October 1975

A publication of

Philips-Electrologica B.V

Marketing Group Small Computers

P.O Box 245, Apeldoorn — The Netherlands
Copyright © by Philips-Electrologica B.V,, 1975
5122 991 11681

Printed in The Netherlands

PHILIPS

FORTRAN
Reference Data

euiups| Data

% Systems

1
CONTENTS
EineFormal s s i Ane e e L AN e e, Mo i ne e pmmaetll 2
DA TYes i s S s s T = e 2
Eonstants s S e e R (G AR Ao R it s 2
NarabIas: o0 e e e e e I R R et e e e 2
S el [T T R S S R e e O S e G S e e e e T 2
ASianme Nt S Al e e S e e e T R 3
Specification Siatements it e a s s et 4
Control Statements A T e e T e 5
U PO aANS S e T e e e A e T 6
InpUt DUt SEReMIE TS = o o rt e L e e e e 7
i Lo ol Lol oo o T e S s s R R o SRt D 7
Format Statements and Field Descriptorscooiiiiiiivinan ... 8
Compiler Control Statements R i e B W 8
3 S BT b s e S T s I S b M A e
3 EUEOREDHES 21 i s e e e e T e i o
B TINE RS = e L e e e e e e
{ U B e e Sl
Full FORTRAN Transcoder
‘ High Speed FORTRAN Compiler
{ Real Time FORTRAN Library Routines
{ Extensions to and Restrictions on American Standard FORTRAN 16
|
|
|
|
|
|
|
|
{
|
|
|
|
!
1
[
|
=

2

LINE FORMAT
Statement Label Field: (card columns 1-5): Contains from 1 to 5 digits.

Line Continuation Field (card column 6): Contains any character other than blank or
zero, denotes continuation of a statement from previcus line,

Statement Field (card column 7-72): Contains any arithmetic, control, specification,
1/Q or function statement.

Identification Field (card columns 73-80): Contains card sequence identification; this
field is ignored by the compiler and may be left blank if wished.

Comment Line: Cin column 1 of any line indicates acomment ling; it has no effect upon
the program.

Initial Line: The first line of a statement, contains a zero or blank in column 6 and a
staterment label or blanks in columns 1-5.

DATA TYPES

Integer: occupies 1 word (16 bits). Range -32767< i < +32767 (2.

Real: represented in floating point format of two-word mantissa, one word expo-
nent Flangn:z‘—Zz‘:‘1 < real value g-*-?zw"l (|rf<109868). Accuracy: 8 or 9
decimal digits

Double occupies 4 words (64 bits): 46-bit mantissa followed by a 16-bit exponent.

precision: Range: as for real but with an accuracy of 12 to 13 decimal digits.

Complex: occupies 6 words of memory and is formed by two real numbers.

Logical: occupies 1 word. TRUE has an internal value of -1, FALSE 0.

Hollerith: written as a string of ASCII characters (2 characters to each word).

CONSTANTS

A constant is an explicit numeric value which cannot be redefined.

VARIABLES

A variable is represented by a symbolic name consisting of up to six alphanumeric
characters which represents a quantity which may be defined and redefined several
times in a program. The first character of the variable name must be a letter.
EXPRESSIONS

An arithmetic expression is formed with the arithmetic operators +,-,%,/ and ++ and
with arithmetic elements (which may be mixed mode)

Results of mixed mode arithmetic expressions:

(For +, —, /, = operations)

2nd. operand

1st. operand

OQ 3 —
(o = s
(& w s [
xooo
OxXo00o

(For == operations)
2nd. operand

e
1R D-G
I | RDX
; d R R-R B X
1st. operan o 0D DX
C C X X X
where: | = Integer (or Logical)
R = Real
D = Double precision
X = Prohibited

Arelational expression consists of two non-complex arithmetic expressions separated
by one of the relational operators LT., LE, .EQ., NE. GT. .GE.

A logical expression is formed with logical elements and the logical operators .OR.,
XOR., .AND_, NOT

All operators are subject to a priority order, and expressions are evaluated according
to these rules of precedence (unless parentheses are used to change the order)

operator priority

x 1st (highest)
*/ 2nd

+ - 3rd
TR e 4th

.NE. .GE. .GT.

NOT. 5th

AND 6th

.OR 7th

XOR. 8th

ASSIGNMENT STATEMENTS
Arithmetic assignment: v=e

visavariable orarray element identifier of any type other than logical; e is an arithmetic
expression.

Logical assignment: v=e

v is a logical variable or logical array element; e is a logical expression. Any integer-
valued expression may be used instead of a logical expression, and vice-versa.

GO TO assignment: ASSIGN k TO i

k is a statement label; i is an integer variable.

4

Rules for assignment-arithmetic expressions

assignment rule is

If vis and c¢ is

Integer Integer Assign

Integer Real Fix and Assign

Integer Double precision Fix and Assign

Integer Complex Combination not permitted
Real Integer Float and Assign

Real Real Assign

Real Double precision DP Evaluate and Real Assign
Real Complex Combination not permitted
Double precision Integer DP Float and Assign
Double precision Real DP Evaluate and Assign
Double precision Double precision Assign

Double precision Complex Combination not permitted
Complex Integer Combination not permitted
Complex Real Combination not permitted
Complex Double precision Combination not permitted
Complex Complex Assign

SPECIFICATION STATEMENTS

DIMENSION v, (i), va(iz)yes ¥, (i)

each v(i) is an array declarator; v is the declarator name, i is the subscript which is
composed of up to three expressions. The values of the subscript expressions give
the maximum size of each dimension.

