Table of Contents

Prefaca: o @ . 6 0 5 S0 4 @ aa s o B oadmow @ omosa JH
Glossaryof terms &« « & v v v w0 s o o s w w0 wowow ¥

PART 1 ASSEMBLY LANGUAGE .
Introduction . = e T
Symiax description .

Chaptler 1 Format of source statements i
Label field . 1
Operation ficld . : W oafie S @ 4T sMeey3 R on WLacTS M o Sngwrgw Bl
Operand field. « + « ¢ « + 4 ¢ o o e e e e s
Comment ficld . T i gl 1
Input of source statements and corrections 1
Acldressing modes . 1

Chapler 2 Functional operation of instructions 1-19
Load and Store mstructions -+ - 4 o o2oi oo e e 1419
ATthmetic ImStroetlons: 5+ o6 5 o a8 abesm w0 @ oo o ow e 119
Liovgrical nStruStians. .« o v oo o @ = voe o o ow en s e ow owowes 31D
Character handling nstructions. - 119
Branch instraactions . & « . . & & o 0 e b a4 ; .. 1-19
Shifiinstrockions: &= @ o g % 8 @ PO N B e e wm mowoawa 153
CORtrol NSIFICtONS . « + s e 5 %0 evcwrda w e B0 eng e o e e 1ARE
FAOONSIFUCONS . .« . v -« v e e e e e e e e e e e e e e 122
External transler instiuctions. . . - . . .« & o« . oa0owo oo oo 123
Move lable Instructions . + -« + 0+ - & et h e W e wew 1423

Chapter 3 Assembly directives _ 125
Propeam:framewgrek © 0 0 O 000 L LoD G w8 o e .. 1426
[[REREE G o odc & @ oo @ @ oSG 8 W s w o am Y

EME s o o el n s s w o B some Dp 0m G fan 3o s e 1EOR

Enkagesehniralin =0 W G oSS ¥ o4 @ Ba s D @ Sn R W = 49
ENERYENL U oo o o oooened mom o Eealoab m R o= e g owe (1330
FOCTHENI N Fone s e o wn wees @ 0 W seae R A0 B nea E ah s pwm 1e8d
R i mimais an e e Remenm b S Hesdem o et T IEAe

Agsemblypcontrol oo oo @ s s B s v @ w0 W Eog w o 134
| R e S e e S L T A P I STt S R S T .
IFF.: i o s p om0 30 w3 0 & @ moomoos mooer w3 owy s L0
o | e O S e I T . 1-35
CTRRSE S e o o e s o g 9 EoEsEE D 0 gl B 5 Lo o038

I

e,

AORG .
RORG

Value definition .
DATA
EQL) .

Area reservation

RES |

Listing control .
EJECT
MLIST
LIST .

Symbol generation.
FORM .
KFORM.

GEM .

List of predefined svmbaols.
Chapter 4 Programming considerations .

Stand Alone or Monitor controlled programming .
Interrupt system

System stack .

Lser stack .

Trap aclion

Simulation routine.,

Adaptation of P855M software to PROOM mfl-u.-ﬂ |'c- ..

Use of RTN instruction
Stand Alone Input and Output Programming .

1-38
1-38
1-40

1-41
1-41

|-42
142
|-42
1-42

143
I-43
1-47
I-48

1-40

) .
uw Ch on ga

Fud

1-54
1-34
1-54
1-53
1-55

Glossary of terms

Absolute addressing

Assembler

Bootstrap
Breakpoint
Character
Cluster
Common

blank common

labeled common

Debugging Package

Directive

Effective
memory address

Entry point

External reference

File code

addressing specific locations in memory (see also
relocatable addressing)

a system program which translates programs
written in Assembly Language into binary object
code

a program provided for initial loading of the
system

address at which execution of program stops 1o
allow further debugging

eight bits. representing an integer, letter or other
data item

a set of data in object code

an arca to which external references can be made
from one or more modules

a predefined external reference which can be used
in several modules

a processor which allows the programmer to insert
breakpoints in a load module and call debugging
functions before execution of a program

an instruction used for providing a framework for a
program or for guiding the assembly process

address in memory where the actual information
can be found

a label to which an external reference is made

a reference to an entry point in another program or
module

one or two hexadecimal digits associated with an
170 device

Identifier

Internal symbaol

IPL

Lahel

Linkage Editor

Load Module

Location counter

Mnemonic

Module

Maonitor

Object code

Operand

Pass

Real Time Clock

a character or a combination of characters used 1o
label an instruction or a wvalue which is 1o be
referred to by other instructions

identifier in a module

Inittal Program Loader. A program 1o load the
Moo

identifier of max. six characters lang, the first
always being a letter

a processor used 1o link independent object
modules before execution

program output by the Linkage Editor containing
no external references

counter used to assign a relative or absolute
address 1o program elements

abbreviation for an instruction, as wsed in the
operation code field of a source statement, to
indicate a machine imstruction or directive

a part of a program, enclosed by an IDENT and
END directive, which can be treated independently
of the rest of the program

a system program which supervises the loading,
processing and execution of user programs, starts
and supervises the operation of processors and
initialises 1/0 operations

program as translated by a language translator and
suitable 1o be input 10 the Linkage Editor

an expression indicating the address, value or
register to be operated upon by the machine
mstruction

ONC program run

a mechanism by means of which the amount of
computer time allocated to a program is measured
and a signal is given when that period of time has
ended

Relocatable addressing

Source statement

Stand Alone processor

Symbol

Update Package

addressing in relation to the beginning of &
program, not to specific locations in memaory, The
relocation of the addresses is then done by the
machine

one fine in & source progrim

processor not running under Monitor control. It
containg its own /0 routines

an identifier, used as an address value in the
operand field of other instructions

a processor which handles the additions and
deletions in source or object programs

Al

PART 1 ASSEMBLY LANGUAGE

XA

Introduction

This part comtains o description of the Assembly Language. In this description it is
made clear how the programmer can write his programs using the instructions of
the PEOOM Instruction Set as well as the directives which guide the assembly
process when the program is input to the Assembler. The instruction sets of the
PEOOM series computers are upward compatible.

Programs for the PEOOM computers ure written in a symbaolic language closely
related to the machine code. Each statement (or ling) of the program relates 1o g
single machine instruction or to a data item 1o be tuken into account by an
imstruction,

To write programs in the Assembly Language, the user should be Tamiliar with
the syntax of the instructions, which are devided in the following main groups:

— Load and Store instructions
- Arithmetic instructions
— Logical instructions
— Character handling instructions
— Branch instrisctions
— Shift instructions
— Conmiral instructions
— Input/Cutput imstruciions
— External Transfer instructions
— Move Table instroctions,

Programming in Assembly Language requires certain rules to be acceplable 1o
the Asscmbler.

A source program may consist of one or more modules cach of which starts
with an identification IDENT and terminuates with an END isee directives), The
whole source program must be terminated by an *End OF File™ mark {:ECGF).

MNOTE: 1f a source program consists of several modules the modules need not
be separated by :EOQOF marks but by :FOS marks (End OF Segment)
An :EOS mark at the end of a punched tape indicates the physical
end of that tape when the program is punched on two tapes. The
mark is not part of the Assembly Language.

The following ligure shows wvarious possibilities of how programs can be
punched on tape.

In example A the program is contained on one punched tape. The program
starts with an identification LDENT and is terminated by END which will cause
an :EOS to be punched when the program is assembled, and is followed by an

BV,
|
B0 END ENIx
! :EOF :EOF
1: \/\ IDENT
EMIX
HEIE
/\ /\ IDENT
EMND EMD END
EOF EOF EOF
requires LKE requires LKE
A (] C [

:;za:ﬂlﬁlc:! i5 an example of a program punched on two tapes. The first tape
> L-E'w:‘[an [DENT and is terminated with ;EOS which causes the Assembler
m,ldﬂi:_:_m?:ﬂ?f“rlumr action. _Th'i: second tape does not contain an IDENT and is
and :EQF. tely after the first one. The second tape is terminated by an END

Example C consiete
and ending ;c::lr:n::tﬁ [c_-;f;:;wdcrzcrlrgﬁules 1 bwo tapes both beginning with IDENT

14

Example D consists of several modules punched on one tape. Each mocule
beging with an IDENT and is terminated by END and either an :EOS mark if
another module follows this one or by :EOF when it is the last module 1o be
processed. This example requires the Linkage Edior to make of those madules one
larger program which can be executed.

Each module of a program consists of a number of characters grouped into
lines and each statement in a module is made up of the following characters:

Letters: A to Z inclusive
Digits: 0 1o 9 inclusive

Delimiters: + plus
— minus
asterisk
equal
apastrophe
comima
blank
! slash
{ left parenthesis
right parenthesis
period
colon

I *

Location counter

The Assembler maintains a location counter which is a software counter used
to assign a relative or absolute memory address to program elements. The
location counter starts with a relative value equal 1o zero, or it starts at an
absolute address defined by the AORG directive, at the beginning ol an
assembly, The value of the counter is incremented by 2 or a multple of 2
depending on the kind of instruction given.

