7 Instructions

The instruction set gives the programmer the ability to carry out all the functions
necessary lo program the system efficiently and may be divided into ten basic
groups:

Load/Store Instructions
Arithmetic Instructions
Logical Instructions
Character Instructions
Branch Instructions

Shift Instructions

Control Instructions
Input/Output Instructions
External Transfer Instructions
Move Table Instructions

Within these groups efficiency is ensured by the possible use of up Lo eight
different methods of forming one of the instruction’s operands, the method Lo
be used being chosen by the programmer with reference to the memory and
timing requirements of any particular program.

Two formats for instruction layouts are used and where necessary two words
are used to deline an instruction.

INSTRUCTION FORMATS

Twao instruction formats are possible and these are delined within Em. instru n.sn.:
by the most significant bit, bit 0, of the instruction word, Where instructions
consist of two words the format bit is the most significant bit of the first word

only.

Format 0 instructions are always short, that is one word. Format 1 instructions
may be short orlong, one or iwo words.

7-1

FORMAT O

1] OPC HICHO "
FORMAT T {short)

1 apc R1/CND KD R2
FORRAT t [londg)

1 orc RSN o R

=L
Figure 7.1 Layout of instruction formats.

OPC 4 bits, the pattern of which deflines the instruction to be carried out.

R1

Rz

R3

CND

MD

KL

4 bits, specifies the working register to be used by the instruction, AQ -
A15, It may contain one of the operands to be used and may also be
used o hold the result of the instruction. In certain cases with R1 = 0
Lthe addressed register, the P register, will not be used and in these cases
K1 = 0 will qualify the operation code and define a different instruction
than when B1 = (.

4 bits, specifies the second working register 1o be used by the instruction
Al - Al5. It may contain the second operand or hold an address 1o be
used in forming this operand. If R2 is made zero, no second working
register is specified but this condition is used in deciding the method of
forming the second operand.

3 bits, specifies the working register to be used by the instruction AD -
A7, It may contain one of the operands to be used and may also be used
to hold the result of the instruction. In certain cases with R3 = 0 the
addressed register, the P register, will not be used and in these cases R3
= 0 will qualif¥ the operation code and define a different instruction
than when R3 = (),

3 bits, specifies the condition which must exist for a particular instruction
to be carried out. Used to qualify conditional branch instructions and
replaces R3 or the most significant 3 bits of R1.

2 bits, specifies the mode of addressing to be used when forming the
second operand of an instruction where this is applicable.

1 bit, applicable to certain instructions using memory. When present it
specifies that the result of the instruction concerned is to be stored in the
memory address specified by the instruction. When this bit is not present
the result is placed into the working register specificd by R1.

8 bits, these bits are used to specify the operand in format 0 instructions,
and include short constant operands (k) and short displacements (m-for
relalive branch instructions). This field is also used to specily counts for
shilt instructions (n) and device addresses to 14O instructions (dev), in
these cases a part of the field may be used to qualify the operation code.

16 bits, this field is made up of the complete second word of a double
length instruction and may specify a long constant (K L) or an address (m).

7-3

FORMING THE OPERAND

i tions i 5 i rthods of forming one of the

aov of the instructions may use various meth k
wm nr_”w_.,Mm to be used. In all, eight methads of forming an operand are available
wau..ﬁu:mﬁ_ by the valucs of the Format, Mode, and R2 fields of the instruction

. layout.

Figure 7.2 lists the eight methods of forming an operand and a brief description of
each method is given following the figure.

Type Format Maode R2
Tl 1 1] = RegiBeg.
T2 1 0l B2 =10 Long Constant
T3 I 0l R2# 0 Address in Reg B2
T4 1 10 R2 =0 Addressin next word
Ta I 10 R2 #0 Indexed
Té 1 11 B2 = { Indirect
T7 1 = B2 +£ 0 Indexed Indirect
T& W] = - Short Constant
Figure 7.2

Ti. Register/Register - Format 1 (short) ;)
The operand is the value in the register specified by R2 of the instruction

format.

T2, Long Constant - Format 1 (long) .)
The operand is the value in the least significant word, all sixteen bits, ol
the double length instruction format.

T3. Address in Register - Format 1 {short) .
The operand ig held in memory. The memory address .cq the operand is
the value in the register speeified by R2 of the instruction format.

T4. Address in Next Word - Format 1 (long) ; ;
The operand is held in memory, The memory address of the operand is
the value in the least significant word of the double length instruction.

T5. Indexed Address in Next Word — Format 1 {long)

The operand is held in memory. The memory address of the operand is
found by adding the value in the register specified by R2 of the in-
struction format to the value in the least significant word of the double
length instruction.