COMMON /x,/a,/ .../x,/a,

each x is an optional common bloeck name which, if specified, must not be the same as
any variable or array name; each a is a list of variable names, array names or array
declarators. All the variables named in a COMMON statement are assigned to storage
locations in the order in which the names appear in the statement. Ifan array is declared
in a DIMENSION statement, the subscript need not also be given in a COMMON state-
ment (if the array is to be in common). Memory locations are shared between sub-
program and main program variables.

EQUIVALENCE (k,), (K.),.... (k,)

each k is a list of two or more variables or array elements; each element in a list is
assigned the same area of memoaory.

EXTERNAL a, a,..., a,
each a is a subprogram name. This statement is used to declare subroutine or function
names which are used as arguments to another subroutine or function.

<Type=X,, Xy X,

each x isa variable name, array declarator or function name which is declared as being
of a particular data type (INTEGER, REAL, DOUBLE PRECISION, COMPLEX,
LOGICAL).

DATA list 1/d,/, list 2/d,/,.../, list n/d,,/

each list contains the name of variables and array elements that are to be given values;
the d's are corresponding lists of optionally signed constant values. If one value is to be
assigned to successive variables in the list, that constant may be preceded by an integer
constant specifying the repeat number, and an asterisk. An implied DO is accepted in
DATA statements provided that all the parameters are integer constants.

CONTROL STATEMENTS
Unconditional GO TO: GO TOn

n is a statement label.

Assigned GO TO: GO TO i (ky.kz..K,)

i is an integer variable, the k's are statement labels, one of which must have been as-
signed to i.

Computed GO TO: GO TO (ky,kp,-... ko Li
the k's are statement labels, i is a non-subscripted integer variable, the value of which
determines which statement whose labels is in the list is to be executed next.

}
Arithmetic IF: IF (e) k,,k;.k;
eis a non-complex arithmetic expression, the k’s are statement labels. If the value of e
is negative, k, will be executed next, if e is zero, k, will be executed next, and if e is posi-
tive, the next statement executed will be k,.

Logical IF: IF (e) S

e is a logical or relational expression and S is any executable statement (except
a DO or another logical IF).

DO statement: DO n i=m;m,m; or DO ni=m;m,

n is a statement label, i is an integer variable (controt variable), m, (the initial value),
m, (the terminal value), and m;, (the incrementation value) are each an integer constant
ora non-subscripted integer variable reference (of which only m; must be greater than
zero).

CONTINUE statement: CONTINUE

causes the normal sequence of program execution to be continued.

CALL statement: CALL s(a,,a;,...,a,) or CALLs

s is a subroutine name, the a's are actual arguments.

RETURN statement: RETURN

control is returned to a calling program frorn a function subprogram or subroutine.
STOP statement: STOP or STOPn

n is a string of up to four alphanumeric characters* typed out on the operator’s type-
writer after er ecution of the statement. Execution of the object program is terminated
(compilation is not affected).

PAUSE statement: PAUSE or PAUSEn

n is a string of up to four alphanumeric characters, indicating at which point in the
program the halt is occurring, and typed out on the operator's typewriter after execu-
tion of the statement. Execution can be resumed by typing LF CR

END statement: END

indicates the physical end of a program unit.

* '='character not allowed

6

Data Initialization Statement DATAlist,/d,/ list,/d,/,.../ list,/d,/

‘list’ contains variables and array element names, d is a corresponding list of constant
values. This statement is used to set variables or array elements to initial values.

SUBPROGRAMS
Statement Functions
f(a;.a,,....a,)=e

f is the tunction name, the a's are dummy arguments, and e is any arithmetic expres-
sion. This statement is defined within the program unit in which it is used.

Function Subprograms
The first statement of an external function must be

FUNCTION f(2,.a,.....a,)

fis the symbolic name of the function, the a’s are dummy arguments. A function is an
independent program unit. The body of this type ot subprogram must contain an
assignment statement assigning a value to the function name, and a RETURN state-
ment which returns the computed value of the function and control, to the calling unit.

Subroutines
A subroutine must begin with the statement

SUBROUTINE x (a,.a,,....a,) or SUBROUTINE x

x is the symbolic name of the subroutine, the a's are dummy arguments. A subroutine
is an independent program unit, but has no mode associated with its name. A sub-
routine may contain any statements other than FUNCTION, BLOCK DATA or another
SUBROUTINE statement, and it must contain at least one RETURN statement (to
return control to the calling program) and an END statement.

Assembly Language Subprograms

Subroutine or Function subprograms may be written in Assembly Language, and the
resultant object modules link-edited or link-loaded with FORTRAN modules. The
Asembly language subprogram must contain an entry point whose name is in the
subprogram name.

At execution time, the subprogram call is interpreted as a

CF A14, X
instruction, branching to the entry point, X.
When this instruction is executed, the A4 register contains the address of the first word
of the parameter list which itself contains the address of the first actual parameter; the

second word contains the address of the second parameter, and so on.

A4 parameter list parameters

— Bl sl

1st parameter (integer)

2nd parameter (real)

o ol
When execution of the subprogram is completed. control is returned to the calling
program by the instruction

RTN A14

The subprogram cannot use the stack (which is defined by the calling program) or A14
(which is the stack pointer, indicating the first free location on the stack) in any other
way than as shown

If a CF instruction is used in the subprogram, the stack must then be defined by the
programmer and the contents of A14 saved.

If the subprogram is a Function, returning a computed value to the main program, an
integer or logical value will be returned to A1, a real value to A1 -A3 (mantissa in A1,
A2; exponent in A3), a double precision value to A1 - A4, and a complex value to A1 -
A6 (real part in A1 - A3, imaginary part in Ad - AB).

