 ELSE 3.1 END:
IF A=B THEN sse

ELSEIF C#D AND A+B<2 THEN <o

END;

WHILE X>100 OR Y<50 DO sse

REP;

Simple conditions operate at the numerical level; that is, we are comparing actual real, integer

or fraction values. If a reference variable occurs in an expression on one side of a comparator it

is dereferenced twice to yield an appropriate value. Sometimes, however, we wish to compare the

contents of two reference variables, and make an assertion concerning the names contained in

them; only one level of dereferencing is then required; similarly we may wish to compare the

contents of a reference variable with a given name. No type changing is involved here, and names

and reference variables must be of the appropriate modes. The only comparisons that are

meaningful are those of equality and inequality; to represent the comparison at the name level,
135

we use the compound comparators :=: and :#:. These separators are formed by the concatenation
of three symbols and must not contain any spaces; assusual, # may also be represented by the
symbol £ or @.

INT 1,42 FRAC F3s REAL R,S:
REF INT WHICH:=I,QI:=Js

REF FRAC RF:=F;

REF REAL WHERE:=R,WHO!=mS;

IF WHICH:=:Ql THEN see END3

% BOTH DEREFERENCED ONCE %

% TESTS WHETHER WHICH AND QI BOTH REFERENCE THE SAME INTEGER %
% VARIABLE %

IF RFi#:F THEN .e END;

WHILE R:#:S DO .« REP:
% NO DEREFERENCING; ALWAYS TRUE SO INFINITE LOOP ¥%

Ji=]lF WHICH:=:1 OR WHO:#:R THEN 2 ELSE 3 END;

IF WHERE:=:0I THEN ses END:
% ILLEGAL : WE ARE ATTEMPTING TO COMPARE THE NAME OF A REAL %
% VARIABLE WITH THAT OF AN INTEGER VARIABLE %

In a condition, therefore, the amount of dereferencing is governed by the nature of the
comparator used. Naturally there is no restriction on mixing various sorts of conditions within a
complex condition using AND or OR.

IF A<6+B*B OR WHICH :#:R AND WHO #S THEN...
Make sure you can indicate where dereferencing occurs.

136

27. Logical operations

Suppose that we wish to construct a very simple personnel record system, holding for each
person his (or her) age, sex, location and salary scale. The age information will be a number in
the range 15-70, sex is a simple binary choice, the location might be a code number in the range
0-6 and the salary scale some number in the range 0-10. We can access this information by
assigning to each person an index number and holding the various pieces of information in arrays.
For a large number of people, the space taken by four integer arrays (one for each item of
information) may be excessive; in any case it is wasteful to use an integer simply to record O or 1
for male or female. We can take advantage of our knowledge of the binary representation of
numbers in the computer to pack this information more efficiently. The integers will then be not
so much numerical values as logical patterns containing various pieces of information.

If we consider a machine having a word-length of 16 bits (the minimum for RTL/2), we can
investigate the items in our example and see how they could be packed into a single integer word.

Age: range is 15-70 which we could store as (age —15) i.e. in the range 0-55; such a range
can be held in 6 bits (giving numbers O to 26_1: that is, 0-63).

Sex: clearly 1 bit is sufficient : O for male
1 for female

Location: range is 0-6 which can be held in 3 bits (allows numbers 0-7).
Salary scale: range is 0-10 which can be held in 4 bits (allows numbers 0-15).

Hence the bits in our integer word might be utilised as follows:

spare M V vV

6 bits: age

1 bit: sex

3 bits: location

4 bits: salary scale
Now one array will suffice to store the personnel details

LET EMP=100Cs % NUMBER OF EMPLOYEES %

DATA PERSONNEL:
ARRAY (EMP) INT PEOPLE;
ENDDATA:;

To store the details of a man aged 32 on scale 3 in location 4, whose index in the scheme is 21
we would then write:

PEOPLE(21):=BIN 0000111000010001,
% VALUES 3,4,0,17 HELD IN PACKED FORM X
% NOTE THE USE OF BINARY CONSTANT FORM %

This is simple enough; how, though, are we going to unpack this information (dynamically) for
use in our program? For such purposes and the manipulation of logical quantities we define in
RTL/2 a number of /ogical operators. These are operators that act on (or between) binary
patterns, and are defined in terms of these; our tables will still show them acting on integers, but
we are regarding them as binary patterns.