The current value of the location counter is referred o by an * in the operand
field (sce below). In absolute program sections + has an absolute value Tn that
case the value is incremented in the normal way and the value may be changed
by a RES or RORG directive.

The location counter may take neither a negative relative value nor an odd
value.

Symbaols

A symbaol is a character or a string ol characters used 1o represent addresses ar
values. Symbols may appear in the label field as well as in the operand field of
i statement.

Their syntax is the same as for the label (sce under label field). Some symbals
are predefined and have a special meaning lor the Assembler e.g. + indicates
the current value of the location counter, P is the instruction counter gl

1-5

Syntax description

The following symbols are used to define the syntax ol the PS0OM Assermnbly

Language,

= = to enclose syntactic 11ems
| the vertical stroke has the meaning of or

o= 15 composed of

[] the syniactic items between these brackets may be omitted
| | selectone of the items between these brackets

s Spacc

The Following list contains the definition of all items used.

< gtatement =

< label =

< gperation code =

< operand =

< COIMIMents =
< identifier =
<< NS ONIC =
< 5>
(=cnd=)

< pumerical
condition value =
< condition
MOemonic =

<L=>
*
< directive =

< DATA defined
hexa constant=
< module name =
< gymbol =

= [=label = | <= operation

cade =[< operand =][< commenis =
[+ < comments =

< identifier >

< mnemonic =[5 < cnd =)| L]
[#]=directive =
[+|=T=<term>=[+|—]<-term =
[+]l—=]=term>=

='<characters > |* < characters =

< letwer = | <identifier = <letter =|

< idenuifier = = digit = | < identifier =

< letters representing operation code =
< gtore indicator =

< pumerical condition value = |

< condition mnemonic =

(112|314 5]6|7

Z|IP|NJO|EJGILIAIUINA|
MRINZIMPIMNE[NG|MNL|INM

= load indicator =

incirection

=<IDENT, END et > see chapter on
directives

= see DATA directive>
< symbaol =
< characters representing address or value =

< predefined expression =
<entry poinl name >
=< external =
= comman-field
definition st =

< gommon feld definition =

< commeon field name >
= common field length =
=internal symbol list >

= internal symbaol =
< ficld definition =

< field length definition =
< = field value definition =
< tfield walue delinition =

< field number =

= lerm =

< gonstant =

< decimal constant =

< hexadecimal constant =
< character constant =

< |etter =

= digit =
=< delimiter =
< integer =

< max. of two defined symbols =
= identifier within reference module =
= identifier delined in other module =

< commen field definition =, < common ficld
definition = ,, ...

<common field name =[<common field
length = |

= < jdentificr =

predefined (absolute) expression
<internal symbol =_<internal symbaol =

< identifier =

= < field length definition =| | =|:]< field value

definition =

= = number of hits =

< value o be placed in field >

< address of word =

< decimal ineger >

< constant = | < symbaol =

= decimal constant = | = hexadecimal
constant = | < character constant =
<digit = | < integer =

< hexadecimal integer =
<letter = [< digit = | < delimeter =
A|BIC|DIE]FIGIH| T JIK[L|M]
MIO|PIHR|SITIUIV| WIXIY]Z
0F1]213]4)5]6(7189

=l = =1/ [

= number =

1 Format of source statements

A source module consists o o sequence of statements. The Assembler
interprets cach line as it is presented.
Statements can be divided in the Tollowing felds:

— label field

— operation ficld
— operand field
— comments field

=statement = = =[< lubel = | < operation code = o] < operand = |
[= commients = |
#[< comments > |

Each field bas 1w be separated from the other by one (or more) blank
character(sh. Blanks may not appear in the fields themselves excep when
specified i oa character constant or in a comments feld. Instead of blanks a
backsiash may be used [or separation (see page 1-16). One or more blanks at
the beginning of a statement indicate that there 15 no label feld.

If there are more than ten blanks after the operation field all following
characters are considered to be belonging 1o the comments field.

An o+ (asterisk) at the beginning of a statement idemifies thar line as a
comments line,

Statements punched on tape which arc to be read by the ASR punched tape
reacder have to be terminated by LF XOFF CR, which switches the reader off,
followed by a MNull character, e.g. Rub-out, to allow for a proper reading and
processing of the next usable character.

" | 8] B i I J'ZI E R EE RN EE E R REE LABEL FIELD
= B 4 4 4 =4 4 4 1 4944944 449444 144 4 - 4 4 4 4:
3 | =1 4341444444444 4d44444444454
a 4 s Bl i o I O S 5 s e e i o (5 ke [e < label =@ = <identifier =
= x = B T I e e e e e e e B B i .
]] 5 1444944444444 1944494-44 - <idemifier = o =
B=d-1 1 9 - = E I B R g P S B I e e I n e ; o M -
i g | < letwer =] < identifier > < letter > | < identifier = = digit = | < identificr =
5 14 44443] 8 [N [I [R R S
: s T s s IO e s T 5 (e Ty 5 % M W i 0 i (i Labels tor wentifiers) in a module are used Tor reference purposc to alher
g e 50 N e e 2, S, S O s e iy (= e P oy e 0 I el 55 [s Ml 5 statements im g module.
444 1 17 B [N O i i Sl e e 5 i (e Nl e ek e 061 WSO R T The Assemhbler assigns, in most cases, w each label 3 word address value which
| A3 T A2 d 993 3330 0 223 3T J is the numerical equivalent (absolute or relocatable) of the label.
H B i N T (s e o I R i e i o i e e i i B i
. ? g M Rt I W G B e o M e i s The maximum number of characters in a label recognised by the Assembler is
2 e e I s ey (o T e O i e, o WS S, e i M e sy Py b M I six. ‘The first of those must always be & letter, A label, however, may contain
b 5 i o i i (e e e il S e) i : e " ;
I d 2951 3 794 4931 495344 H 345 mote than six characters but the additional characters will not he taken into
| i e I O 1 P i e (et okl e e e ¥ 5y e i e [e account. IF the label has already been allocated 1o another statement an error
33 3 323313 333 Bgd3a w3y 3 message is outpul.
4433339331333 43339 337 s s s Period signs in o lubel are not significant, e.g.
P i e S el ol R i i i i o e e Qi [sl
S QEE R S R et (R ! R R] RN G el e P e B Sl R Rl S S e S : 1 b
¥4 134343 34393 T34 9 T3 4 2 3 L.ACE L, has the same meaning as LABEL
4 4 4 4 4 4 4 4 4 4 4 = P S (P PP R e (P, Sl (Bt ot B WS R
- B T . . R B B [i s o, B M S e B o e W e e e MO i
s [[e il o5 - R 5 o s Wl i e e i i M oy e e o Mo W o The value of a label is normally regarded as relocatable. except when:
| i e 2 i s [o 2 o i [s ¥ reg I
444441471 A g coonm (e e ST i e N gl e Kol R 1 P
41314114 1 oo (i (i e (i e S0 ke e e jn o ¥ e B s o — an absolute address is equated by an EQU directive
138 4 = 4 o o o -y o = O Sl S N G R ol B e S i) 1 i i
14 4 o N JPLM T S st [el B pei e I e e £ e B e — the label appears in an absolute program section (defined by the AORL
14 1 3933 3 243 4 1335593 3 =03 4 4 4 4 directive and which is not equated by an EQU dircctive 1o a label previously
1334444413343 433333433- 44 J-2:=] defined as relocatable)
dlBldsl d3dd311idddd1d 3434333444
1ol £ e W O s R [s i M s o5 By e O e 5 B
J1501 1< 13 134 3F3Fd 3 23949 33999 435
5 B s 1 e S i i M M o P s W O i e s s M i ikt i iy 0y iy
L et e s s s D o i [e W R e e iy [e i o
=, N A el R e e B O e 2 g (e S St i e s M 5 [B W 2 e
v i 0o e oo 5 o s 3 P i i (s B B el s 250 5 ol b e S
“ 3= 13 3137 = 4 4 4 4 4 4 4 -
8| 131932 tdd4414344414444d4444444
] b B =1 N = -1 = 1 1 i - T T o B =1 T g T
£ 14 4344 313131713171: e B B I e
¥ s FoR e e W i S S s (o S e s Mo o S5 o 5 e e] OPERATION FIELD
Ak o P I PRy i [Eths S S s B e I
2444434133 1343333433343337
= -y] 9 14 1 1 19 1 9 =1 = 4« 4 94 4 94 4 o4 = = - G E - s (PR]] f i
s £3 A33ATA 444444444444 T JF2 < operation code == = = mnemonic = [5](< cnd =) L][=] < assembly
i ?-:I-:I_-:I_,____,_,_:_______ directive >
s 3 oA ddadd 3 A3 3 444
. 1344393353393 4449 493393333 where:
~ Bl dSda 37149773 1449494994114 41
W yli|2399g9d134443343333334434
3 % & o & = [B e et = R St N (U s R SR (SO R G I [- =
n ;i:m.::j':—ﬁ_t:'----—————--..-_;___.__: ~mnemamnic =
o W 1 1 4 1 4 4 44444 4 4 11 =124 :] : y
| | _;__,_:_:_1;_:_:_:_1_ 1444444444444 44- a8 _l"hnn]‘.lcmllun field normally contains the moemonic of a standard mstrucoon. [t
o= | PEEEEE R R P R is possible, however, to generate one’s own instruction mnemonic by means of the
: ? : E : _.'.:.': 1733 = —; Al £ 1 T 2 o B = s e FORM, XFORM and GEN directives (only with the monitor contralled
i3 z;J_g:_-_{"--'4'::.j Jebrd=s 8 39saeE] q 390903 Assembler).