Block Data
The first statement of the subprogram is

BLOCK DATA

This subprogram is used to enter initial values into common blocks, and contains only
EQUIVALENCE, DIMENSION, COMMON, DATA and type statements.

INPUT/OUTPUT STATEMENTS

formatted: READ (u,f)k or READ (uf)
WRITE (u,f)k or WRITE (uf)
direct formatted: READ (u's,f)k or READ (u'sf)

WRITE (u's.f)k or WRITE (u's,f)

unformatted: READ (u)k or READ (u)
WRITE (u)k

direct unformatted: READ (u's)k or READ (u's)k
WRITE (u's)k

Auxiliary 1/0O statements:
ENDFILE (u) i
REWIND (u) |
BACKSPACE (u)
In each case, u is a file code assigned to an 1/O device, f is the statement label of a
FORMAT statement, k is a list of variables, array names and array elements; and in
direct access, s is a sector pointer which indicates a sector number of file u.

STANDARD FILE CODES

(For Basic Executive Monitor) (For Disc Operating System)
01 Source input 01 Operator's typewriter

02 Listing output 02 Print unit

03 Punch output 03 Punch unit

04 Object code input : 10-207 For user assignment

05 Operator’s typewriter > 207 Reserved
06 ASR tape reader
07 ASR tape punch
08 Paper tape reader
09 Paper tape punch
16 to 255 (max) available
for user assignment

8

FORMAT STATEMENTS AND FIELD DESCRIPTORS
FORMAT (q.t.z,tz,....t 2, q;)

g isaseries of slashes, or is empty; t is a field descriptor or group of field descriptors;
z is a field separator.

Field Descriptors

rlw Integer conversion

srFw.d Real conversion (single precision floating point with optional decimal
exponent)

srEw.d Real conversion (single precision floating point with/without
exponent)

srGw.d Real conversion (with or without exponent depending on F-type or
E-type evaluation)

srDw.d Double precision floating point conversion

rlw Logical conversion

rAw Alphanumeric character input/output

nx Insertion of blanks

nHh;h;h,...h, Hollerith

ris an optional repeat factor which is a positive, unsigned integer constant indicating
the number of times to repeal the specified descriptor; s is an optional scale factor
designator; w and n are positive, unsigned integer constants representing the total
field width of the external character string; d represents the number of positions in the
field occupied by the fractional part of the external character string; the letters |, F, E,
G, D, L. A X and H indicate the type of conversion, each h is one ASCI| character. (In
place of the nH descriptor, Hollerith output data may be represented by a string of
characters enclosed in apostrophes.)

COMPILER CONTROL STATEMENTS
IDENTwm

misan identifier. This statement must be used to assign a name to any module (module
=main program, subroutine function or Block-Data subprogram), and is written on the
first line of the program module.

OPTIONS i

iisalistof options; these are specified by the letters L, X and/or D which are associated
with three Boolean variables in the compiler's work storage. When an IDENT state-
ment is processed these variables are set to zero, When an OPTIONS statement is
processed, the values of those Booleans whose names appear in the OPTIONS list are
reversed.

L - suppress listing
If this Boolean is sel to 1 no source listing will be produced.

X - conditional compilation
If X is 0. any source line whose first character is X will be ignored by the compiler; if X
is 1, the line will be compiled as normal.

D - dynamic allocation

I Dis 0, the output object module will not be re-entrant. If D is 1, the work storage for
the output object module is obtained at run time by means of a dynamic memory
allocation request to the Monitor.

JOB CONTROL

When the compiler is stored on disc, a job control command must be given to call the
compiler and the scurce program modules into memory. (Source programs must be

9

loaded onto disc from input peripherals before being compiled.) To call the compiler
and to compile a source program from the temporary file /5, or from the user’s library
the following command must be given:

FOR..|/S]|<name>|[.NL]

Either /S or <name> must be specified. /5 indicates that the source program is to be
compiled fromthis file; <name> is the program module identifier and indicates that the.
source program is in the user’s library.

If NL is specified, no listing of the compiled program will be provided

ERROR CODES

Code Meaning

0000 Invalid statement number

0001 ‘TO' missing in an ASSIGN statement

0002 Variable in an ASSIGN statement is not integer

0003 invalid character ending an ASSIGN statement

0004 FORMAT label instead of a statement label in an ASSIGN statement

0100 Left part of an assignment statement invalid

0101 Invalid character ending an assignment statement

0102 Formal argument name given as a statement function name

0103 More than 32 statement functions

0104 More than 8 arguments in a statement function

0105 A statement function's name is used as one of its arguments

0106 Right parenthesis following last argument of a statement function definition

is missing
0107 The = sign in a statement function definition is missing |
0108 Invalid character ending a statement function definition |i

0109 Statement function definition not allowed in Block Data subprogram i

0200 CALL must be followed by a subroutine name

0201 Name following CALL is already specified as other than a subroutine name
0202 Name following CALL is already specified as a FUNCTION name

0203 Invalid character ending a CALL statement

0300 The first character of a FORTRAN statement must be a letter
0301 Unclassified statement

0800 Illegal variable or array name in DATA]
0601 lllegal delimeter in DATA |
0602 Formal argument in DATA

0603 Illegal variable or array type inside BLOCK DATA |
0604 Commen variable outside BLOCK DATA |
0605 lllegal suoscript expression in DATA

0606 Subscript overflow in DATA |
0607 lllegal control variable in a DO-implied Loop

0608 Control variable in a DO-implied loop does not correspond o any subscript

0609 |llegal parameter in a DO-implied loop

060A Terminal value less than initial value in a DO-implied loop

060B Increment of zero in a DO-implied loop

060C lilegal variable list in DATA statement

060D Zero repeat factor in DATA constant list
060E Constant list does not correspond to variable list in DATA statement
080F lllegal constant in DATA statement