Té. Indirect Address in Next Word — Format 1 {long)
The operand is held in memory. The memory address of the operand is
also held in memory. This indirect address is the value in the least
significant word of the double length instruction.

T7. Indexed Indirect Address in Next Word - Format 1 (long)
The operand is held in memory. The memory address of the operand is
also held in memory. This indirect address is found by adding the value
in the register specified by R2 of the instruction lformat to the value in
the least signilicant word of the double length instruction.

T#. Short Constant = Format
The operand is the value in the least significant eight bits of the instruc-
tion format.

INSTRUCTION TIMING

The timing of the instructions depends on various factors; the type of instruc-
tion itself, the memory, the method of forming the operand and the number
of memory cyeles required.

The instruction sct offers the possibility of very rapid execution times where
single word register/register or shorl constant operations are employed whilst
the more complex register/memory instructions save execution lime when
compared with the routines they may replace.

Execution time is also reduced in the case of conditional instructions by
carrying out the conditional check immediately after accessing the instruction
and then only continuing if the required conditions are satisfied.

TRAF ACTION

The use of any invalid instruction causes the activation of the Trap action
which consists of the following basic actions;

- the CPU does not attempt to carry out the instruction

information with reference to the instruction address and processor status
is saved in the stack

interrupts are inhibited

a user mode flag is reset when working in user mode

an indirect branch is made to address /7E for a trap routine.

THE INSTRUCTION SET

The instructions within the basic groups, together with their mnemonic, ad-
n_.qr_mm:._m type(s) and the execution time for the different types of memory are
listed here:

Load/Store Instroctions

LD
LDR
LDEKE

ST
STR

ML
MLE
MLEK
M5
MSR

EL
ELR

Es
ESR

Load .
Load Register
Load Constant

Store
Store Register

Multiple Load

Multiple Load Reg
Multiple Load Constant
Multiple Store

Multiple Store Register
Extended Load (MMU)
Extended Load Register
(MMU)

Extended Store (MMU)

Extended Store Register
(MML

Arithmetic Instructions

AD
ADR
ADEK

SU
sUR
SUK

MU
MUR
MUK

DV
DVR
DVE

76

Add
Add Register
Add Constant

Subtract
Subtract Register
Subtract Constant

Multiply
Multiply Register
Multiply Constant

Divide
Divide Register
Divide Constant

Addressing Execution times in ys
tvpes
1.2 ps memory |0.7 ps memary
T4 -T7 37 -50 ps 2.2-3.0ps
T1, T3 14-25 pus 1.2 - 1.8 ps
T8, T2 1.3-2.5 ps 0.9-1.5ps
T4-T7 | 3.8-5ps 24-33 pis
T3 2.8 ps 21 ps
T4 -T7 28-41+ 26-35+
nxl.3 ps nx0.8 ps
T3 20-24 + 19-23+
nxl.3 ps nx08 us
T2 2.9 4 nx1.3 ps| 2.7 + nx0.8 s
T4 -T7 2B -41+ 26-35+
nxl.3 ps nx(.3 ys
T3 25-3.1+ 23-29+
nxl.3 us nx.8 ys
T4-T7 J-41ps 24-33 ps
T3 2.5 ps 2.1 ps
T4 - T7 3-4.1 ps 24-33 s
T3 2.5 ps 2.1 ps
T4 -T7 38-6.3 ps 22-39ps
T1,T3 1.4 -38 ps 1.2 -2.6 us
T8, T2 1.3-2.5ps 0.9-15pus
T4 -T7 38 -6.3 ps 22-39ps
T1,T3 1.4 - 3.8 ps 1.2 - 2.6 pis
T, T2 .3-2.5 s 09 -15ps
T4-T7 9.7-11 ps 8.6-9.5 ps
T1, T3 7.8 -B.5 ps 1.6 - mm__i
T2 8.5 us 7.9 ps
T4-T7 10-113ps | 88-95ps
T1, T3 7.8 - 8.8 ps 76 - 8.9 ps
T2 8.8 ps 8.2 ps

MAddressing

Execution times in ps

ypes
DA Double Add Td-T7
DAR Double Add Register T1, T3
DAK Double Add Constant T2
Ds Double Sublract T4 -T7

DSE Double Subtract Register T1, T3
DSK Double Subtract Constant T2
2 Two's Complement T4 -T7
C2R Two's Complement

Register T3
I Increment Memory T4 -T7
IMR Increment Memory

Register T3
NGR Nepate Register T1
CM Clear Memory T4-T7
CMR Clear Memory Register T3
CW Compare Word T4 -T7
CWR Comparc Word Register T1, T3