11

L

[-11

b

Allowed after the mnemonic of certain register to register and memory reflerence

instructions. tindicates that the result of the aperation must be stored in a memory

word (bit 13 of the instruction is set to 11 In fact, 5 has to be considered as a pan

of the mstruction moemonic.

epg. CIR and CIRS instructions are to be considered as two differem
INSITLC LIS,

NOTE: 1L is allowed 1o have the 5 preceded by a period sign though 1he
Assembler does not take this sign into account.
cor ADSL = ADS

(<end =) = < numerical condition value = | < condition mnemonic =
< numerical condition value == 001/ .., . 7

< condition mnemonic = =
ZIPINJOIE]GILIAIR[UINAINRINZIN PINEINGINLINKN

This indicator specifies the condition under which 2 conditional Branch
mstruction is to be performed. The table below shows how in the Assembler the
conditionu] mnemonics and numerical condition vilues miy he used.

-

Indicates the indirect addressing mode in a register o registor of @ memory
reference mstruction.

OPERAND FIELD

The operand field may contain an address expression, a FEgIsler expression or
constants associaled with the current machine mstruchion oe '.l."-.'ﬂ'r'l'li'.ll:'n' directive
or a combimation of those,

The structure and meaning of the operand depends on the type of instruction
and directive and is explained below

All operand expressions must be sepurated by a comma,

Expression
<expression=a = [+ | —]<term > L+ | =)<term=[l+ | =]=term=> Il
< term > o o= < constant > | < symbol =

MNOTE: » is considered 1o be a symbaol,

An expression may not reler o more than 2 symbols and may not reler o
more than one register name. In the latier case it may not contain any other
term.

COND. REG (<CHD>)
CONTENTS
3 CGENERAL ARITHM. COMPARE 10
o {0 12) ZERO (E} EQUAL (A) ACCEPTED
1 (1) (P} POS. {G) GREATER (R) REFUSED
2 (2 (M) MEG. (L) LESS s
3 (3 () OVERFL, = (U UNKNOWN
NOT - CONDITION
#=10 (4) (ML NOT ZFERO (MNE) NOT EQUAL (NA) NOT ACCEFPTED
#1 i5) (NP} NOT POS. (NG) NOT GREATER (NE) NOT REFLUSED
#2 (6] [MN) NOT NEG. (NL) NOT LESS dae
2 (7) UNCONDITIONAL

-
Allowed afier the inst
that the oper
issemb)e

nstruction mnemonic of a4 constant instruction. It specifics
d; and is contained in 16 bits Le. that the instruction must be
O a5 5 |n;;.'|'|E instruction.

iI-12

Address expression

The address specified in a memory reference instruct on can be either absolule
or relocatable,

An absolute address 1s the actud] address in memory where the information the
user necds can he found.

A relocatable address is relative to 1he beginming of the program in which it
A pears,

The address expression may contain any of the following terms or g
combination of them:

% asterisk, which is a predefined cxpression representing the
current value of the location counter. This counter s
incremented by two or o multiple of two depending on
the length of the instruction,

symbol used to refer to an instruction or data word with the
same identifier in its label field, The Assembler will
convert the symbol 1o a relative address.

displacement value which can be attached 1o « ar = symbol = 1o indicare o
word not labeled by an identifier,

Predefined expression

A predefined expression is an ERCsSInn consisting ol not more han 1w
symbols, cach of which is defined i.¢, has been assigned o value, Some symbaoly
are implicitely predefined in the Assembler isee page 1-49),

An expression may contain only one external reference. The remainder, if any,
of such an expression must have « predefined absalute value. The combination
of an external reference and a predelined absoluie value may only be used for
specifying the value of a 16-hit field, The table below shows the result of 4
combination of positive and negative absolute or relocatable values.

181 term —|
+ R - R + A — A
2nd term
R E A R R |
—8 A E L E
1 K E A M
L | r E A A
1-14

where:

R = relocaable
A = absolute
E = ¢rroncous

Register expression . | |
Register expressions are regarded as predefined expressions and consist of one
or two characters. The register expressions recognised by the Assembler are-

F P-register or instruction counter

Al... Al4 Registers | 1o 14 (general purpose regisiers)
AlS Register 15 (stackpointer)

Constants

A variety of constant types may be specilied in the operand of an instruction
ar directive,

seonstant > = <decimal constant = | < hexadecimal constant > | < character
Constant =

Decimal constants
< decimal constant =2 = < digit = | = integer >

he decimal constant is o digit or integer contained in an &bit characier or 16
bit word whose value may range from 0 10 327a7,

Hexadecimal consiants
< hexadecimal constant == = J = hexa integer = X' < hexy integer ="

The hexadecimal constant is considered to be hexadecimal value or bit string in
the range from 0 o FFFF,

Chiracter constants
= character constant =« = "= ha racter=[< chariacter = I

A character constant is composed of a character siring enclosed in single
quotation marks. The string is composed of the characters described in the
character set on page 1-5.

A character constant can be used with g machine instruction only if 1he
vonstant consists of either one character (short constant) or two characters
{long constant). Longer strings can he specilied in o DATA directive, A single
fuate mark (7)) used as a characier js specificd by 1wo conseculive single quote
marks,

I-15

COMMENT FIELIDD

Comments are only for the programmer’s benefit. They are included in the
'=I.‘i.‘i'._zl‘l‘l|}_|1-' listing but not in the generated object program.

A line is considered 1o be a comment ling when the first 10 characters of tha
line are blanks or when the line starts with an asterisk.

INPUT OF SOURCE STATEMENTS AND CORRECTIONS

The user may type in the statements and corrections from the operator's
typewriter. He may do so by counting the number of characters 1o obtain a
neat output on the listing device.

Example:
151 col 10th eol 19th col 4thh col
label — opoode — operand — COmments

may be typed as Tollows:
label opeode operand comments
without having to count Tor the first column of each field,

Example:

DATAFVLDE A4 4

VABLITWHALT

DEVUNYLDK A4 5

SABLITIVHALT

ADDITVLDE AL DVSET INDEX REGISTER FOR BUFFER.
VLDESAZOOFFYVLOGICAL CONSTANT INTO A3

ADDRESSING MODES

in Volume Il we see how addressing takes place from a hardware point of
view. The condition an instruction must fullfil o mect the requirements of
the Assembler is explained on the preceding pages. Specilic examples. with
wource statements and explanation concerning the arithmetic mstructions AD
and ADR are given 1o show the operation within the CPU. .
See for the hardware operation of those imstructions Volume 1L The order
which the examples are given is in accordance with the deseription on those
pages,

Direct addressing

Al AL LABEL The contents of the memory location with

symbolic address LABEL are added to the
contents of register Al The result is placed in Al

The contents of the memory location with address
LABEL are added (o the contents of register Al
The result is stored in LABEL.

ADS ALLABEL

Indexed addressing
AD AZLABEL.ALD The contents of register A10 are added 1o the
address LABEL. The result gives an address
whose contents are added to the contents of A2
The result of the latter operation is placed in AZ

ADS AZ LABELATD The contents of remsier ALD are added 1o the
address LABEL. The result gives an address
whose contents are added 1o the contents of A2,
The result of the latter operation is stored in the
address: LABEL + contents of AlD.

Indirect addressing

ADs AZLABEL The contents of LABEL point to an address
whose contents are added to the contents of

register A2, The result is placed in A2,

The contents of LABEL point to an uaddress
whose contents are added to the contents of
register A2. The result-is placed in the contents of
LABEL.

ADSs AZLABEL

Indexed Indirect addressing
AD+ A2 LABEL.A1D LABEL is added o the contents of register A LD
The result points to an address whose contents
are added 1o the contents of register A2. The
result hercof is placed in register A2,

ADS« AZLABEL.AID LABEL is added 1o the contents of register A1D.
The result painis (o an address whose contents
are added 1o the contents of register A2, The

result hereofl s placed in the address obtained of
AL,

Register to Register operation

ADR ALAZ The contents of A2 are added 10 the contents of
Al. The result is placed in Al.

Register addressing

ADR+ Al AZ The contents of the address pointed 10 by A2 are
added to the contents of register A1, The result is
placed in Al

ADRS ALAZ The contents of the address pointed to by A2 are
added 10 the contents of Al, The result is stored
in the address pointed 1o by A2,

ha

Functional operation of instructions

——

LOAD AND STORE INSTRUCTIONS

Load Instructions _

Before the programmer can perform an operation on 1 he contents .“F a
memory location or a register its conients musl be placed in one of the
reaisters A1 thru A1, o

T-;-;-u load instructions are provided, allowing to Ir_::u_-::]l a lt:--‘_t:nu word [rom
anywhere in memary or from any register into a specified I'Egl:‘l;il.:r whcrn:: the
operation will take place. and one instruction 10 load a constant nia a register.