137

The first two operations are bitwise operations between two integer operands and are logically
similar to the AND/OR operations between conditions; the keywords LAND and LOR (for
logical and/or) are used, and the result of the operations between bits can be summarised in

a way similar to truth tables (they are in fact identical — we are simply using a bit of 0,1 to
represent false, true).

LAND 0 1
0 0 O

1 0 1
LOR 0 1
0 0 1

1 1 1

Thus the result of a LAND operation (a further integer pattern) has a one bit where both
operands had ones, the result of a LOR has a one bit in every position where at least one
of the operands had a cne.

As dyadic operators they have the following properties:

OPERATOR PRECEDENCE OPERAND 1 OPERAND 2 RESULT INTERPRETATION
LAND 4 Integer Integer Integer Bit-wise logical and.
LOR 3 Integer Integer Integer Bit-wise logical or.
Examples:

BIN 101101 LAND BIN 110011 is BIN 100001
BIN 1101011 LOR BIN 10100 is BIN 1111111

The LAND operator is particularly useful for extracting a particular “fie/d”” from a packed
pattern. In our example, the four pieces of information could be isolated (still in the appropriate
bits of integers and not as direct numerical values) by the use of the correct binary patterns; these
maskswill have ones just in the field positions so that any ones there in the pattern of interest
will be extracted.

AGEs=PEQPLE(CI) LAND OCT 77 + 15;

%» PICKS UP BOTTOM 6 BITS AND ADDS 15 FOR RANGE 15 TO 70 %
% NOTE USE OF PRECEDENCE OF LAND QVER + %

SEX:=PEQOPLEC(I) LAND CCT 1003

LOC:=PEOPLEC(I) LAND OCT 1600,

SCALE:=PEQPLE(I) LAND OCT 36000,

The LOR operation can be used to set specific bits in a word; thus | LOR OCT 77 will ensure
that the bottom six bits of the result all contain ones. Utilising the precedences of LAND and
LOR (note that these follow the same binding rule as AND/OR) we can fill in new values for our
field by masking out the old value and LOR-ing in the new one:

PEOPLE(I):=PEOPLECI) LAND OCT 1777 LOR NEWSCALE:
% FIRST LAND OPERATION RETAINS OTHER THREE FIELDS %
% THE FORM OLD LAND MASK LOR NEW IS VERY USEFUL X%

Working arithmetically with values in the ‘wrong’ part of an integer is tedious and error prone
(particularly with respect to overflow); we have the bit pattern of a value, but in the wrong bits
of the word. We therefore define a number of shift operations which will enable us to align values
correctly and pack values efficiently. These /ogical shifts are quite different from the arithmetic
shifts defined earlier. They are only defined on integers, and no intermediate double-length
guantities are formed; there is no question of overflow and any bits going beyond the end of the
word are irretrievably lost. In logical shifts the sign bit behaves in precisely the same way as any
other bit; zero bits are introduced at the opposite end of the word. However, the rule that the
shift is undefined if the second operand is negative or greater than the word-length of the
machine still holds; again, a general shift whose direction is determined by the sign of the second
operand is also available. The keywords used are SRL, SLL, SHL (Shift Right Logical, Shift Left
Logical, Shift Logical) and they have the same precedence as the earlier arithmetic shifts.