CWK Compare Word Constant T2

FFL [Integer to Floating

Point Tl
FFX Floating Point

to Integer Ti
FAD Floating Point

Addition T4T7
FADR Floating Point

Addition/Register T3
FSU Floating Paint

Subtract T4-TT
FSUR Floating Point

Subtract/ Register T3
FMU Floating Point

Multiply T4-T7
FMUR Floating Point

Multiply s Register T3

1.2 js memary

0.7 js memory

5.6-69pus
J.1-4.5 s
4.4 jis
5.6 -69 s
31 -4 ps
4.4 us

5.3-6.5 ps
4.0 ps
3.0-63 ps
3.8 us

39-48 us
3.0- w__m.:___m
wm___:
19- hm_____.u
w_uquﬁ::m
w.mhﬂa
...w...u,-.._n...a_m__m
,:_:m
3.0-4.0 ps
2.6 js
1.9 ps

24-33 s
21 s

e
1.5 js

37 s

21 ps
6.2- 9.6us
5.9- Hdus
6.2- 9.6 ps
59-. B4us
§.4-12.2 s

8.4 -11.0 ps

}umEH“Em Execution limes in us Addressing Execution times in ps
¥p vpes
1.7 ps memory | 0.7 ps memory . y 1.2 ps memory [0.7 ps memory
FDV Floating Point RB Relative Backward
. Division Ta-T7 B.8-12.2 ps Branch T8 1.3 s L1 ps
FDVR Floating Point RF Relative Forward Branch T& 1.3 s 1.1 ps
Division/ Register T3 Bd-11.0ps
CF Call Function T? 4.8 ps 4.0 ps
..mu_na mnm.q_ﬁwm_m,m oy o i i CFR Call Function Register T1, T3 42-49 Jis 3.6 -4.1 Jis
A og. : B-63ps |22-39ps CFI Call Funeti T4 -T7
ANR Log. AND Register TI, T3 | 14-38ps | 12-26 wa i i A Rl e
ANK Log. AND Constant T8, T2 13-25 ps 0.9- 1.5 ps RTN Return T3 3 -ddps 2.7-4.1 ps
OR Log OR T4-T7 JB-6.3 ps 22-39 ps .
ORR Log. OR Register T1, T3 14 -3.8 wa 1.2 - 2.6 pis EX EReEOlE)) =1 \ o
ORK Log. OR Constant T8, T2 13-25ps | 09-15ps mmm WHMNHM mnﬁm__n_y MM_ T3 a%gnw on instruction in
: : onsta operan
XR Exclusive OR T4-T7 38-63ps 22-39 ps
XRR Ex. OR Register TL, T3 1.4 -3.38 ps 1.2 - 2.6 ps Shift Instructions
XRK Ex. OR Constant T8, T2 L3-25 ps 0.9 - 1.5 ps SLA Lefi Arithmetic Shift T8 2.0 + nx0.3 ps| 1.9 + nx0.3 ps
SRA Right Arithmetic Shift TR 1.9 + nxa.3 ps| 1.7 4+ nxQ.3 ps
. ! i : : : H M
| e e ik i P L SLL Left Logical Shift T8 19 + nx0.3 | 17 + nx0.3 jis
_ Lk i SRL Right Logical Shift T8 1.8 +nx0.3 us 1.6 + nx0.3 ps
| Cl One's Complement T4-T7T 38-63ps 22-39 s SLC Left Circular Shift T2 1.9 + nx(.3 s 1.7 + nx0.3 ps
[ClE One’s Complement SRC Right Circular Shift T# 1.8 + nx0.3 ws| 1.6 + nx(L3 ps
f K
Register Ti1,T3 L4-38 ps 1.2 - 2.6 ps SLN Left Shift and Normalize T8 4.2 + nx0.5 ps| 4.0 + nx0.5 ps
SRN Right Shift and Normalize T8 4.1 4+ nx0.5ps ! 3.9+ nx0.35 ps
|
Character Handling Instructions i
LC Load Character T4 - T7 38-50ps 27-36pus W—_ﬁw WM“HM Wwﬁﬂhﬁ-wwﬁﬁ .,”.m w“ an_n__w__nm w.n_ + 0x0.3 s
LCR Load Character Register T3 2.8 s 2.4 ps B 1 +0x03 js| 3.0+ nx0.3 s
_ LCK Load Character Constant T2 2.8 ps g DLL Double Left Log. Shift T8 2.4 + nx0.3 ps| 2.2 + nx0.3 ps
SC Store Character T4-T7 | 38-50ps |24-33ps mmw Wmuwﬁ m__m“._m__.ln”m%?: = 24 + nx0.3 ps| 2.2+ nx0.3 s
SCR Store C i5 f
| Store Character Register T3 2.8 ps 2.1 pis Shift ; _ | T8 2.4 + nx03 s| 22 + nx03 pis
__ i e T4 - T7 38-50 ps 2736 i Wmm W::En Right Circ. Shift T8 24+ nx03 ps| 22 + nx0.3 ps
CCR C % -) puble Left and Norm
e ompare Char. Register T3 2.8 ps 2.3 ps Shift T 4.5 4+ nx0.5 ws| 4.3 + nx05 ps
'K Compare Char. Constant T2 2.8 s 23 ps DRN Ua.c_ﬂ._n Right and Norm | Ll
_ ECR Exchange Char. Register T1 1.4 ps 1.2 ps Shift T8 4.9 + nx0.5 ps| 4.7 + nx0.5 pis
___ Branch Insiructions Control Instructions
AB Absolute Branch Ta, T2 1.3-2.1ps (L9 - 2.0 ps ENB Enable T8 3.5 ps 34 ps
| ABR Absolute Branch Register T1, T3 1.6 - 2.6 ps 1.2 -24 fis HLT Halt T8 L7 ps L6 ps
ABI Absolute Branch T4 -T7 4.0-52 ps 1.1 -3.2 ps RIT Reset Internal Interrupt T8 1.7 ps 1.6 ps