Store instructions ; : : _

Companion to the load instruction is the store nstruction which may store the
contents of a register, containing the result of an operation, Info 4 MEMOry
location or a register,

ARITHMETIC INSTRUCTIONS

Arithmetic instructions perform the normal arithmetic functions such as ;l.c_kd,
subtract. The instruction operand operates upon the contents of the specified
register,

LOGICAL INSTRUCTIONS

Instructions described under this heading are called logical instructions because
they operate on binary information according 1o the rules of logic. The lirst
operand which may be a memory location, a register (R1 or R3) or a constant
is compared with the second operand. register R2. The result ib. placed in a
register or possibly in memory. In the instruction set each logical instruction 1s
given a description in which way the contents of a memary location is AMDed
or ORed.

CHARACTER HANDLING INSTRUCTIONS

Character handling instructions operate on a character level. Characters may
be exchanged, compared or 8 bits of a constant may be placed in 8 bits of a
regisier.

BRANCH INSTRUCTIONS

These instructions cause a branch o an address in memory either when a
certain condition is fulfilled or unconditionally.

119

In branch mstructions on condition the nstruction mnemonic is followed by a
number ranging from 1T thra b, enclosed i brackets. When th number is (7 or
omitted, the branch is unconditionally.

These numbers are compared with the contents of the condition register set by
the previous instriction.

The condition number has the lollowing meanings:

(M branch if CR = 0 (41 branch if CR ¢ 0
(1) = [3) #= |
(2} = &) £ 2
(3 =13 {7y unconditional branch
Example:

LI 424
LABEL SUK A2l

R B4} LABEL

The Assembler allows to use, instead of 4 number, a condition mnemonic e 2.4 E,

A (see page 1-12)

Unconditional branches are made by the [ollowing instructions:

— absolute branch instruction or relative branch instruction without a
condition indicator or when (7) is specificd.

— CF, RTM, EX instructions.

Long Tormat absolute branch instructions permit to branch, forward as well as
backwards, to any address in the program. Short format absolute branch
nsteuctions may only branch to locations 0000 to 00FE. Relatve forward and
relative backward instructions may not skip backwards more than 127
locations and 128 locations forward,

The Assembler gives an error indication if the permissible branch range is
excecded,

Ihe address to which control is to pass may be indicated in various ways:

Iz By means of & symbolic address expression:
ABLI3Y LABEL

By an absolute address held in a register;
AHR {7y A3

3. By using
CoOngtaniy:
AR /ra

doconstant to indicate an absolute memory. address (short

1-20

4, By means of a displacement value added to or subtracted from the

instruction counter value (BB and RF instructions only). This
displacement value is computed by the Assembler from an address
expression used in the operand and may not exceed more than. 128 words
forward or 127 backwards:

RB0) ZERO

Anather group of branch instructions are the Call Function and Return from
Function instructions. The Call Function instruction provides a link o a
subrouting by branching to the first instruction of the subrouting, To be able 1o
resyme the execution of the main program after the subroutine has been
cxecuted the contents of the Poregister and the Program Status Word are
stored in the stack. When the last instruction of the subroutine (RTN) s
executed the contents of P and PSW are restored,
A special group within the branch instructions 15 formed by the instructions
FK EXK and EXR.

Mese instructions allow o address @ memaory location of which the contenis is
the binary representation of another instruction. The latter instruction is
exccuted before the program continues with the next instruction in sequénce,

Example:

LDKL AJCIO
LKL A4 85T

Clo Clo ALLTY

EX R+ Al EXECUTE S5T

R4} =72

EXR« A3 EXECUTE CIO
SST S5T ATTY

RBi4) *—2

The Execute instruction may not refer 10 other EX, EXK or EXR instructions
or to Call Function, BTN ar double format instructions,

SHIFT INSTRUCTIONS

Shift instructions operate on bit level. These instructions allow 1o rome the
contents of one of the registers Al thru AT n positions in the direction and
manner specified in the instruction.

CONTROL INSTRUCTIONS

These insiructions perform the coniral of the program by allowing the program w
be mlerrupted or not, or to reset an imternal interrupl,. Except Tor the LR M
wnstruction, control instructions showuld :Jﬂ!_'.. be wsed 10 Stand Alone progrmming,

INH and ENB are two companion instructions. The program part between
these instructions is not interrupted as INF inhibits all imerrepts, EMNB sets the
macline sratus o permiet merrupls,

Example:
IDENT TEST
OouT ECL *
RORG OUIT + faii
STAR] HIL 1
INH
(B AG L0
LDEL AlLBUF
DK AZ0
ALTAIM ClO AZ1./30 progeam inhirhied
REI(NA) AGATN
[AJBUFPTPE,AS
EMNB

the RIT instruction is used to reset an imernal interrupt which was previously
sel by an anterrupt from the control panel, power failure/ sutomatic restart,
real-time clock or by a program error.

The programmer may specify a 5-bit hexadecimal value in the operand of this
mstrwction 1o elear specific merrupis.

INTRTC RIT f1H Reset the real-time clock interrup

170 INSTRUCTIONS

O instructions handle the data transfer between the CPU and peripherals, the

aperation of control units for these peripherals and status control,

In monilor controlled programs the /O functions, initiated by these
INstructions, are taken over by a general 1/0 routine which is called cach time
a LKM instruction followed by a1 DATA directive is used.

=22

e user need therefore not w write his own /O routines, When the

i 1 i il i P i
programmer is 1o write a Stand Alone program he hias 10 write his own 1O
FOLLIES.

EXTERNAL TRANSFER INSTRUCTIONS

Two of these instructions, WER and RER, may he used for programming the 170
Processor by addressing an external register. The function of these instructions is
deseribed on page 1-54. The ather instructions of this group are only wselul when
working with the Memory Management Unit{MMUj on the PESTM and permit 1o
tond 16 registers on the MMU with 16 consec ulive memaory locations, or Lo replace
these localions with the contents of the 16 registers. The 16 registers arc o ke

cegment table.
MOVE TABLE INSTRUCTIONS

These instructions can only be used on the PE57M. They allow to move a table either
1 an arca higher or lower in memory or to move a table from a user 1o a system

area, and vice versa.

1-23

1-24

Assembly directives

Directives are used to provide a framework for a program and 1o guide the
assermnbly process. The directives are weitten in the program and are printed on the
assembly listing if the listing option s specified in the Assembler option message

(see page 2-3).

The two versions of the Assembler accept either all direet

Assembler) or part of the directives (Stand Alone Assembler).
(he table below gives a survey of which directives arc accepted by which

Assembler.

Stand Momitor
Alone controlled
Drective| Meaning Assembler] Assembler| page
IDENT | Program identification X 1 = 1-27
END End of assembly X X -2
| ENTRY | Define entry point name X X 130
EXTRN | Define external x X 1-31
references]
COMN | Define common blocks A 1-32
STAB Define imernal symbol - A 136
table -
| AORG | Assign absolute origin X b4 1-37
| RORG | Assign relative origin_ | X X 1-37
IFF If False - X [-33
IFT if true =i X 135 |
XIF End of condition sl X 1-35
DATA Data generation s X 1-38
_EQU | Equatesymbolovalue | X | X 1-40
RES Reserve memory ares x X 1-41
EJECT | Continue listing on new - X 142
S | P G i] ;
LIST Resume listing outpi ¥ 142
NLIST | Suspend listing output = X =42
FORM | Format definition - X 1-43
XFORM | Extension of FORM = x|
dircctive]
| {_ﬂ__ ‘Generation directive - X B EPT

2

ives (monitor controlled

L

The directives can be divided in the following groups according 1o their
finction:

IRDENT, END
ENTRY, EXTRMN, COMMN
— Assembly control IFT, IFF, XIF, STAHR, AORG, RORG
— Walue deflinition ECHI, DIATA
Area reservation : RES
— Listing control MLIST, LIST, EJECT
Symbol generation FORM. XFORM, GEN

— Program lramework
Linkage control

PROGRAM FREAMEWORK

The directives TDENT and END Torm respectively the lirst and last statements
in the module. They are mandatory. The module punched on tape must be
lollowed by -EOS or EOF.

The IDENT directive is used for identilication purposes and the END directive
generales the END cluster after which the assembly process is stopped and a
symbaol 1able is printed.

126

IDENT program IDENTification IDENT

The IDENT directive specilies the name 1o be given 1o the object module
sutpul by the Assembler. 11 is used for identification purposes in selective
loading or updating (see parts on Linkage Editor and Update Package). .
This directive must always be present and must be the first stalement i
source module.

Syrlax
ADENT = module name =
where:

= module name = A symbaol which is specified according 1o the rules Tor a
label.

END END of assembly END

This dircctive must be the last statement o a module and terminates the
assembly process by punching an :EOS mark.