0701 Invalid character in adeclaration statement

0800 Control variable not specified or not integer in a DO statement
0801 An = sign must follow the DO-loop control variable

0803 lllegal number of parameters in a DO statement

0804 Too many commas in a DO statement

10

Code

0900
0901
0902
0903

0904
0905

0AGOD
0AO1
0AG2
0AD3
0B00
0B01
0BO2
0B03
0co1
0co2
0co3
0co4
0cos
0co6
0co7
0EQD
1000
1100
1101
1102
1103
1104
1105
1106
1400
1500

1600

1800
1801

1802
1903
1804

1805
1906

1907

Meaning

A DO statement may not end another DO statement

A DO statement may not be the second part of a logical IF statement

DO must be followed by a statement number

The statement label specifying the end of the DO must not be a FORMAT
tabel

The end of DO-loop statement label not defined

DO ends in an invalid character

An EQUIVALENCE group declaration must begin with a left parenthesis

Only actual array/variable may be specified in an EQUIVALENCE statement

Any subscript element must be an integer constant in an EQUIVALENCE
statement

EQUIVALENCE group declaration must end with right parenthesis

A name which is already specified in a DIMENSION/EXTERNAL/SUB-
ROUTINE/FUNCTION statement appears in an EXTERNAL statement

A name already specified in an EQUIVALENCE statement appears in an
EXTERNAL statement

Aname already specified ina COMMON statement appears in an EXTERNAL
statement

Unexpected character in an EXTERNAL statement

Non-executable statement in a module other than Block Data
Undefined label(s)

Incomplete DO-loop

Dynamic allocation with DATA initialization

Executable statement in Block Data

No DATA initialization in Block Data

RETURN missing in subprogram

Unexpected character ending an auxiliary [/O statement

Number of arguments specified in two uses of the same subprogram is not
the same

FORMAT label missing in a FORMAT statement

A FORMAT statement ends a DO-loop

FORBRMAT label already defined as label of another FORMAT or as a statement
label

FORMAT label already referenced as a statement label

‘FORMAT' must be foliowed by (

) is missing at end of FORMAT statement

A FORMAT may not be the second part of a logical IF statement

Integer variable or constant requested and not found
A name was requested and not found
Non-FORTRAN character

A COMMON block name must not be used as a variable name

A digit must follow the decimal point of a constant which has no integer part
specified

The character following the E or D exponent must be a + or - or a digit

The exponent part must be less than 32767

The real/imaginary part of a complex constant must not be either logical
or integer

) must follow the imaginary part of a complex constant

Relational operator, logical operator or logical constant is incorrectly
written (terminal period missing or insufficient letters)

Arelational operator/logical operator/logical constant name was not defined

Code Meaning

1908 A Hollerith constant written nH.. implies n>0

1909 " does not appear within quote marks

190A A complex constant is not correct: real number missing

1908 Too many numetical constants in this program unit

190C Hexadecimal constant overflow or $ not followed by a digit or a letter from-
AtoF

190D Real constant overflow

190E Too many digits'in a real constant

1A00 DO-loop ends in a GO TO statement

1A01 Unexpected character following GO TO

1A02) missing in computed or assigned GO TO

1A03 Comma missing in computed or assigned GO TO

1A04 Integer variable name not found in computed or assigned GO TO

1A05 Name in computed or assigned GO TO is not a variable name

1A06 Variable in a computed or assigned GO TO is not integer

1A07 Unexpected character ending a GO TO statement

1A08 More than one statement label reference in a simple GO TO

1A09 lllegal character ending a GO TO

1F00 Parenthesis error: IF must be followed by a (with a corresponding)

1FO1 Invalid IF expression; such an expression may not contain an =

1F02 An arithmetic IF may not be used to end a DO-loop

1F03 More or less than three statement numbers specified in an arithmetic IF

1F04 Unexpected character ending an arithmetic IF statement

1F05 The control expression of a logical IF statement is neither integer nor logical

1F06 A logical IF statement may not follow another one

2000 Parenthesis error in an 1/O statement

2001 Invalid FORMAT label reference in an 1/0 statement

2002 Unexpected FORMAT reference (neither an array name nor a Hollerith
constant)

2003 Format reference is a name but not an array name

2004 No list and no format specified in a WRITE statement

2005 Incorrect variable in an /O list (not a name nor an array) i

2006 Unexpected character in an 1/0 list i

2007 Incomplete DO-implied loop

2008 Invalid array subscript in an /O list > ¢

2300 Invalid statement number

2301 Executable statement not allowed in Block Data

2400 Statement number already defined (as FORMAT or other statement number)

2600 A FORMAT label may not be specified in a list of statement labels

2800 A FORMAT or a statement number may not be zero

2C00 Unexpected character ending an OPTIONS statement

3200 A PAUSE or STOP statement may not end a DO-loop

3500 A RETURN statement may not be used in a main program

3501 A RETURN statement may not end a DO-loop

3601 A RETURN statement may not end a DO-loop

3700 DATA statement has been incorrectly processed

3B00 The requirements of local (non-common) variables and arrays exceed 16384
16-bit words

3B01 Number of dimensions declared ina DIMENSION statement does not corres-

pond with those specified in EQUIVALENCE

12

Code

3B02
3803

3B04

3B05
3B06

3C00

3E00
3E01
3ED2
3E03
3E04

3F00
3F01

3F02
3F03
3F04
3F05
3F06
3F07
3F08
3F09
3F0A
3FOB
3F0C

4200
4201
4202
4203
4204
4205
4206
4207
4208
4209

420A
4208

420C

7F00

COoF

Meaning

Qverflow in a COMMON block (more than 16384 words)