79

E_m_ﬂ_mwm.:m Execution times in pis 8 Data Flow and Control
1.2 ps memory |0.7 ps memory 5
INH Inhibit Interrupt T8 1.7 s L6 jis
1EM Link To Monitor Hm 3.3 Jis 34 o The control of data flow within the system is governed by the action which 1s
SMD Set Mode T8 L7 ps 1.6 pis being carried out at the time. The main sources of control being the instruction
; set. the inputfoutpul processors, the interrupt system, and the bus control
Input/Output Instructions) system. Data flow within the system is carried out via the general purpose bus.
Cl0 Control Input/OQutput 138 4.4 pis 4.3 ps The input/output processors use conventional control circuitry whilst the
INR Input to Regisler T8 5.3 ps 5.2 pis control exercised by the instruction set, the interrupt system and the bus con-
OTR OQutput [rom Register T3 4.4 ps 4.3 ps iroller are via a microprogram held permanently within the control ROM of
SST Send Status T8 5.3 pis 3.2 jis the CPU.
TST Test Status T& 5.3 ps 5.2 ys
' A The following examples of data flow cover only the instruction set, The data
External Transfer Instructions = | flow and control of the inputfoutput processors is covered later in chapter 10.
WER Write External _wnm.ﬁ_h_. I'& 4.6 ps nm_m s As all the instructions are controlled in a generally similar manner only oneg
RER Read External Register T8 3.1 ps 5.0 ps instruction, an add instruction, is shown.
TL Segment Tahle Load
h.?_Z_r: r4-T7 154 -16.8 s | 12-13 ps Figures 8.1 and 8.2 show a flowchart of the microprogram actions carried out
TLR Segment Table Load y during an add instruction which places the result in a register. The required
“ Register (MMU) T3 131 p LT pis microprogram instruction words would be accessed in sequence from the address
TS Segment Table Store generated by the ROM address generator. Three separate actions take place to
MMU) T4.T7 154-168ps | 12-13 s carry out the complete operation:
. TSR Segment Table Store . |. The instruction is accessed from memory using the address in 5 REG and
Register (MMLU) 13 | 13.1 ps 11.7 ps P REG are then incremented by 2 in preparation for the next action.
_ 3. The method of forming the operand is decided. The operand is accessed and
_ FLI} Floating Point Load T4-T7 44-53 4 placed into REG M and Q.
“ FLDR Floating Point T3 4.1 ps 3. The arithmetic action is carricd out and the result placed into the specified
_ : Load/ Register register. The Condition Register is updated.
FST Floating Point T4-T7 37-46ps Al the same time the next instruction is fetched and the registers P and 5
Store are incremented by 2,
FSTR. Floating Point T3 3.4 ps
Store/Register
Move Table Instructions
MWVE' Move Table Forward
(PR57 standard) T8 4.7 + nx2 ps 4.5 + nxL§ ps
MY¥B Move Table Backward
(P857 standard) T# 4.3 + nx2 uis 4.1 + nx1.8 ps
MYUS Move Table from User
to Sysiem (MMU) TR 4.3 + nx2 jis 4.1 + nx1.8 ps
MVSU Move Table from System
to User (MML]) T# 4.7 + nx2 ps 4.5 + nxl.8 ps