138

OPERATOR PRECEDENCE OPERAND 1 OPERAND 2 RESULT INTERPRETATION

SRL 6 Integer Integer Integer Shift pattern in operand
1 right by operand 2
places
SLL 6 Integer Integer Integer Shift pattern in operand
1 left by operand 2 places
SHL 6 Integer Integer Integer Shift pattern in operand 1

by ABS (operand 2)
places, left if operand 2
positive, otherwise right

——
SRL
/7 ~
0’s in bits lost
SLL
rd T
bits lost 0’s in

SHL acts as SLL if the second operand is positive, otherwise it behaves as SRL.

Thus to obtain the numerical value of the salary scale we write:
SALSCALE:=(PEOPLE(I)LAND OCT 36000) SRL 10;
It is probably clearer to perform the shift first, and use a simpler mask to isolate the four bits;
no brackets are then required for the precedence.
SALSCALE:=PEOPLE(I)SRL 10 LAND OCT 17;

If we can be sure that the top two ‘spare’ bits contain zeroes always, the LAND operation is
unnecessary, since any other one bits will have been lost:
SALSCALE:=PEOPLE(!l) SRL 10;

But the mask is essential for the location value:

LOCAT;=PEOPLE(I) SRL 7 LAND 7
% NOTE THAT DECIMAL NUMBERS CAN BE USED = THEY ARE INTEGERS %
% BINARY PATTERNS ARE CLEARER FOR LARGE PATTERNS X%

Note that we can also accommodate ‘‘short’’ signed integers in a field; suppose that 5 bits are
used to hold numbers in the range —15 to +15 with the top bit of the field behaving as a sign bit for
this “’short word” (i.e. as a multiple of —24 = _16). Then we can unpack this field as follows,

but note that the number of places of shift is machine dependent.

LET WORDBITS4 =12;
LET WORDBITS9= 7; % FOR 16 BIT MACHINE %

VALUE:= (PACKEDPATTERN LAND HEX 1FO) % PICKS OUT FIELD %
SLL WORDBITS9 % SHIFTS SHORT SIGN BIT INTO PROPER SIGN%
SRA WORDBITS12; % SHIFT DOWN TO NORMAL INTEGER%
% SIGN BIT IS PROPAGATED%

We can pack up information by shifting up the appropriate field and LOR-ing the fields together:
this is better than addition (which will fail in the case when the sign bit is being used logically).

PEQPLE(I):;=SALSCALE SLL 10 LOR LOCAT SLL 7 LOR SEX SLL 6 LOR(AGE=15)7
4 ALTERNATIVELY %
PEOPLE(I):=((SALSCALE SLL 3 LOR LOCAT)SLL 1 LOR SEX)SLL 6 LOR (AGE=15

One other logical dyadic operator (and incidentally this is the last dyadic operator to be
introduced) is available. This enables us to isolate the bits that differ between two patterns; this
is especially useful in comparing two consecutive values of a pattern containing status information

139

to ascertain what has changed. it is again a bit-wise operation and uses the keyword NEV (not
equivalent, exclusive or).

NEV | O 1
0 0 1
1 1 0

Its precedence completes the scale 1 to 6.

OPERATOR PRECEDENCE OPERAND1 OPERAND 2 RESULT INTERPRETATION
NEV 2 Integer Integer Integer Bit-wise exclusive or.

Note that if A NEV B = 0 the patterns A, B are identical. If the status of 6 valves are held as the
six bottom bits of a word with O representing closed and 1 open, we can investigate the changes
as follows:

INT STATUS,OLDSTATUS:

OLDSTATUS:;=STATUS; % REMEMBER CURRENT STATUS %
READSTATUS(STATUS) % READ STATUS : NEW VALUE %

IF OLDSTATUS NEV STATUS # 0O THEN
% SOME CHANGES IN POSITION OF VALVES %
END ¢

We should of course be worried in the following case!

IF (QLDPERSONC(I) NEV PERSON(I)) LAND OCT 100 # 0 THEN eas
% OLDPERSON CONTAINS PREVIQOUS INFORMATION %

One further logical operator is provided in RTL/2; this enables a complementary pattern to be
generated; application of the keyword NOT to a binary pattern changes the value of each bit.