Inconsistency in declaration of groups of Equivalenced names, making
allocation impossible

An array name which is specified in an EQUIVALENCE statement must be
declared in a DIMENSION statement

Two COMMON variables may not be related in EQUIVALENCE

EQUIVALENCE declaration extends COMMON block backwards

invalid sequence for current statement

Invalid sequence for SUBROUTINE or FUNCTION statement

A FUNCTION declaration has no argument specified

Invalid argument in a SUBROUTINE or FUNCTION statement
Argument in a SUBROUTINE or FUNCTION statement is duplicated
Illegal delimeter in a SUBROUTINE or FUNCTION statement

Misplaced common block name in COMMON statement
lilegal variable dimension in array declaration
Number misplaced in declaration

lllegal declaration (general)

lllegal delimeter in declaration

lliegal common block name

Slash missing in COMMON statement

lilegal array name in array declaration

lliegal number of dimensions in array declaration
Formal argument in COMMON statement
Common element defined twice

Inconsistent variable or array type

Dimension overflow in array declaration

Operator incorrect in an arithmetic expression

Hollerith constant in an arithmetic expression

Incarrect character in an arithmetic expression

Erroneous Function call

No argument referenced in an intrinsic function call

Error in arithmetic expression

Hollerith constant in an arithmetic expression or impermissible type mixing

Incarrect type in a logical expression

Error in MIN or MAX function

Subscript is not integer or there are more than 3 subscripts in an array
element reference

Subroutine reference in an arithmetic expression

Argument type or number of arguments incorrect in an intrinsic function
reference

Wrong number of arguments in a statement function

This is not an error core but indicates that the END statement has been
successiully processed - ‘end of compilation’ message

Core overflow. Not enough core available to compile this module.

RUN-TIME ERRORS

Code Meaning

01

02
03
04
10
11
12
13
20
21
22
23
24
25
26
27
28

29

2A
2B
2C

2D

2€
2F
30
31

32
33
34
35
36
37
a8
39
3A
3B
3c
3D
3E
aF
40
41

42
43
44

45

46

47
48
49

No more core storage can be allocated for a re-entrant module, or for an 1/0
operation

Wrongly generated object code - ask software maintenance

Incorrect value given for index variable in a GO TO statement

Negative step value:in a DO-loop

Overflow in integer arithmetic operation

Undefined result for ISIGN function

Overflow or undefined result in integer exponentiation

Arithmetic overflow in subscript computation or subscript not positive

Overflow in real addition or subtraction

Underflow in real addition or subtraction

Overflow in real multiplication or division

Underflow in real multiplication or division

Real division by zero

Overflow in real negation or in ABS or SIGN computation

Undefined result for SIGN function

Overflow in IFIX function

Undefined resuit in real exponentiation

Overtlow in real exponentiation

Undefined result for ALOG function

Overflow in ALOG function

Negative SQRT argument

Overflow in EXP function

Undefined result for raising a real to an integer power

Overflow in raising a real to an integer power

Qverflow in double precision addition or subtraction

Underflow in double precision addition or subtraction

Underflow in double precision negation

Undefined result for DSIGN function

Qverflow in double precision multiplication

Underflow in double precision multiplication

Overflow in double precision division

Underflow in double precision division

Double precision division by zero

Negative argument to DSQRT

Undefined result for ALOG10 function

Overflow in DEXP function

Negative argument to DLOG function

Negative argument to DLOG10 function

Undefined result for ATANZ function

Undefined result for DATAN2 function

Undefined result in double precision exponentiation

Overflow in double precision exponentiation

Undefined result when raising a double precision to an integer power

QOverflow in raising a double precision to an integer power

Second argument to MOD function is zero

Second argument to AMOD function is zero

Erroneous or un-normalized argument in real or double precision operation
or function

Second argument to DMOD function is zero

Overflow in CONJG function

Overflow in DIM function

14
1/O0 ERRORS

Code Meaning

70 Irrecoverable /O error during an auxiliary 1/O operation

71 Irrecoverable /O error during a READ or WRITE operation, or illegal file code
for a random /O request

72 Illegal FORMAT specification

73 Field width too small or zero

74 Group or field repeat count is zero

75 Error in a string of ASCII characters between guotes in a format: Such a

format is not allowed with a READ statement, or End or format statement
encountered before last quotation mark

76 No conversion specified in format for next 1/0 list element

77 Maximum number of characters allowed for a physical record on the spec-
ified unit is exceeded (1/O buffer overflow)

78 First parenthesis of format specification is missing {when format reference
is an array name)

79 Type of variable is not compatible with field descriptor

TA More than ten levels of parentheses in a format specification

7B lllegal logical variable (Input):
The first non-blank character is neither T nor F; or the whole external field
is blank

80 lllegal input character (possibly a decimal point or exponent in an integer)

a1 Overflow during input conversion

82 Illegal unformatted record

83 Logical (unformatted) record is too small

84 Unformatted READ is not allowed on typewriter

85 Only one sector (400 characters) is allowed for an unformatted disc /0.

FULL FORTRAN TRANSCODER

The Full FORTRAN Transcoder translates Full FORTRAN object modules into
machine code instructions.

Control Commands

C copy the current module untranscoded onto
the output file

D delete the current module

E end the current transcoding session

‘EOF punch out an :EOF (End Of File) mark onto the

output file, and end the current transcoding
session (not for disc Transcoder).

TI.NL][.NP] transcode the current module.
NL and NP are optional parameters. If NL is
specified, no listing of the transcoded module
will be produced {control messages and error
messages are always displayed on the ASR
typewriter], if NP is specified, no punched ob-
ject code will be produced.

Each command must be terminated by CR LF.