i
-

—

{MEM) + K, M3-15, 0QB-15

Fetch
IP1+E # F V Cycle
[S1+2 = 5
Erarch with Reference te Operand Type 2l 5 T4 6 r7
[m T s v
i ki & ik I [MEM) = M {MEM) + 5 (MEM} + M
| =L
(Fys2 = P
fOperand 7
Tread
LBt e {RE) S held in {MEM) __ﬁ..m
M, 0
) Place 1 1
G arad (RZ) s (P)+2 o P (R2)+M
(HMEM) = MW, T H_._.“_u_n...v _
o} s [MEM) i M, Q
Pl :
E ADDHESSING +
i SUBROUTIRE
5
Figure 8.2 Microprogram Addressing Routine
1 1 ot
R | > L Arfthnatic
| Update CR hetian
| _ Sinultaneously;
END A [MEH} - K, B8
”w_1m +
{3]+2 ~ 5

| Figure 8.1 Instruction Microprogram

Figures 8.3 to 8.6 show dic imatically the data flow involved in the basic
arithmetic operations, with r .ect to the overall system block diagram on page
23,

Fetch Cycle {MEM) = K, zm-pm. Og_1s
Q-REGISTER M-REGISTER ﬁHV
i + I | Bits 8=15 of the
instruction word are
copied into the bit=
c-MULTIPLEXER B-15 of M and @
I—jlt
fddressing Cycle (T1) (R2Z) - M, @
S-REGISTER ﬂmu
i y The eycle for T3 operand uses the value copied into
mHu The complete instruction M, 0 REG as an address to access fn the final operand.
word is copied into K-AEG
The address aof

the next in=

struction is
sent from S5-REG K-REGISTER
Eo memory
3 : o
GENERAL PURPOSE BUS ALU REGISTERS
The components of Lhe Al-AL
! A addressed scratchpad are
L

input at & af the ALU
The instruction ward addressed

REGISTERALS
from 3-REG is read from memory.

MEMORY Auu nmu

Ha- 15T The input A to the ALU is
| L RERAEE patsed tnrounh the ALU and The reguired

H copied intc M-REG via the scratchpad 135

D-MULTTPLEXER P-HPLX and C-MPLY addressed from

Hote: ; ¥ the R2 field
The complete cperand of Short Comstant B : af the
instructions is now held in M and § REG LIMULTIFLEXER

instriuction
ready for use,

Figure 8.3 Accessing an Instruction Figure 8.4 Addressing cycle (T1)

8-5

ol
B A i
- ¢ - HEM) = M The contents ©
Addressinag Cycle (TE mnmum * r, g 8 ALU o arareed i e
[5)#7 + 5 | g scratchpad are EGIS
: Lt input at A of Al - Ala
g | the ALU
tycles for T4-T7 operands use the value initially
copied inte M-REG to compute the final ﬁuu REGISTERALS
operand address, using similar cycles. _ <
M-REGISTER The sum of the two AHU
msncﬂm.nn the ALU The reguired
AHV ﬂ is copied into scratchpad is
L-REG addressed from
The contents the R1 field
af M-REG are @ﬁ the
M-REGISTER @ § input B | instruction
h
The reguired word is copied _ mmcﬂ =] L-REGISTER @
% into M-REG via the c-wpLx. (&) | o Ny
”1"+N + P ! @ into the
JHE ssed
C-MiLTIPLEKER L% : _ CR 1s updated teratehpad
Jr| |
_ and simultaneously
F is incremented +2+ ﬁHHHHu
AEREITRLE % 1= incremented +2-
nHU The address of the next recuired The memory contents
word is seng from 5-REG to memary. iz lpaded through
C selector in K,
1 0 M
8-15" "B-15
GEMERAL PURPOSE BUS rﬁ
| r 1 Q=-REGISTER ¥-BREGISTER
| ® | [| !
MEMORY The word addressed from 5-REG __u-_c_:_..:v_,m_xmm
iz read from memory. |_II|
MEMORY

Figure 8.5 Addressing ¢ycle (T2) Figure 8.6 Execute cycle

87

9 General Purpose Bus

The general purpose bus, consisting of 57 data, addressing, interrupt and control
lines, handles the exchanges made between the main units of the system and for
this purpose may be divided into four groups of signals each providing a separate
bus function. The four function groups of the bus are:

1. Bus Control Functions

2. Data/Command Exchanges
3. Interrupt Handling Functions
4. Miscellaneous Functions

In order to gain the maximum efficiency from the bus certain of the bus functions
may occur concurrently. Bus control functions may occur during the current data
or command exchange, interrupt handling is carried out entirely independant of
other facilities once it has been initiated, and miscellaneous functions may occur at
any time and without reference to any other bus function.

ERESS IR TR TRLT
Fu = ppocisaon
i L 4 &

| OUS COMTROL LINES 3 F

WIRGELL ARECAIS LINES

- GEHNERAL
SATACOMMAND EXCHANGE LINES PURFOGE

| — 1 i

IWTENIUPT SaiD S LiSES

L.