Svirtax
[< label = [END[< predefined expression = [, < symbol =
where:

< |ahe| = The tabel s given a relative value equal Lo the length of
the relative section of the generated object program,
This length includes the length of the aptional symbal
table (see STAB directive, page 1-36).
The value is i this module 15 absolute.

< predefined expression = This expression, if present, gives the address of 1he
lirst instruction 1o be performed in the program
after loading.

< symbaol == This parameter gives an entry point name 1o the
internal symbol table of the generaed ohbject
program when the STAB dircctive has been
assembled.

1-28

LINKAGE CONTROL

Same modules which have 1o be grouped into one larger program contan
relerences to identifiers defined in other modules,

By means of the directives ENTRY and EXTRN the user is able to refer to
certain parts in other modules whereas the directive COMN ailows 10 1|'ansﬂ_:r
data among several modules either writien in Assembly Language or in
FORTRAN.

By using a COMN the programmer can define one or more common blocks.
Each common block may be divided in a number of subfields of varying length,
each having a symbolic name which can be referred 1o directly but only in the
maodule in which they are declared.

COMM blocks may be labeled or blank: a COMM block is labeled i a name is
attached to it

The Linkage Editor allocates a space to the blank common block at the end of
the link-load or link-edit run (see Linkage Editor) This block s placed at the
end of the entire program.

Labeled commons are placed at the end of the first module that refers to 1.

The ENTRY, EXTRN and COMMN directives must always Tollow immedialely
after the 1DENT directive and in this order, though it is not necessary thar the
ENTRY as well as EXTRN and COMMN are specilied.

So: IDENT. ENTRY, EXTRN, COMMN or
IDENT, EXTRN, COMN or
IDENT, ENTRY, COMMN el

[-29

EMNTRY define ENTRY point name ENTRY

The ENTRY dircctive is used 1o declare entry points, i, e labels which are
delined in the corrent module and wsed as aperands of another module.
Fhe directive must follow, if present, the directive IDENT.

Svntax

S ENTRY Co<entey point name =[,<entiy point pame >, .., < eniry
name = |)

point

where:

<entry poitt name = Can be referred 10 by an operand of an instruction in
another module. The maximum number of entry points
which can be specified in one ENTRY directive is
determined by the length of one line,

Example (see also EXTRN)

IDENT PROG
ENTRY NUMBL NUMB2, NUME 3

MLUMB] LKL Ad LABEL

MLUMB2 ST Ab, REFER
NUMB3I CF A4, EOS

END START
1-30

| EXTRM define EXTeRNal references EXTRMN

The EXTRN directive is used to declare externals .o, operands which are used
in the current module and defined as labels in another module

The directive must follow ENTRY, or IDENT when the directive ENTEY s noi
prCsCNL.

Symtax

EXTRMN = external name =[, < external name > , .., < external name =

where:

<external name = MName of external reference (label in oiher module). The
maximum number of external names which can be

specified in one EXTRN dircctive is determined by the
length of one line,

Example (see also ENTRY)
IDENT ASMPRO
EXTRN NUMB2

CF Al4, NUMB2

EMTY START

COMMN declare COMmoN hlock | COMMN

The COMMN directive facilitates communicatian between modules writien in
Assembly Language or FORTRAN, The directive is written as follows:

Symtax
[=label > | _COMN_ < common field definition list =
where:

<commen field definition list = = = comman tield definition =, < commaon
field definition list =]

where:

=ecommon field definiion == =common field name>[<common field
length =

wherg:
=common field name = ;= < identifier >
=common field length > == < predefined absoluie expression =

If the parameter <common fieid length= is omitted the default valye
assumed by the Assembler is 1. The field length must be given in words.

Example

ALCOMMNLEVALL (30 FVALZ (3), INTGVY (109

which defines a labeled ctommon, named A, having the length
I+3+10=1& words,

A is defined as an external reference and commeon block name. Either Lhe
common block name itsell or the subfield names may be referred 10 in the
same module. The subficld names are then considered 1o be equivalent to:
=eommon block name = + < absolute displacement =

L1

LDLAd, FVALZ s equivalent 1o LD AL A + 5

1-32

and
SToAZ INTGY + 18 is equivalent 10 ST A2, A + 30

The displacements in this example are counted in characters,

Blank commons can only be referred to by the subfield names defined in the
pperand field.

COMNOVALL (3), VALZ (4)
L COMN VAL (9, VALY (1)

These directives define a blank common of 3 + 4 + 9 + 10 = 26 words,
VALZ, for instance, may be used in symbolic expressions and is equivalent to-

< blank common “name" > + &

1-33

ASSEMBLY CONTROL

When 1t is neccessary to check whether a certain condition is satishied belore
assembling a number of source lines, the user may include the dircctives 1FT,
IFF and XIF. The assembly of the IDENT — END — XIF directives Are Fisver
bypassed by IFT or IFF,

By means of the STAB directive the user miay specily one or more internal
symbols which are to be used for Debugging purposes. All these symbols s
have been defined previously in the current module.)

Comman block names are handled as exiernals,

The RORG and AORG directives are used 1o reset the location counler to a
relocatable or absolute value indicated in the operands of those two directives.

IFT, IFF, XIF Conditional Assembly IFT, IFF, XIF

Those directives are only wsed in combination with the directive XIF o
indicate that a block of instructions is to be assembled -:‘J|'||_l,' il o certain
condition is fulfilled. The assembly of the IDENT — END — XIF dircctives
are never bypassed.

IFT {IF True)

The IFT directive specifies that the Assembler has to assemble the next source
lines only if the condition stated by this directive s Tullilled.

Syntax

—IFT. < predefined absolute expression > = < predefined absolute cxpression =
Il the first parameter = second parameter the source line(s) following IFT up
to the next XIF directive are not assembled.

IFF (1F False)

Swvntax
—IFF i = predefined absolute expression = = < predefined absolute expression =

IT the first parameter = the second parameter the source lines fallowing IFF

will not be assembled.

Symtax
X F

Ihis directive allows all subsequent statements 1o be assembled until a new [FT
or IFF statement is encountered.

STAB define internal Symbol TABle STAB

The STAB directive outputs at the end of the relocatable program section of the
generated module one or several internal symbols to be used for debupging
purposes {internal symbal is the address given to a symbol in the progrom afier
assembly). All symbols must have been declared previously in the curl'-_-':_u module,
STAB must immediately precede the END directive,

Symtax

—STABL < internal symbaol list =

where:

< internal symbol list > = <internal symbol =[. < internal symbol list =]

!f the STAB directive does not contain 4 parameter in the operand feld all
internal symbols of the module will be included.

The programmer may not specify entry points, external reference names or

commons. This directive is only taken into account when in the END directive the

pa}:‘iam::tcr =symbol > is specified which gives the name of the iniernal symbuol
table,

I-36

AORG Aszsign absolute ORiGin AORG

This directives assigns an even absolute value 1o the location counter. The
lpcation counter receives that walue by specilying < predefined absaluie
EXPression =,

From the time AORG 5 given and until a RORG directive is given the
location counter is incremented in the same way as il it were relative, ie. by
inerements of 2 and 4 depending on the length ol the instruction. All labels in
an absolute module are given an absolute value unless they are equated 10 a
predelined relative value by an EQU directive.

BB and RF imstructions in an absolute program cannot eeler o an address inoa
relocatable program section as the place from where this section will be loaded
is not known.

Syntax

L ADRG < predefined absolue expression =

RORG assign Relative ORiGin RORG

The RORG directive allows the user to specily the beginning of a relocatable
module by assigning a relative value. which must always be even, 1o the
location counter. Its value may never become negative. I RORG has no
operand the location counter is given the last relocatable value it has
previously received, This value is equal o the length ol the relocatable module
al the ume this directive 15 assembled.

Svitax

—RORG_[= predefined relocatable expression =]

I-37

e
YALUE DEFINITION 4142 AR
| e]
The directives DATA and EQU are used to define certain values in a madule, 4320 C
| e
(1ADD FORADTY
nuo1 1
DATA DATA generation I DATA 00 A -
0012 2
The DATA directive is used 1o assign a value 1o one or more words in the e
module. for inclusion in the ahject madule. 4445 L
4620 F
Syvntax
[<label > 1L DATA_ < data expression = Example ; : .
¢ When the user wishes to make an ECB he may do so as follows:
where: .
ECB_DATA_L, BUF2, 6,0, 0,0,
<dala expression > = | <expression | < character string = | .
L = data expression = | Example _) .
< lahe] = refers 1o a symbol in the operand field elsewhere in the DTt WEZG, o WL LA s Ll TR S
maodule. ; ‘ -
<data expression > the data expression may be: will generate the tollowing:
— adecimal or hexadecimal constant
- an address expression 7
e e : FF80 128
a character string consisting of one 10 thirty-1wo
ASCIL characters enclosed by single quote marks, A GO0 - 12
series of words is gencrated. of two characters cach,
which are left justificd. When the number of 03AR EEY
characters is odd the rightmost character of (he las:
waord is a space FEFR = A
< wvalue = LABEL
Example = S
The expression may contain a number of parameters which, in teal, may _._’Eﬁ__ i
generate no more than 16 words in memory, 5054 XT
—_—
—DATA L ABC . /0ADD, 174 2'DEF LA20 e

will generane the following wards:

1-38

-39

EQU EQUate symbol to vaiue EQU

Identifiers are normally defined by being assigned memory values as they
appear in the label field of an instruction, The EQU directive mav be used o
define an indentifier in a direct manner by assigning o it the value of an
expression in the operand bield. The symbol in the label field is made eguivalent
to the value in that operand field, This value may be absolute or relocatable.