15

Control Messages

IDENT<name> identification of the current module |
:EOS end of segment mark read

:EOF end of file mark read

T a control command is requested

COMPILED LENGTH=xxxx TRANSCODED LENGTH=yyyy
length of the compiled and the transcoded
module, expressed as a hexadecimal number of

characters
Error Messages
IDT.MIS. identification statement missing or invalid
END.MIS. end/start cluster missing
CLS.ERR. erroneous cluster type
COM.MOD. the current module is not a compiled one
BLK.DAT. block data modules cannot be transcoded
TBL.OVF. table overflow
MOD.ERR. unsuccessfully compiled module
DYN.ALL. dynamic allocation forbidden

10 ERROR xxxx yyyy unrecoverable /O error, xxxx=file code,
yyyy=returned status
because of a fatal error the transcoded

object code is not usable

OBJECT CODE NOT USABLE

P800M High Speed Fortran Compiler

The information given for PBOOM Full FORTRAN also applies to PBOOM High Speed
FORTRAN, except for:

- /O statements

— compiler control statements

- job control

- error messages.

INPUT/OUTPUT STATEMENTS
Sequential I/0 statements

READ (uf,fl [LERR=a] [,END=b)Ik]
WRITE (ul,fl [,[ERR=al)[k1

u is the file code, f a FORMAT statement label, an array name or a Hollerith string
specifying the format, a is a label to which a branch is made if an irrecoverable
1/O error occurs, b is a label to which a branch is made if an End-of-File mark
is read, and k is an I/O list. The parameters between [| brackets are optional, and
the order of the ERR and END parameters may be reversed

Implicit I/0 statements

PRINT f[,ERR=alk is equivalent to WRITE (2,f[,ERR=al)k

PUNCH f[,ERR=al,k is equivalent to WRITE (3,f[,ERR=al)k

READ f[,ERR=al [LEND=b],k is equivalent to READ (SELff ERR=al
ILEND=DbT)k

Disc random access

DEFINE FILE u,(m,,r,,f,,v.),u;, (m,,r,,f,,V.),. . ..
must be used to define a file before a random 1/O statement refers to the file
The parameter u specifies the file code, m is the number of records, r is the

record length (in words or characters, depending on the value of f), f specifies
formatted or unformatted access (E = formatted, record size in characters;

16

U = unformatted, record size in words; L = formatted or unformatted, record
size in characters), and v is an integer variable, which contains the number of the
next available record after a READ or WRITE, and the number specified in the
FIND statement after a FIND operation.

The DEFINE FILE statement can only be used in main programs, for subprograms
with random |/O operations the file must be defined in the main program, and
the variable v must be transferred to the subprogram.

CALL CLOSE (u)
releases the buffer and working storage (holding information about the file u),
which was obtained dynamically after the first reference to file u.

FIND (u’s)

starts a disc seek operation to find the record s on the file u.

READ (uws[,fl1 [LERR=al)k
WRITE (u'sl,fl [LERR=al)k

are the direct access READ and WRITE statements. The parameter u specifies
the file code, s is the record number, f specifies the format, a is the label of a
statement to which a branch is made if an irrecoverable O error occurs, and k
is an I/O list. The parameters between [1 brackets are optional
CALL CREATE (u)
writes dummy records on the file u, so that the whole file, and not only the used
part, is kept when the file is catalogued. As the routine destroys part of the file, it
must be called before any information is written on the file.
COMPILER CONTROL STATEMENTS
IDENT m
m is an identifier. The IDENT statement must be the first one in a module.
OPTIONS i [X1IMI1I,C1I,D1
X - conditional compilation
Any source line with an X in column 1 is compiled only if X has been specified
in the OPTIONS statement
M - printing of a map
If'M is specified, a map is printed with all the variable names and label numbers

of the module.

C - object code listing
If C is specified, the generated object code is printed in assembly language format.

D - run-time diagnosis
If D is specified, the run-time error codes are extended with messages which

locate the incorrect statement

If an OPTIONS statement is used in a module, it must be the first one after the
IDENT statement

JOB CONTROL

The compiler is called, and compilation is started, by the control statement

HSF 1 /S| <name>1[,NL1
One of the parameters between | | brackets must be specified. /S indicates that
the source module is to be compiled from the /S file, <name> is the module
identifier, and indicates that the source module is in the user's library.
The optional parameter NL suppresses the listing of the source code.

ERROR MESSAGES

Errors detected during compilation are printed in the source code listing. The
message consists of ‘ERROR’, followed by a sentence explaining the error.

The run-time and I/O error codes are the same as for PBOOM Full FORTRAN.
The following error codes have been added:

Code Meaning

86 Random file not declared in a DEFINE FILE statement

87 File overflow in a random I/O operation
88 Formatted I/O not allowed with U specified in the DEFINE FILE statement
89 Record number 0 not allowed for a random file

8A Unformatted I/0 not allowed with E specified in the DEFINE FILE statement
8B This random file is not a disc file

REAL TIME FORTRAN LIBRARY ROUTINES

Name/arguments Subroutine/ Subroutine function, or function value
function

ACTIV(i,j,k,m,) S Activate program i*), build a 2-word ECB with be-

ginning address j, and transmit parameters through

parameter block with address k. If k=0, no para-

meters are transmitted.

Status of request returned in m:

m=1 request accepted

m=2 program i not connected to a level

m=23 program i unknown

m=4 no more core available to record request

Assign file code i to the physical device k**) with

device address |, and build a 6-word assign block

with beginning address |

Status returned in p

p=1 assignment completed

p=2 /O error on disc

p=3 no spare entry in file code table

p=4 no free file description table

p=5 device unknown

p==6 disc overflow

p=7 file unknown

Assign file code i to device or file already having

file code k. Build a 6-word assign block with be-

ginning address |

Status returned in p:"as in AFDEV, and

p=8 second file code unknown

p=9 more than 7 file codes assigned to the same
disc file

Assign file code i to the permanent disc file n*) on

the disc with file code k. A 6-word assign block

is built with beginning address |.