- FRELR
SO TG -'. WEMCEY

Figure 9.1 Connection of Standard Units to the Bus

BUS CONTROL FUNCTIONS

Efficient use of the bus for data or command exchanges is organized by a bus
controller within the CPU. This controller allocates bus cycles for data or
command exchanges one atl a time, on a priority basis, to units which are able
to request such cycles.

All units connected to the bus are known as masler or slave units, and masters
may act as either a master or slave depending on the Eﬁ.i. exchange (o be
carried out. Units known as masters are those units which are capable of
requesting a bus cycle for data or command exchanges and then, when the = 3
cycle is granted, controlling an exchange with either another master or slave,
or controlling an exchange betwecn 1wo separate slaves. Units known as slave | . |w_._| -
units are not able 1o request such bus cycles. To overcome clash conditions @
which may occur when two or more masters request a eycle simultaneously,
normal bus allocations are made on a hardware wired priority basis to the | "
masters, selection of the next master being carried out during the current _ &
exchange. Apart ftom this priority system the bus is allocated directly to the p 2
CPU in the event of a power failure being detected.

-
MASTERS

QOTHER

Priority Chain

The priority chain is hardware wired at installation time and within a standard
system the CPU is given the lowest priority in the chain, other masters, such as 7
the input/culpul processors will be given priority according to the system's
requirements, Once a bus request has been made the bus controller initiates a
master selection eycle to determine the highest priority master requesting the
hus for a data or command exchange, as any number of masters may make a
request at the same time. In response Lo a request 4 SCan signal is initiated and |
is routed to all masters, via the masters, and in strict order of priority. The
| signal is only retransmitted from a master if the master is not requesting a bus
cycle. In this way the highest priority master requesting a bus cycle is found
and this master then indicates to all other masters that it has been selected.
Any other lower priority masters that are requesting bus cycles remove their
requests and must wait until bus requests are allowed before raising their
requests again. The complete selection may take place during the current bus
exchange cycle, whilst the bus is effectively busy, thus keeping the overall bus
cycle time down to the time required for an exchange.

BEYM
SECOMD HIGHEST FRIORITY MASTER

BUS COMTROLLLEA
GEMERAL PURPOSE BUS

CPU LOWEST PRIORITY MASTER

MEH

Figure 9.2 Shows a block diagram of the bus pricrity and selection system.

Afier being selected as the next master a master must wait until the exchange
paths within the bus are no longer used. When this occurs the master lakes con-
trol of the bus exchange paths, and removes its master selected signal from the
bus. This final action allows a new master selection cycle to be carried out
whilst the exchange cycle takes place.

HIGHEST PRIOAITY MASTER

DATA OR COMMAND EXCHANGES

These exchanges comprise data transfers with memory, command and response
translers to control units, and transfers with external registers.

As has been previously mentioned, before any such data or command exchange Figure 9.2 Bus Priority and Selection System

93

9-2

may take place, a master unil must request E.__n_ be granted a data or command
exchange cycle, and must wait until the previous data or n@EEw:; exchange
has been completed before commencing its own exchange. Basically lwo types
of exchange are possible:

|, Exchanges between the controlling master and another unit, where the other
unit is either a slave unit or a master acting as a slave. e.g. CPU to Contral
Unit or CPU to 1/0 Processor.

7. Exchanges between two glave units under the control of a master, e.g. /O
Processor controlling an exchange between a CU and Memory.

e i
m —

TPKMN

TMRMN

4%&“
|

1 —
e— -

Figure 9.3 Exchange example

—

Control Unit Address and function set on the Bus and validated by TMEN

2 CU recognises address and accepts the function. Replies to master wilh
TPMN

3 The master has now set up the CU and may now change the Address and
Function, on the Bus.
CU remains set ready to receive data from the Bus

4 Memory Address and function set up on the Bus and validated by TMRN

5 Memory sets data on to the Bus and replies with TRMN

6 CU accepts data from the Bus TMPN removed

7 TPMN removed

8 TMRN removed

9 TRMN removed

Timing Control

The overall timing of exchanges made between units connected to the bus will
differ widely and in principle will depend upon the type ol device, and o same
extent the physical positioning of the units on the bus. Control during an ex-
change is exercised with reference Lo timing and response signals raised by
the units making the exchange and where necessary liming differences are
accepted by the bus. This gives the system the ability to use either standard or
non-standard peripheral devices without the need for special timing circuits,
provided that the devices meet the overall requirements of the bus. In addition
the bus includes a time out facility (o unblock the priority system should Tor
any reason a device or unil not reply to a timing signal from a master within
B.4 ps. In such a case the proposed exchange is aborted and the nexl selected
master is allowed to commence its exchange. Figure 9% shows a simplified
diagram of an exchange between u control unit and memaory. under the control
of a separate master (input/output processor). The timing signals used during
the exchange are described later in this chapter and are shown as an indication
of relative timing only, they are nol to scale. Complete timing details of all
transfers are available in the P836M/P85TM Interface Manual.