OPERATOR OPERAND RESULT INTERPRETATION
NOT Integer Integer Reverse each bit in pattern.

We must realise here that the definition of the logical operators and the fact that their use may be
combined with arithmetic operations makes it imperative to know the representation of integers
within the machine (and in some cases to knew the word-length of the machine); for this reason,
RTL/2 explicitly specifies that integers will be held in two’s complement form.

At first sight NOT BIN 1101100 is 0010011; but if we are working on a 16 bit machine, the
actual operation will be NOT BIN 0000000001101100 and the result is therefore BIN
1111111110010011. We leave as an exercise in binary arithmetic the proposition that NOT | =
—I—1is true regardless of the word-length of the machine.

Note too that to obtain a pattern with a certain number of zero bits at the bottom of a word (for
use as a mask say) in a machine independent manner, the use of negative integers or NOT is
required:
-8 gives 11.....1111000
or NOT 7 gives NOT BIN 00...00111
which is 11....11000

Whereas
HEX FFF8 generates 11...11000 on a 16 bit machine
but ...000011...11000 with any larger word-length.

140

Section 27 examples

1. Plant information is recorded as follows: an integer value in the range —100 to +100, a
sequence number 0, 1, 2, or 3, a plant status value 0 to 7 and three indicator flags A, B, C
(set if 1). It is required to store consecutive readings of these data in an array of integers.
Devise a packing of the information and write procedures to update and read the individual
items.

Write a procedure (using those above) to scan the array and detect the following alarm
conditions,

i) sequence number =3 and the integer value within 10 of its limits.
ii) instability: one of the following conditions has occurred.

| Aset A not set

Status

value even B set both B and C not set
Status

value old C set B or C set

141

28. Bytes

This section introduces the fourth and last of the plain (arithmetic) modes in RTL/2, the mode
byte. The values that can be taken are a subset of the integer values; a byte value is an 8 bit
binary pattern which represents integer values in the range 0 to 255. Its range is thus fixed, its
accuracy is exact and we have a mode which is completely machine independent. Bytes will be
used to save space when dealing with small range information (e.g. status flags), for character
handling, and to achieve machine independence in certain areas.

There is no byte constant in RTL/2. Constant values for the mode byte are integer constants
whose values lie in the range 0 to 255. We can think of this as a semantic restriction on the
integer constant. The following are all permissible values for a byte:

27

BIN 1101

OCT 300

HEX FF

To facilitate character handling, a further form of the integer constant is available in RTL/2 —
the character constant. Each character in the RTL/2 language subset of the ISO7 character set
has a value associated with it, the value of the binary pattern (ignoring the parity bit) formed

on 8-hole tape by punching the character on 1SO7 preparation equipment. These values are given
in Appendix 1. This numerical value can be expressed in RTL/2 by enclosing the character in
single quotation marks; thus ‘A’ is used to represent the numerical value of the character A
(which happens to be 65). One member of the character set is the space character; its value can
be written in the form ‘' ’. The character constant is an item and therefore cannot contain any
non-significant layout characters; although we can write * we cannot write * B’ nor * " nor ‘X ’;
the syntax demands three symbols in the form ‘character’. Unfortunately, not all the characters
in the RTL/2 set may be used in this way; there are three groups of exceptions which are detailed
below, with the reason for their explicit exclusion from this construction:

a) The layout characters tab and newline; these are excluded because of the difficulties of
placing them correctly in RTL/2 text.

b) #, £ and $; manufacturers treat these characters in differing ways (we have already said that
they are interchangeable in RTL/2) and so we cannot guarantee an invariant value.

rm

c¢) The double quote symbol "’; the reason for not allowing will be seen below.

Given these restrictions, character handling situations can now be programmed relatively
efficiently and with clarity in the RTL/2 text.