Status returned in p: as in AFEQU, except for p=8

AFDEV(ijk.p,l) S

AFEQU(ijk,p) S

AFPERM(i.j.k,p.n} s

18
19

Namefarguments Subroutine/ Subroutine function, or function value = = 2 5
Name/arguments Subroutine/ Subroutine function, or function value

function H
function
AFTEMP(i,j,d,p,m S. Assign file code i to a temporary file on disc with ; z ;

Hdpm) e c?ode d. If m>0. m granuﬁes a:re Sl tithe DATE(j,m) S Place date and time of day into first 6 elements of
temporary file, if m=0 the file is sequential. A 6-word |ntege;)arSrztayt) (Tonthf:y#ear—hours—mmutes‘
assign block is build with beginning address j. Sef?n s). ta us retu?e i :

Status returned in p: as in AFPERM. m72 izgtgst acsep 2 et
ATTACH(i,j) 8 Reserve device or disc file with fil d - il D =
8 A e el DECBY(i,jk.) S Build an Event Control Block with beginning address
Laring prg < j. 880 in the event byte, file code value i, buffer
Status returned in j: ad oand Sati Tanath. |
j=TRUE device or disc file attached already Jugigas Seanciadiesienieng i
j=FALSE request accepted : : ;
ATTCHW(ij) s Reserve device or disc file with file code i exclu- el =0 Lo e 2’;2:2'9 S
sively for the calling program, and put the pragram J.+4 | re Bnath -
in wait state if device or disc file has been attached J e

: already. j+6 0 eff. length
Status returned in j: _{J_tg g z:ﬁ:; e
=TRUE device or disc file attached already) 1
Jj=FALSE request accepted , . . : .

BCLR(j.K) s Reset bit k***) of word | DELETE(i,)) S Delete file code i from the Monitor File Code Table.
BSET(j k) S Set bit k***) of word | If i is a temporary disc file, the granules of the file
BTEST(k) F TRUE if bit k***) of word j=1 g;et'e'ea‘fe“" it
FALSE if bit k***) of word j=0 —aF:i;Eél:jmlet'm e
CLEV(i,jm) S Connect program i*) to software level j. i el
Ststus retumad G 1=TRUE file code deleted, but|/O error during
e eanaetian acéomp}ished release of granules of temporary disc
file
m=2 program co i e i :
g |pev eg;' il Or”;:gte:r a':(fa?:m e DETACH(i.) s Detach device or disc file with file code i from the
2 oL calling program. i
m=4 no more core available to record request o=
Status returned inj:
(RINTEySImE0nl) j=FALSE devi disc file detached
CTIM(i,j,k,I,m) S Connect program i*) to timer j, with pulse rate 1.7 e _ce 2 '.SC |_e e .
.) e j=TRUE device or disc file does not exist, or has
k (0<k<2047). Wait | timer cycles before first ac-
Luation: been attached to another program
At rehirnad e DLEV(i,jm) S Disconnect program i*) from software level J.
: g . Status returned in m:
m=1 connection accomplished 8 ;i i
. m=2 program connected already m=1 disconnection accomplished
= x . m=2 program busy
m=3 program or timer does not exist .
m=4 wrong parameter m=23 program does not exist
m=5 space for parameter block cannot be allocat- DTIM(1.jm) & i goHeCt prog.ram I omEmet)
ol Status returned in m:
m=1 disconnection accomplished
Amount of time associated with timer number: m=2 timer unknown, or program not connected to
that timer
Standard clock Special clock m=siprogramthiadwn ,
=0 20 msec < 20 msec GETBUF(b,l,s) S Allocate a storage area of | bytes to the calling
=1 100 msec 20 msec program, return beginning address in b, set s to
=2 fesac 100 msec FALSE if storage area has been allocated, or to
=3 f-min fisee TRUE if allocation is not possible
=4 1 hour 1 min GETBFW(b,l) S Allocate a storage area of | bytes to the calling
i=5 = 1 Hotir program, return beginning address in b. Put pro-
gram in wait state if the storage area is not available.
CTIMC(i,j.k,t,m) s Connect program i*) to timer j, with pulse rate GETCOM(i.k) S \ano;m the momtokr‘t*hat the Zai:”?hpmii::s?:",:
k (O<k <127). Activate program at absolute time t g foy mpssAnC ke, 1o Lprata-ihe 8 e
(t is array, t(1)=hours, t(2)=minutes, t(3)= se- the Event Control Block with beginning address i.
conds) 4 ‘ s IADDR(m) F Address of variable m or first element of array m
: X : IAND(m,n) F m.AND.n
f;?u‘: T:;:rg'frm" % see TN ER e e IBTEST(),K) F 1 if bit k***) of word j=1, 0 if bit k=0
: : IBYTE(b,d) F Value of byte with address b+d (base address b+d
bytes)
IEOR(m,n) F m.XOR.n
IOR(m,n) F m.OR.n

20

Name/arguments Subroutine/ Subroutine function, or function value

function

ISHFT(m,n) F Word m shifted right n positions if n<Q
Word m shifted left n positions if n>0
Word m if n=0 '

Qiflnl =15

IWORD(b,d) F Value of word with address b+2d (base address
b+d words)

LADD(m,n) F Address m + address n

LCMP(m,n) F -1 if address m<address n
0 if address m = address n
+1 if address m>address n

LEVENT(j) F Test event byte with address |
Value of function = TRUE: event byte set

FALSE: event byte not set

LSUB(m,n) F Address m - address n

MOVTOH(b,,b,,1) S Move storage area of 1 bytes with beginning ad-
dress b, to area with beginning address b., starting
with the highest address

MOVTOL(b,,b,,1) S as MOVTOH, but starting with the lowest address

NOT(m) F Logical complement (NOT.m)

POST(j) S Update event byte with address j (set bit 0 to 1)

RANDOM(x) F A random real number between 0 and 1.