INTERRUPT HANDLING

Interrupt handling is carried out independantly ol other bus functions using
separate bus interrupt lines, the CPU initialing a scan af the interrupt lines at
the beginning of every instruction if the previous seanning took place at least
2 ps earlier. The operation of the overall interrupt system including the inler-
rupt handling function of the bus is covered in the following chapter.

MISCELLANEOUS FUNCTIONS

These functions operate independantly of other bus functions and are con-
cerned with the general reset and power on sequence within the system.

BUS SIGNAL LINES

The signals and lines associated with the four bus functions, N stands lor active
low, are:

Bus Control Signals

BUSRN . Bus Request
The signal is raised by a master whenever it requires a bus data or command
exchange cyvele and bus requests are allowed.

SPYC Sean Priovity Chain
This signal is raised by the bus controller in reply to BUSRN and indicates to
all masters the commencement of a master selection cycle.

OKO/OKI Check Requests
This signal is generated as OKO {OUTPUT]) by the bus controller and received
by the highest priority master as OKlI (INPUT). It is chained through all the
masters in order of priority as OKO/OKL Onward transmission of the signal 15
inhibited by the first master which receives the signal and is requesting 1 bus
cycle, this master is then selected as the next master.

MSHN Master Selecred
This signal is raised by a master which has been selected as the next master to
indicate the selection to all other masters. It is removed once the master
concernied commences its exchange cvele.

BSYN Bus Busy
This signal is raised by the master which has been selected and is now carrying
oul an exchange cyele. It is removed on completion of the cycle to allow the
next selected master to commence its exchange.

Data or Command Exchange Signals

Timing Signals

TMRN Timing Master to Menmon:
This signal is raised by a master and is used to validate the data and address,
and to control the timing of an exchange with memory.

TMPN a0 Timing Master to Peripheral
This signal is raised by a master and is used to validate ihe control data and
address, and 1o control the timing of an exchange with a peripheral control
LniL.

TMEN Tining Master to External Register
This signal is raised by a master and is used to validate the data and address,
and to control the timing of an exchange between a master and a unit containing
an external register.

TRMN Timing RegisterMemory to Master
This signal is raised by memory or a unit controlling a register. It is used together
with signals TMEN and TMRN in the controlling of an exchange cycle with
i register or mMCmory.

%ﬂg.z = Timing Peripheral to Master
15 signal is raised by a peripheral device control unit and is used together

with signal TMPN in the controlling of an ex i i
. ex 4 e
device's control unit, e Py Tnlacdadel Gl

9-6

Bus Address Lines

MAD128, MADSY, MADDO to MADI1S I8 Address Lines
These lines carry the memory address, register address, or peripheral address
and requested function, during any exchange and are qualified by the timing
signals from a master:

1. Memory Exchanges (Qualified by TMRN)
MADO0 to MAD14 - These lines carry the 15-bit memory address required
Lo aceess up o 32k of memory.
MADI5 - This line is only significant in character operations and is used (o
define the character within the addressed word which is to be used.
MADG4. MAD128 - These lines enable the extension of memory addressing
to 64k and 128k words.

b

External Register Exchanges (Qualified by TMEN)
MADOS to MAD15 - These lines carry the 8-bit register address required to

access up to 256 registers.
MADO4 - This line is used to indicate a read or write operation to the

addressed register.

Lk

Peripheral Control Unit Exchanges (Qualified by TMPN)

MADIO ta MAD1S — These lines carry the f-hit device address required to
access up to 64 control units.

MADNM - This line is a function line used to indicate the direction of the
exchange.

MADOZ - This line is a function line used to indicate whether the exchange
is a data exchange or a command or status exchange.

MADO9 - This line is a function line reserved for use by special functions.
MAD03 - This line is used to indicate whether the current word or character
exchange is the last when exchanges are organized in blocks.

Bus Dara Lines

BIO 00N to BIO 15N InpurAQuiput Lines
These lines are the 16 input/output lines used to carry data between the units
making an exchange.

ACH Accept
This signal is sent from a control unit to indicate that it accepls the request to
carry out a designated function.

WRITE Write
This signal is raised by a master controlling an exchange with memory to
indicate that the exchange is a write to memory. When the signal is not present
a read from memory cycle is indicated.

CHA Characrer
This signal is sent [rom a master o memory -lo indicate that the requested
exchange is to be carried out in characler maode,

Bus Interrupt Lines

SCEIN Scan External Interruprs
This line is used to allow units connected Lo the intérrupt system via the bus to
raise the bus interrupt lines as required.