Variables to hold byte values may be declared, following the familiar rules applicable to reals,
integers and fractions, by the use of the keyword BYTE. Hence we can have byte variables,
references to byte variables, arrays of bytes and so on, and can declare appropriate variables in
data, locally in procedures and inner blocks, as parameters, and specify byte results. The
mechanism of assignment is identical, an integer constant being a valid byte value if and only if
it liesin [0, 255] as described above.

LET sSP=' '; % SPACE CHARACTER %

DATA MESSAGE:
BYTE B1:='A',B2,B3s
REF BYTE RB:=B23:
ARRAY (6) BYTE FLAGS:®
ARRAY (7) BYTE ALARM:=
ENDDATA:

ILI,|UI'IRI'|EO),

142

PROC WRITE (REF ARRAY BYTE TEXT) INT;
INT Li=LENGTH TEXT:
FOR 1:=1 T0 L DO
CUTPUTCTEXT(1))
% ASSUME THAT QUTPUT IS A PROCEDURE TO QUTPUT A SINGLE %
%“CHARACTER, DEFINED BY PROC OUTPUT(BYTE B); %
REP}
RETURN(L) s % RESULT IS NUMBER OF CHARACTERS QUTPUT X
ENDPROC

PROC MAIN ()3
BYTE X3

xe=tsty
WRITE(ALARM);

ENDPROC?

The example shows the initialisation of two byte arrays, the first using familiar integer constants,
the second employing character constants to build up a message. This is a tedious way to have to
write it. RTL/2 provides a more compact form for the initialisation of a byte array known as a
string. As its name implies this is a string of characters and is simply a shorthand for the
bracketed list of character constants separated by commas. The characters which can occur
legally between single quotes (in a character constant) are called stringchars. A string is simply a
sequence of stringchars enclosed in double quotes; we can now see why ’ is not an aliowed
stringchar — if it were, we would not be able to distinguish between * standing as a character of
a string and the "’ terminating the string. We can rewrite our initialisation as follows:

ARRAY(7) BYTE ALARM :=“FAILURE";
Now no brackets are required; the initialisation is delimited by the string quotes ("). We must
still ensure that our initialisation matches the length of the array — there must be precisely the
correct number of stringchars.

A string is an item, but it can contain spaces; this is because the space is a valid stringchar and is
standing as a significant thing and not as a layout aid in the text.
“THIS IS A VALID STRING” %CONTAINS 22 CHARACTERS%

For a long message or piece of text, we may not be able to get our string on to one line in the
program. We cannot insert a newline since it is not a valid stringchar; also we may not want a
newline character as part of the string. This problem is overcome by concatenating adjacent
strings; in this context, adjacent means that the only characters separating the strings are layout
characters (tabs, newlines or spaces); naturally, such characters are not regarded as part of the
total string.

“THIS IS A LONG STRING ”

“SPREAD OVER TWO LINES”
Here only spaces and newlines separate the two strings, and so they will be concatenated and
treated as the single item

“THIS IS A LONG STRING SPREAD OVER TWO LINES”
This can be extended to concatenate successive strings on many lines provided they are
‘adjacent’.
In the following example, a non-layout item (in this case a comment) separates the two strings
which will therefore be treated as being distinct.

“PART ONE" %SECTION HEADING%
“CHAPTER ONE”

The exclusion of newline characters from strings has the advantage (as in the case of comments)
that if the closing ” is inadvertently omitted, masses of program will not be swallowed as part

143

of the string! A compiler error message will bé generated as soon as a newline character is
encountered.

In realistic text handling and other applications we do need to be able to get newline characters
and other non-stringchars into the strings themselves when they are to be used as messages. This
is achieved by a facility inside a string which temporarily reverts to the normal syntax of
initialisation. This inner sequence is enclosed between a pair of # characters. As usual, 3 or £ may
also be used, but the characters must occur in matched pairs. As the # character is not a
stringchar, there is no ambiguity caused by its use, and, of course, it does not contribute to the
length of the string. Within the sequence, values must be in the range 0 to 255 and be separated
by commas; we may use repetition factors, and names defined by LET definitions will be
replaced — this facility is recommended for clarity. As we are now operating as if in an ordinary
array initialisation, comments and the layout characters space and tab are allowed, but the
newline is not, because we are still fundamentally within a string and we wish to minimise the
dangers of swallowing program text as described above.