A symbol. provided it differs from standard mnemaonics and FORM-defined
mnemonics, may be used as an operation mnemonic but may not be followed
by an operand. The Assembler generates one code word each time this
mnemanic appears in the operand field.

Syrtax

< label = SEQU L = predefined expression =

Foxample
i A EQU_/41C4 CT may now be used anywhere in the program

to represent the value F41C4,

T
LDKL_ALCT

Example
VAL EQUo10

_—

LDK o Al VAL

Example

LAB . EQU LAB receives the vaue of the location counter,

(equal to: LAB RES Q)
Example:
C:1LEQU._2s
REC: 3'—|EO|._|1_._|"\3-

Each time the Assembler encounters C:1 or REG:3
they are replaced by “25" and A3 respectively.
LDK Al Cil—== LDK A1,25

LDK REG:3,1—-=LDK A3,

LDK REG:3, C:1—=LDK A3 25

1-40

AREA RESERVATION

The directive RES can ce used 1o skip over an arca in memory. The RES

directive Saves @ Memary arca of a given length, specified in 1_h0 operand,
\dvancing the location counter by twice the pumber of words specilied.

RES REServe memory area RES

e RES directive is used to reserve a number of memory words. The
programmer may specily this number in the parameter. The location counter is
incremented or decremented depending on the positive or ncgallnw value of
that parameter. IT positive, a memory area of the specified value is rn:st_r}f.ud. If
negative, a memory arca of the specified size before the place identified by
< label =. :

The value of the latter is not changed but the locanon counter 1s resel to a
lower value by subtracting twice the value specified.

[< label = JuRES— < predefined absolute expression =

where:

< label = receives the address of the first word of
the reserved area.

= predefined absolute expression > specifies the length of the area to be
reserved.

If = predefined absolute expression = is 0 the location counter s not updated
and. if <label = is specified, the statement i5 equivalent 1o

< label = JEQU_#

Examples:
RES_4 Reserve 4 words
LARI_ RES._.-2 HReserve 2 words before LAB1
NS, RESO NS receives the value of the location counter,

Examples of stack reservation: y
STACK RES 4 STACK—
BASE EQU #-2

BASE#-2—

% —_

LISTING CONTROL

The Assembler normally produces an output listing for each assembly. By
means of 1h|l: directives EJECT, MLIST and LIST the programmer mu;,'
determine which parts of the modules do not need to be listed.

EJECT Continue listing on new page EJECT

This directive causes the remainder of the current page of the line printer
paper o be left blank and the listing to be continued at the top of next page

Svniigy
EJECT.
NLIST Suspend listing NLIST ’

The NL.rl!S’i' d:;_er!dwc causes the Assembler listing to be suspended from the
point where this directive is given until either th ireclive i ;
Rkl 2 e END directive or a LIST
Lines which contain errors will continue to be printed during this phase

Syntax
—NLIST .

LIST Resume listing LIST

The LIST dircetjve
i causes the Assembler o r + listing i s
suspended by a NLIST dreqtien. esume the listing after it has been

Symtax
=LIST.

142

sYMBOL GENERATION

Three directives allow the user 10 make a number of special instructions for a
specific purpose or program, namely FORM, XFORM and GEM. [n the FORM
directive the user may define the hit configuration and the mnemonic of the
special instruction.

If two FORM-delined instructions are o be specified which differ only in the
contents of certain ficlds the programmer may use the XFORM directive,

The GEM directive allows 1o include the instructions, defined by FORM and
XFORM, in the existing Assembler by extending the Assembler’s symbol table.
A particular useflul pseudo-instruction or system macro can be defined once for
all times instead of having to be generated by a FORM directive in every
program where it is used.

Symbol gencration 1s only possible with the monitor controlled assembler.

FORM FORMat definition FORM

This directive is used to define the format of a word or a group of up to 8
words named by an identifier which can be used as an instruction mnemonic
later in the program.

The directive is written as follows:

Svntax
< label = JFORM_. < field definition =, < field definition =,
= held definition > . .. < field delinition =][/ < held number List =]

where:

= lield definition = ::= = field length definition =[| = |:fficld value definition >]
< lield number list > == < field number =], < field number lisi = |

and

~ tield number = ::= < decimal integer >

= lield length definition > specifies the number of bits to be allocated 1o a
lield of the word and may range from | through 16. If several fields are defined

inside a word the sum of the field lengths must be 16. The maximum number of
consecutive words defined by a single FORM directive is 4.

143

< field value definition> can be used to place a value in the field 1o which it
refers when the value is preceded by an equal sign { =},

If the value is preceded by a colon (3} the value indicates the address of a word
in relation 1o the first word of the expansion defined by FORM. The value
definition itsclf may be a predefined expression, an external reference withoul
any displacement or a predefined absolute or relocatable expression. If a
particular field has not received a value definition the field will be filled wit
ZCFOEs,

< label = dciinn; the instruction mnemonic. The operand licld of the directive
must then contain values to be placed in any non-predefined fields. The las:
non-predefined valoe is default value,

fxample
MMEM_FORM i 16=/83A0.16:14, 16 = /814] 16 = INST, 16, 16, 16

FHAAD —arithmetic or logical value

MMERM -+ 14 —=address of word lollowing this block
AR K —sarithmetic or logical value

INST ~identifier

-0

-0 3 words containing zeroes

-0

TIE'H: parameter 16:14 i[ujiv:ltus a word address seven words form the beginning
ol the expansion defined by FORM, The programmer has o specify this
address as the last three words are left zera. _

Example

This example shows how the programmer may make an ECE il not all

w:.. r = - L) i3 5 i]
le%ﬂmerh-m known, By using the FORM dircetive he does not have ta write
the mstruction sequence:

LDK AT —
LDKL AB, DEC
LKM CB
DATA

1-44

0000 [DENT FORM
o001 INOUT FORM 8= /07816=/80A016,16=/28(4.16=
noonz2 - 0000 BUFFER RES 1]
ooon3 004 0008 DECB DATA E.BLFFER.20.0,0.0
D01e 0000 R
nots 0014
001 A DG00
001C 0000
OO1E 0000

noiond 0020 0782 START INOUT /82 DECB
n022 B0AOD
N024 004 K

D026 2804
D028 D001
On0ns 002A 2804 LK M
Oooe 0020 0003 DATA 3
0007 END START

SEYMBOL TABLE
BUFFER 00 R DECE 0014 R START 0020 R
ASSERR. D0000
FOF
AEQF
EXIT

From now on the programmer may use INOUTL/82, DECBE instead ol
LDK AT, ..

Field number list

IT the programmer wishes 1o put the values of the operand field of the FORM
defined mnemonic in an order different from that of the non-predefined field
they are w oecupy, or if the user wishes 10 alter the values held by any of the
predefined ficlds, he must ose the Gield number hst parameter in the FORM
directive.,

Each field that is generated is given a number, beginning with © for the first
held, 1 For the second ficld, n-1 for the nth field (n may not exceed 15,

The licld number list must be preceded by a [/ (slashy and be placed after the last
tield definition of the FORM dicective,

Al non-predefined felds specified i the dicld delimoon st must also be speeificed
im the field number list.

Alickd number is represented as o decimal integer,

I a field number list is specificd alier a FORM directive, the operand
expressions following the pseudo-mnemanic will occupy the ficlds specilied in
the field number list in the given order. [n this way. the contents of predefined
tields may be altered while blank fields may be left blank.

Example:

Suppose the user has specilied in his program. by means of a FORM directive,
@ 16-bit word of the following format:

5=3 2= 1=1 8
(D001 0l0i]TJoo0a0n

ficld no 0 I 2 3

He wishes to have this word changed in:

=72 2=31=0 §=1
(0001 0] loJoonoono 1]

ficld no 1] I 2 3

He may do so by using the following instruction sequence in his program using
Lthe Tield number list in the FORM directive

IDENT EXAM

WORD FORM 5=22=11=1 8= 2213

WORD 03,1

END

The Assembler will now change the ficlds as follows:
field no 2 (1 = 1) will be changed to contain the value 0
field no 1 (2=1) will e changed to contain the value 3
field no 3 (8=2) will be changed to contain the valye 1
ficld no 0 (5=2) will keep the value 2

The operand EXPressions
parameters. If one param
Position must be indieate

fellowing a4 pseudo-mnemonic are positional
cter s omitted (other than the rightmost onej, its
d by a comma

I a FORM defined mnemonic |« identical with »

Ty ey] standard instruction
monic, the pieudo-mnemaonic is given priority.