X is a dummy argument.

RELBUF(b) S Release storage area with beginning address b

RIO(i,j.k) S Start an I/O operation on a random access disc
file, and return control to the calling program as
soon as the I/0O operation has been initialized.

i is the function code ($OA=read, $OB=write), |
is the ECB address, and k the sector number.

RIOW(i,j,k,m) S Start an 1/O operation on a random access disc
file, and wait for completion.

i is the function code (see RIQ), j the ECB address,
and k the sector number. The status of the 1/0O
operation is returned in m.

RVALUE(b,d) F Vaiue of the real variable with address b + 6d (hase
address + d real values)

SI0(i,j) S Start a sequential I/O operation with function code
i, ECB address |, and return control to the calling
program as soon as the 1/O operation has been ini-
tialized. The status of the request is returned in m.
Function code values:
i=1 basic read
i=2 standard read
i=5 basic write
i=6 standard write
i=9 replace record
i=20 or $14 skip forward up to EOS mark
i=22 or $16 skip forward up to EOF mark ¢
i=34 or $22 write EOF mark
i=38 or $26 write EOS mark
i=48 or S$30 get information about a file code
i=49 or $31 rewind
i=51 or $33 skip backward one block
i=52 or $34 skip forward one block

SIOW(i,j,m) S Start a sequential I/O operation with function code

i and ECB address |, and wait for completion. The
110 status is returned in m. For function code values
see SIO.

21

Name/arguments Subroutine/ Subroutine function, or function value

function

START(i,j,k,m) S Start program i*) after a delay of j timer units of
timer k (for timer numbers see CTIM).
Status returned in m:
m=1 request accepted
m=2 program already connected to a timer
m=3 program name unknown
m=4 wrong parameter
m=>5 space for a parameter block cannot be allocat-

ed

STBYTE(b,d.v) S Store the 8 rightmost bits of word v at address
b+d (base address b+d bytes)

STREAL(b,d,v) S Store real value v at address formed by truncating
b+6d to an even value

STWORD(b,d,v) 8 Store word v at address b+2d (base address b+d
words), truncated to an even value

SWLEV(j) S Switch to next program at software level j (or to
program at current level + 1 if j=0)

TIME(,m) S Place time of day into first 6 elements of array j
(hours-minutes-seconds-tenths of seconds- fiftieths
of seconds- number of pulses special clock, 0 for
standard clock)
Status returned in m:
m=1 request accepted
m=2 request not accepted

TRNON(i,t,m) S Start program i*) at absolute time t (t is array:
t(1)=hours,t(2)=minutes,t(3)=seconds)
Status returned in m:
m=1 connection to timer accomplished
m=2 program already connected to a timer
m=3 program or timer does not exist
m=4 wrong parameter
m=5 space for a parameter block cannot be allocat-

ed

WAIT(j,k,m) 3 Stop the running program during j units of timer k
(for timer numbers see CTIM).
Status returned in m:
m=1 request accepted
m=2 request not accepted

WECB(j) S Stop the running program, and wait for setting of

event byte with address j.

*) i is B-character Hollerith constant, variable, array element or array containing
program name.

**) a 2-character Hollerith constant, a variable or array element.
***) k= log, of the value of the bit position: least significant bit is bit 0.

22

EXTENSIONS TO, AND RESTRICTIONS ON AMERICAN STANDARD FORTRAN

EXTENSIONS

Line Syntax
There is no linit imposed on the number of continuation lines.

The first character of any line may be the letter X which is used in the conditional
compilation feature.

A comment line may be followed by a continuation line.

Subscripts
Any integer-valued expression is accepted as a subscript expression.

Arithmetic Expressions
Mixed mode arithmetic expressions are allowed.

DO Statement

The control variable, the initial, terminal and incrementation values may be redefined
during execution of the range of the DO.

Only the incrementation value must be greater than zero.

Format Specifications

The FORMAT statement reference in a READ or WRITE statement may be specified
by a label, an array name or a Hollerith constant which constitutes a valid format spec-
ification. When the format specification is in an array, an nH descriptor may form part
of the specification.

Hollerith Descriptor
On output, the nH descriptor may be replaced by a string of characters enclosed within
apostrephes. Data are then transferred exactly as written.

Control Statementis
Two special statements - IDENT and OPTIONS - are available which control the com-
pilation process

Logical and Integer Expressions
Any integer-valued arithmetic expression-may be used instead of a logical expression
in any statement or expression, and conversely, any logical expression may be used
instead of an integer expression.

RESTRICTIONS

Inastatement function or assignment statement the = sign must be written in the initial
line of the statement.

In any control statement the keyword (GOTO, CONTINUE etc.) must be written in the
initial line of the statement; no part of it may be carried on to a continuation line.

The comma following the initial parameter in a DO statement must appear in the initial
line of the statement.

Both STOP and PAUSE statements may be followed by a string of not more than four
alphanumeric characters (as opposed to five in A.S.A.)

The number of subscript expressions must not differ from the number of dimensions
declared for an array. However, this does not prevent a two- or three-dimensional array
from being made equivalent to a one-dimensional array (by application of the element
successor rule).