LET NL=103 % NEWLINE CHARACTER 7%
LET PQUND=363 % VALUE OF £ IN THIS IMPLEMENTATION X

ARRAY (14) BYTE INC:="#NLH#SALARY IS : #POUNDA",

will generate an array INC of the form

INC /t{ 10 ‘S’ ‘A’ L ‘A’ ‘R’ o (i ‘r ‘" 'S’ ‘ i " 36
and on output it will appear on a newline as
SALARY IS : £
This method can also be used to introduce control characters into a string:
LET ENQ=53 % ENQUIRE %

ARRAY (12) BYTE ASK:="WHAT NEXT ?2#ENQ % TERMINATE WITH ENQUIRE % #";

and our earlier examples could have been written

ARRAY (6) BYTE FLAGS:="#0,1,2.,3(3)&"s

ARRAY (7) BYTE ALARMs="#'F',"A' "I, "L'","U",'R","E'4"™)
though these forms are not so clear.

Note that there is no reverse facility

ARRAY(7) BYTE ALARM:= (‘F’, “AILU", ‘R’, ‘E’) is illegal. When concatenation is
involved we must terminate the string correctly with ”, and this means terminating any inner
sequence first:

"HNLACLOSEHNL(2) ENQE"
"HNLHOPEN AGAIN"

Finally on the general syntax of strings, note that strings must occur explicitly for concatenation
to occur; that is, if one string is present implicitly via a LET definition, concatenation will not
occur.

LET STRING="DOUBLE";

STRING "STRING"

will be treated as two strings — “DOUBLE" followed by “STRING"”.
144

Strings can also be used to initialise sub-arrays in a multi-dimensional array declaration; note here
that the outer brackets are required for the outer levels of the array, and that the subarrays can
be presented as a mixture of strings and bracketed lists.

ARRAY (4,7) BYTE MIX:=
("FAILURE",
(0(3),255¢4)),
"HNLH#GO 2#NL.ENQE",
"END .)
% LAST STRING PADDED WITH 4 SPACE CHARACTERS FOR LENGTH OF 7 ¥%

In most cases strings will be used for messages and the contents of an array so initialised will
remain unchanged throughout the run of a program. With this consideration, they are in some
sense “constants”. It is also useful to be able to write a message explicitly at its point of use
rather than the name of an array which is initialised elsewhere. A further use is therefore defined
for a string; it may be used as a /iteral array and be assigned to a ref-array-byte variable. In this
sense it behaves as the name of an array of bytes; however it is not permitted to subscript it
directly; thus “STRING"’(2) is illegal. Such strings are allocated storage in a poo/ and have a
length and an internal (compiler generated) name. Identical strings of this form in a program will
probably share the same storage, and hence should not be altered by program, but used in a read-
only manner.

DATA S3
ARRAY (6) BYTE FLAG:="ALLSET":
% THIS STRING IS SHORTHAND FOR INITIALISATION X%
REF ARRAY BYTE RAB:="FAILURE";
% THIS IS A LITERAL STRINGs RAB IS INITIALISED TO CONTAIN X
% A REFERENCE TO IT X%
ENDDATA;

PROC ACTION ()3

REF ARRAY BYTE R1:=FLAG, % STANDARD ASSIGNMENT %
R2:="FAILURE")
% STRING IS A LITERAL; STORAGE SHARED WITH EARLIER X%
% OCCURRENCE %

[}
R1:="NOGO"; 4 NEW ASSIGNMENT USES LITERAL STRING %
R2(3):="'A"; % OVERWRITES STRING IN LITERAL POOL %
% NOT RECOMMENDED %

WRITE("FAILURE™)

% PROC WRITE (REF ARRAY BYTE TEXT)s OUTPUTS A STRING OF CHARACTERS
% AT COMPILE TIME THIS LITERAL STRING WILL BE SHARED WITH THE %
%EARLIER OCCURRENCES BUT AT RUNeTIME THIS STRING HAS BEEN CORRUPTED
% AND THE STRING FAALURE WILL BE OUTPUT : DONT OVERWRITE STRINGS %

ENDPROC?