1-46

| XFORM eXtension of a FORM directive XFORM

Syniax

<label = CXFORM_ < FORM-defined pseudo-mnemonic =, = field list =

The XFORM may be used each time two FORM-defined pseudo-mnemonics
have to be defined which do not differ in the format but only in the values of
the predefined fields. _

The field list is a series of field definitions giving the format of the new pseudo-
mnemonic and the contents of its fields.

The field length definitions must be the same as those of the FORM-directive
referred to and appear in the same order.

Fxample
INSTI _FORM_8=/FF, 4, 4, 1a6/1, 3, 2
INST2FORM_8=/3344,16/1,3,2

The XFORM directive combines the two and generates an INST? instruction
as Tollows:

INSTZLXFORMINSTIE=/3344.16

[-47

GEN GEMeration directive

The GEN directive allows to extend the Assembler symbol table so that it
recogmizes and assembles a number of non-standard symbols in any program in
which they are used. ’

Synias

LGEN L

Restrictions

Tl"t'!e GEN directive may only be used in the source program in which it appears
if it fulfills the following conditions:

— GEN must immediately precede END

— only the FORM, XFORM, EQU and EXTRN directives arc allowed in this

Program.

jl:he Assembler does not verify if those conditions are fulfilled. It checks only
il

— abject code is produced
— assembly errors have oeeurred,

Example
IDENT LFORM

INOUT_ FORM_8 = A8 16 = JEDAD 16,16 = 280416 = 1
GEN
END

Ihi::Nfull{}wing procedure must be followed o include the featres provided by
TN .

— load Assembler
— place on rlm_- reader the user source module with GEN directive
— assemble this module 1o produce abject output
- hrm Linkage Editar
— Place the Assembler in the reader ave i ' [
Ha 5! - eader and have it processed by the PG
Ers e : I 0 ¥ the Linkagz
iil ot B] ; x X
i?_l ok the abject user program in the reader and have it processed (P)
fext Terminaie § 1.
The punched oyt

One or more m:wrﬂm of this link-editing is the original Assembler extended with

mnemaonics,

1-48

List of predefined symbols

MAME MEANING PREDEFINED INTERNAL
VALUE VALLUE

P Instruction Counter 0 0

Al Register | | 2

A2 Regisier 2 2 4

Al Register 3 3 &

Ad Register 4 4 8

LN Register 5 5 10

Ak Hegister 6 & 12

AT Register 7 7 14

Al Register 8 8 !

AG Register 9 S 3

A0 Register 10 10 a

All Register |1 B 7

AlZ Regisier 12 12 9

Ald Register 13 13 11

A4 Remster 14 14 13

AlS stack pointer 15 15

Note: P Al A2 A3 etc. can only be used to call the registers. If they are
used for other purposes an error message will be output.

1-49

4 Programming considerations

Drata dranslers between input/outpul devices and the central processor are
controlled by device contral units cuch of which may have one or several
devices atlached 10 it depending on the tvpe of device, Control unils are
attached wothe central processor by an interrupt or break line, by address lines
andd other signal lines which are used by the computer to determine whether o
chuta wransfer can be perlformed.

Data wransfers take place through a channel, the General Purpose Bus, The
actwl programming of the data transfers muay be on g character or word basis,
where cach word or character is programmed and translerred individoally via
the Programmed Channel or the user may program blocks of words or
characters via the 170 Processor, In the latier case external registers may be
addressed,

Stand Alone or Monitor controlled programming

he basic diference between Stand Alone programming and Monitor
controlled programming s coused by the Tact that o Stand Alone
programming the user has 1o write s own inpuy/ouiput routines whereas in
Maonitor contralled programming the user may call certain monitor functions
by means of nks to monitor which execute the input/ sutput.

Faranlormation on programmimg in cither mode reler to the PEOOM Soliware
Faining Manual (Pub. No 5122991 1243 %) and 1o page 1-55 of this manual.

Interrupt svstem

When working ininterrupt mode cach interrupt program may be connected 1o
amnterrupt level. As the actioning of an interrupt invalves the direet accessing
ol the interrupt level's start address from s hardware interrupt Toeation, 1he
contents of this locition must have been previously loaded with 1he correct
address,

Fhe start addresses loaded i these locations are not lixed and must be defined
by the programmer.

ierrupt fevel hardware interrupt location
0 1o 62 AOO00 1o /0070

there level O has the highest priority and 62 the lowest. The levels are defined
A SYSGEN tme (see Volume).

Svstem stack
To save the contents af registers when an interrupt is made o the nmun
Program, the hardwire mlerrupt routing awtomatically uses register A5 This

I-51

egister addresses the stack which is 1o hold the contents of the Paregister and
he Program Staws Word at the time the program was interrupted, [t s
herefore necessary to reserve suflicient space for the stack and to load register
VS with its sturt address. This may be done by using the appropriate assembly
lirectives and by defining the siart address by means of an identufier. The start
ddress is the hizhest address reserved as the stack is filled Trom the high
owards the lower addresses,

vpart from the contents of the F'~|'eg';§,'|¢1' and PSW, the stack may be used o
ave the contents of other registers as required by the program. These registers
e saved by means of Store instructions (1 For each regisier). Before rElUrming
o the main program, Load instructions are reguired 1o restore the contents of
he siack, |‘.|I'iur o RTH. During the hardware action Turlher il&l{:l'r'l]ﬂlﬁ are
nhibited. If the user wishes o allow the specific routine to be interrupted he
nust give an ENB instruction.

Jser stack

Mo have seen that with the A15 stack the Pregister. the PSW and any other
egisters are saved with Store instructions in this stack lowards the lower
icldresses. Mow, i a user calls a subroutine with a CF instruction the contents
f the Poregister and the PSW are automatically stored in a stack he has set up
weviously, for example as lollows:

RES 20
STE ECL *-2

LDEL Al45TB
then the subroutine is called:

CF Al45UBR
and P and PSW are stored in the
A4 stack
tother registers may also be used
as d stackpointer}

for example, for a program with two subroutines, one subrouting calling
inother one, the saving may be done as follows:

The following save operations take place in this example:

©) —Ald

PSW (MAIN)

P (MAIN)

Stored antomatically

®

A —Ald

PSW (SUBRT)

P (SUBR1)

PSW (MAIN)

P MATMNY

Stored avtomatically

SAREAZ

®

Registers restored for SUBR1

SAREAT

®

Registers restored Tfor MAIN

SAREAL
Al (IMAIM)
Ad IMAIN

Stored by user-written instruction

SAREA2

Al (SUBRI)

A4 (SUBR1)
v

Stored by user-written instruction

—Al4

PSW (MAIN)

P

(MATNY

P and PSW restored for SUBRI

— Al4

Al IDENT M1 ALR SUBRI SUBR2
A2 RES 3 ST Al SAREAMA 5T AlSAREAZ
RES 4 ST AZSAREAL 42 5T A2 S5AREAZ
| ST A SAREAL 44 5T AJSAREA24
CF Al4.5LIBR1 —
i CF A4 5UBR2 5T AL SAREAZ
EMDY T : . 7
LI ALSAREAI 1.1 AlSAREA?
LI AZSAREAT42 LD A2SAREA? +2
LD ATSAREAT+4 1.1 AJSAREAY 4
LD AL SAREA? +6
RTH Al4 -
RTM MAl4

|-52

P and PSW restored for MAIN

Note: 1 £
It is possible to return from SUBR2 directly to the main program but in such a
case the user must update the Al4 register content ie. the stackpointer himself

{with 4, in this case).

Trap action

Instructions inpit to the PEOOM computer are checked and decoded by the CPL

Hardware.

If an unexecutable instruction is encountered a trap action is started which

consists of a hardware and soltware operation. The hardware operation of the

trap consists of the following actions:

— the CPLU does not attempt to carry out the instruction

— interrupts are inhibited

— information which refers 1o the instruction’s address and processor status (P
and PSW) are saved

— an ndirect branch is made to location /TE (start of trap rootine).

The soltware operation of the trap consists of:

— save the address in P

— save the instruction's bit pattern and its second word, if any
— activate the Simulation routine (see below), il any.

Simulation routine
The simulation routine allows the PRSZM wser to simulate the [ollowing
INSLEUCLIons:

multiply double shift

divide nultiple load

double add multiple store

double subtract

This routing, which is activated each time an illegal instruction code s mer in
the instroction sequence, consists of two parts. One part analyzing the hit
patiern suved by the trap routine and one part executing the instruction listed
abowe.

The routine may be imerrupied.

See Appendhix G for Stand Alone Simulation Package

Adaptation of PE55M software to PBOOM soltware

When PE35M programs are 1o be adapted and run on the PEDOM compuier the
following points must be taken into account:
the sequence ... ENB INE ... in the PE35M software permits o have the
program interrupted afler ENB (o see whether an external interrupt s pending.
As in the PEOOM external interrupts are not scanned at the end of a shor

nstruction, u dummy instruction must be included after ENB o allow Tor an
INErrup scmn.

1-34

The sequence may be aliered in... ENB/RFs +2 f/INH ...