Assignment to a ref-array-byte parameter is likely to be the major use of literal strings. Their
internal syntax is identical to that discussed above and so we can make initialisations of the
form

REF ARRAY BYTE Q:="#0(2),NL,255(7)8")
% BUT Q3=s(0(2),NL,255(7)) IS NOT LEGAL %

145

We can also declare an array of such references:

ARRAY (5) REF ARRAY BYTE MESSAGE;=
("VALVE MALFUNCTION®",
"TEMPERATURE OVERLOAD",
"START UP",
"y % NULL STRING OF ZERO LENGTH ¥%
"CALL OPERATOR")3

Note that the strings (literal) are of different lengths, and we have declared effectively a ragged
structure. In fact we generate an array containing five internal names of five strings entered in the
literal pool. Note the difference between this one dimensional array, and the explicit two
dimensional array MIX above which had to be rectangular (and hence all the strings or subarrays
had to be of the same length) and in which the individual characters of the strings were filled into
elements of the array.

A typical procedure to output a message would be PROC TWRT (REF ARRAY BYTE TEXT);
and a call of this TWRT (MESSAGE(3)) would case START UP to be output.

We now have to consider the operations which can be performed on or between byte values, and
the way in which they interact with the other modes. Bytes are very economic in terms of storage
space and are mainly intended for handling characters and simple logical situations; they are not
designed for arithmetic use and extensive use of bytes in arithmetic may be inefficient. Hence for
“small integer” work, bytes should be used for static storage (especially when a large number of
them is needed) whereas local integers are appropriate for the calculations involved.

For mode transfers, a byte value is automatically widened to integer where necessary; the full
automatic mode transfer diagram is thus:

REAL
BIG FINE BIG FINE
INTEGER INTEGER FRACTION FRACTION
‘\\\\\\INTEGER k//////? FRACﬂON‘z/
BYTE

The keyword BYTE also serves as a monadic operator for narrowing a real or an integer value (a
fraction value would first be widened to a real, but this case is unlikely to arise in practice); the
action is to mask the integer value to obtain the bottom eight bits (and hence a value in

[0,255]); any real value is first converted to integer by the usual rounding process. Overflow may
occur at the stage real to integer, but no overflow will be indicated at the masking stage: this
operation is equivalent to working modulo 256. As usual, an identity operation is included for
completeness.

OPERATOR OPERAND RESULT INTERPRETATION
BYTE Byte Byte Identity: no action
Integer Byte Mask to byte value
Real Byte Round to integer and mask to byte
BYTE 72 is 72 BYTE 0.1 is 0
BYTE 293 is 37 BYTE 275.6 is 20
BYTE -17 is 239 BYTE -3.2 is 253

146

The operator REAL is also defined for byte values to enable type changes to be made at
appropriate points.

OPERATOR OPERAND RESULT INTERPRETATION
REAL Byte Real Float operand to real number

The other monadic operators defined for byte operands are the usual ones +,—, and ABS.
Naturally, + and ABS perform no action (since the value is guaranteed positive) and are included
for completeness. The act of negating a value in the range [0,255] is bound to produce a result
lying outside this range; negating a byte is therefore defined to yield an integer value, the action
being the usual negation

OPERATOR OPERAND RESULT INTERPRETATION
+ Byte Byte Identity: no action
— Byte Integer Negate to give integer value
ABS Byte Byte No action

Entries for byte operands occurring in the tabular description of monadic operators occur first;
otherwise automatic mode transfers would be invoked. Note the absence of NOT; a byte
operand will be widened to an integer. This is to ensure efficient implementation.

The only dyadic operators defined between byte operands are the logical operators LAND, LOR
and NEV. They act in the same bitwise fashion as for integers on 8 bit byte patterns (naturally
producing as result a further 8 bit byte pattern) and the complete tabular description for these
operators can now be given:

OPERAND PRECEDENCE OPERAND 1 OPERAND 2 RESULT INTERPRETATION
LAND 4 Byte Byte Byte Bitwise logical and
Integer Integer Integer
LOR 3 Byte Byte Byte Bitwise logical or
Integer Integer Integer
NEV 2 Byte Byte Byte Bitwise exclusive or
Integer Integer Integer

We have now completed all the cases for monadic and dyadic operators.

Note that what may be regarded as omissions are covered by the mode transfer rules detailed
earlier; the sum of two byte variables, for instance, is evaluated as an integer involving widening
at run time. This is why arithmetic between bytes may be inefficient and should be programmed
using integers. |f we want to put the sum back into a byte, we must include an explicit narrowing
operation.

BYTE A,B,Cy

INT DIGITy
Ay3BYTE(B+C) s
NOTE THE USE IN CHARACTER HANDLING OF SIMILAR EXPRESSIONS X
%# TO CONVERT A DIGIT INTO ITS CHARACTER VALUE = THIS RELIES X
% ON THE SEQUENTIAL ORDERING OF ISO7 CHARACTER VALUES %
AIsBYTE(DIGIT + '0') % DIGIT O TO 9 INTO CHAR '0' TO '9' %

We may use byte values in comparisons. The notions of equality and inequality are well defined,
and =, # (or its variants) may be used between bytes. The other comparisons are also well defined
logically, but some hardware restricts their efficient implementation. For this reason, the use of
<, <=, >and >= between bytes will result in an integer comparison (this is defined by saying
that mode conversion occurs as for subtraction); this in no way affects the truth values of
assertions involving these comparators.

147

EXAMPLE 1:
We could implement a multi-length arithmetic capability in a machine independent fashion by
using bytes. Each number is decomposed into a number of bytes (the bytes placed together
forming the total binary pattern of the number) held in an array. This is equivalent to working in
a number system with base 256. A number in array A can be thought of as

A(1)*2560 + A(2)*2567 + ... +A(N)*256N-1
We give a possible version of a procedure for adding together two such positive ‘numbers’. The
reader is left to devise a scheme for coping with signs and writing further arithmetic routines.

PROC ADD (REF ARRAY BYTE A,B);
% PERFORMS A:;sA+B IN MULTI-LENGTH ARITHMETIC %
% LENGTH A = LENGTH B ASSUMED %
INT CARRY:=0; '
FOR I¢=1 TO LENGTH A DO
INT SUMisA(I) + B(I) + CARRYy

ACI):= BYTE SUM; % EQUIVALENT TO SUM MOD 256 %
CARRY:=SUM SRL & % EQUIVALENT TO SUM ¢/ 256 %
REP}
IF CARRY#0 THEN WARN(“OVERFLOW"):
END3:
% WARN IS A PROCEDURE TO OUTPUT A MESSAGE %
ENDPROC)
EXAMPLE 2:

Assuming a PROC OUT(BYTE B) which outputs a simple ISO7 character, the following

procedure will print out an integer preceded by an appropriate sign. The procedure is recursive
but does not allow for the possibility of overflow — it will not print out the most negative number
for the machine’s word length.

PROC INTEGERPRINT (INT N);
IF N<O THEN
NeamN} % OVERFLOW POSSIBLE X%
oUT('=');
ELSE
QUT('+')y
END3
IF N>9 THEN INTEGERPRINT(N:/10); ENDy
QUT(BYTE(N MOD 10 + '0')):
ENDPROC:

148