2 in the PBOOM a stack overflow mterrupt is given as long as the register A5
contents remains < /100, For the PB35M & stack overflow interrupt is
penerated when the contents of regsier A5 = /100

Use of the RTN instruction

Operation of the RTN instruction s slightly different for the PES2M on one hand
and the PES6M and PESTM on the other hand. The RTMN mstruction on the PESZM
reloads from the system or the wser stack (the system stack s pomted 1o by register
A15% and the user stack by one of the registers Al through A 14) the contents of the
P register and the PSW as suved when the interrupt routine or subroutine wis
entered.

On the PE56M and PESTM the return is as Tollows:

When one of the registers A1 through A4 is specified, the P register and the CR
field of the PSW in the vser stack are reloaded, When register A 13 15 used as a stack
pointer, the P register, bits O through 7, bit 9 and bit 15 are reloaded from the
swstem stack.

Stand Alone Input and Output Programming
Programmed Channel

To control the data transfer between the device and the CPU the following
instructions are, in general, available:

ClO Start Start input or output

CIO Stop Stop the input or output

INR Input one character

OTR Output one character

S5T Send status of the contral unit
TST Test if the control unit is busy

The register <r3> used in the CIO instruction must always contain additional
information for the control unit c.g. input, output, parity, echo cte. Which
information must be loaded can be found in the relevant hardware manuals
delivered with the system.

When the C1O Start instruction is accepted (test the condition register) it is followed
by an INR or OTR instruction. When the last character is tranferred a ClO Stop
instruction must be given. This instruction should be followed by an SST instruction
which gives the status of the relevant control unit and may reset an interrupt and
switch a control unit to the Inactive State.

1O Processor

The 1/O processor allows the high speed transfer af variable length or fixed
length data blocks between a suitable control unit and the processor.

Up to eight 1/0 processors may be connecled 1o the General Purpose Bus
cach of which may contral up to eight control units via eight subchannels.

Each 170 processor has implemented two working registers which are used to

1-35

Exanpme:

effeet regisier 1o register exchanges with the CPU internal registers.
Before a data transfzr can be realised the user has to specify two control

words for two external registers. These external registers are addressed by 2 = _ .
e : y = : DKL A1, MBO32 word mode. input, 30 words

WER insiructions in which the address part must be composed as follows: * ! :
B P LITKL AZBUF starting address of block
WER AlLSA send contral words (1000010 and 1000011)
WER A2/B
PrOCESSOr subehannel B
e address address ozl)
: =" : oy Ad LS start input (address: 00001)
78 9 10 11 12 13 14 15 =
A /
« control unit address lhe RER instruction may now be used 1o read a transiers cffective length
b alter ermination of the 170 operation.
where processor and subchannel address are determined at system installation When the exchange is completed an SST instruction should check the status of
time. Both addresses, which may range from 0 thru 7, form together the the contral unit and set it to the fnactive state, The control unit may now be re-
attached control unit address. Bit 15 determines which control word is sent: initialised for a new transfer.

bin13 = 0 1st control word
1 2nd control word

Formai of control words
The format of the first control word is:

Bl1121314 15
where:
bitd = 1| exchange 15 in word mode
0l exchange is in character mode
bit1 = 1| exchange is from memory to control unit {outpul}
0 exchange is from control unit to memory (input)
bit2 = 0
bitd= 10

bits 4 thru 15 specify the number of characters or words to be ransferred.
The format of the second control word is:

0 starting address 15

When operating in word mode the 1st word of the Block is always even (bl
15 =0
In character mode, and bit 15 = 1, the right hand character is addressed (odd

address). When hit 15 = 0 the left hand character is addressed (even address).

=h 1-57

Input/Output Programming on Programmed Channel
1) without interrupts

b with interrupt handiing

unknown |address

|: ERROR

INTERRLUFPT

CHARACTER

LAST
character

55T

iy 1-59

J-":'ugr:m'll'ni.ng on L0 Processor

1_.=:|k:|aw|:| addﬁ:ss

LOAD Ist
control word

LOAD 2nd

control word

cClo

Siart
.

Interrupt

LLUEE]
LLTES]
panag
LT EE]
LLLEN]
[TTEE]
LT]
FITER

aennk
DeEERY
EeRlR
senli

L1158
BER13
zenid
2eE1S

LTI
eRlL?
ELTIL]

FABLE
penzn
maedl
paREd
panzd
LU B
panze
pAnRE
pawa?
EEEFLY

ganzg
pRade
ARBNL
paR3g
pawdd
TS
pRRIS
LTS

LT
Fawde
RELE

Aredp
gRpdl
2aad?
ELEL R
pEAEs
EARAS
2aqds
peadr
L]
ERAAR
LERED

AR
BRRZ
AEnd
Hans
AR
LLLTY
ARAC
ARAE
LR
w2
AL
anLe
AHLE
ZRLA
RPLE
RBLE
L
Ll
AR2d
apds
ElFL)
ARzL
BAZE
EngE
CLETS
w3z
a4
ap s
anys

BRI
pEac
2@l
Agap
dEag
L]

FLEES
P
guag
siza
a5as
LL3-T]
B4
A3m4
LN
2ariE
L
A1z
Bakg
BEER
adea
4508
SCied
ESez
B
a5ym
SCid
(F-ET]
LELY
198]
stim
FLET
aCad
4Cup
Boad

Bpdp
LT
Biig
L LT
4808
3Lae

BRAE
BRAE
(L]
Ll
agsd
4958
L
[LELS
#RI0
AP3E
FELE]
'TLE
T1L]
dahg
dE6A
FrLLY

Efaz
dEaER
4318
BLud
FEET]
T}
1981
SCie
LT
4310
SCud
ELEH
BLid
dCie
2Cad
zarf

IDENT SuTeuY

r RN N S

ES3LE DETA

ATART LT
T
LOK Algln
LKL id, 0
LK 117
EID i, 1. /10

RE(M4] wmg

SR LC A5 HESIGE, A0

GTH AB, 0, L8
RE(NA] =2

ADKL e,

UK Lyl

RELKI] L5H

[41:] AR B /IR
RENA] weZ

ssT L, sLE
FENA] weR

-
FUNEH THE FESSAGE
Ll

wPRL LT-F1
4=l 8 kgl
LAK LBy
b=] hbplyfla
MEiHL] wmi
wOE K3gs12
aTR AR, FlE
EELHNA] wmy

e LE LS MEBSGE &l
arR LT P
HB(WA] =g
hQnL Al
L L ik
LI-AL T] TP
Lux Afafqa
LTH AbuBpFL0
LENET Y] e
' 1] kB, LA
ab[nAY ung
PEL AT
LETET S LT
LT
L] START

EXampLl OF SFani aLOME PROORAm TOD DUTPUT &
BESSAGE GH TWE TELETTYPE LOO amy SEXT HAWE THE
JAME MESIAGE PuscriED A% ThE TELETYPE PUNCR LylT,

" DIT 1% EEN TESTH,spuds

COUnFER FOM NQ OF CHARACTERS

STaHT TELETYRE I QUTPLT
ACCEPTEDT
LOAD & CHakR [W &0

ACCEPTEDT
POINT TO MEXT CHARACTER

b CHARACTERS PRAIMTEDT
YES, 3wITCn TELETYPE QFF
ACCEFTEDT

SEMD ETATUS

ACCEFTEDT

COUNMTER FOH SO OF CHARACTEHS
SA]ITCH TELETYPE OW IM OUTPUT

ACCERTEQRT
" SwlTCH PUNCH LWIT On

DUTAUT THL CHEHACTER Iw &3

#ul CHARACTERS PUNCHEDT

2alTEn PUNCH UNIT GFF

ACCEPTEDT

1-61

Source program calling a subroutine in FORTRAN library

When writing & program in Assembly Language it may be useful 1o have a certain
operation performed by a subroutine which has been specifically included in the
FORTRAM library to execute such a function.

The user may call this subroutine, in his Assembly program, in the fallowing way:

Suppose the user wishes to multiply two lleating point numbers. The FORTRAN
library subroutine, which executes this multiplication, has F:RM as entry poinl.
The framewaork of the Assembly program, with only the relevant details, is weitten
as follows:

HZENT ASMPRO
EXTRN F:RM

FLMNUM1 DATA -
DATA —
DATA —

FLNUMZ DATA —
DATA -
DATA —

LDKL Al13, PARLIS
CF Al4, F:-RM

PARLIS DATA FLMNLINMI
DATA FLNUM2

Before the CF instruction is executed, register A13 must contain the address of a
parameter list. This list must contain the address of floating point number 1 and the
address of foating point number 2,

Al3 parameter list Ist parameter

I >

i 2nd parameter

1-62

The subrouting in the library contains the lollowing relevant items:

HDEMT FRTLIB
ENTRY F:REM

RTMN Ald
This subroutine does not use the stack of the calling program, except for the return.
When values are to be relurned 1o the main program an imeger will be returned o

Al and a _real value to the registers A1 to AJ inclusive (mantissa in A I, A2 and the
exponent i A3,

The main program must now be link-edited or link-loaded with the called subroutine
and the FORTRAN library.

The Linkage Editor selects those modules required for PrOgram execution,

1-63