RIEC 3 . Bus Interrupt Encode
These lines are the 6 lines which carry the encoded value, O to 62, of the highest
priority outstandifg interrupt request to the interrupt system.

Miscellaneous Signals

CLEARN Clear
This signal is sent from the CPU to all units connected to the bus and initiates
a general reset of all such units,

RSLM Reset Line
This signal is raised during the power on or power restoralion sequence and is
used within the system (o ensure an orderly commencement or resumption of
pperation without loss of data.

PWFN it Power Failure
This signal is raised during the power off or power failure sequence and is used
within the system to ensure an orderly run down of operation without loss of
data,

9.8

10 Interrupt System

The interrupt system within the CPU enables both internal and external inter-
rupts Lo indicate that certain action is required with reference to the interrupt.
This indication is given by raising an interrupt signal. Efficient handling of
these interrupt signals is carried out by the hardware in conjunction with the
system’s software, ensuring that interrupts are scrviced in the correct order aof
priority and with complete recovery facilitics 1o the original program once
the interrupt has been serviced. -

ORGANIZATION

Within any system 63 individual interrupt signals are possible to control the
priority running of 64 levels of program. Interrupt priority levels are numbered
and encoded from 0 to 62, level 0 being given the highest priority. Signals at
interrupt levels 0 to 7 are directly connected to the interrupt system at the
CPU and are not encoded in binary form on the interrupt lines of the general
purpose bus. Certain of the lines 0-7 are used by internal interrupts from the
system and such lines are therefore reserved, the remaining lines in the proup
0-7 may be used by facilities which are fitted within the basic mounting box.
Signals at interrupt levels 8 to 62 are always encoded as a G-hit binary value
corresponding to their level and connacted Lo the interrupt system via the inter-
rupt lines of the general purpose bus.

OPERATION OF THE PRIORITY 5YSTEM

Control units have priority levels set by hardware wiring within themselves
and raise the required 6-bit value directly when an interrupt is raised. Two
separate types of interrupt action may lake place, one handling the eight possible
interrupt signals which are directly wired within the CPU and the other
handling all interrupt signals received via the general purpose bus.

The 8 basic interrupt signals are connected to their own priority encoder, the 3
output lines of which are connected via multiplexer (o the system comparatof.
The multiplexer also accepts the encoded signals from the interrupt lines of
the general purpose bus but is wired to give priotity to the basic interrupt signals.
The system's comparator compares the value presented by the multiplexer
with the value already held within the PL register. Only of the value from the
multiplexer is lower, that is higher in priority, than the value in the PL register

10-1

is further interrupt action taken. Once an interrupt of higher priority than the
running program is detected a check is made to see if interrupts are allowed,
the instructions ENB and INH being used to control such enabling.

Note: The connection of the magnetic tape control unit to the system requires

= an additional bus and translator board. The interrupt signal of this control
unit is wired in a slightly different way. Refer to the Interface Manual
for more details.

10-2

INTERRUPT ACTION
Interrupt action is carried out in two distinct parts:

1. The initial hardware action.
2. The programmed software action.

Together these actions must ensure that the correct level of program is entered,
and that sufficient information with respect to the interrupted level is kept
safely so as to enable this level to be restarted correctly once the interrupt
has been dealt with.

Associated with the hardware action is a fixed and reserved word in memaory
for each of the levels, locations /0 - /7C being used for levels (0 - 62 respectively.
These locations, referred to as hardware interrupt locations, are addressed
from a decode of the priority levels given to the interrupt lines and should
always contain the start address of the associated level's coding, Start addresses
for all the levels to be used in any program must be decided upon by the pro-
grammer and then set into the correct hardware interrupt locations by either
the loading process, or by the initial running of the program.

The following flowcharts and explanalions cover the hardware and software
actions of the interrupt system and assume that inlerrupls are allowed and that
the stack is empty at the commencement of the actions.

1. Hardware interrupt action commences by inhibiting further interrupts thus
allowing the present to be serviced without interference if this is necessary.

3. The contents of the P and PSW registers are stored in a memory stack
addressed from register A15. Hardware updating of register Al15 is carried
out each time a word is stacked.

1. On completion of the stacking operation the priority level of the interrupt is
set into the PSW register, overwriting the original contents.

INT

TEIHIET

INTERALETE

STOWE P & F5ie
I STACK

SET MEW FL
IMT0 PEW RES

ERARNDGH TO
ZTARAT OF

KEW LEVEL

10-3

4. A branch is now made to the start of the new level’s coding. This is carried
out by using the priority level of the interrupt to address the required
hardware interrupt location, the value in the addressed location is then set
into the P register and is the address at which the program restarts after
hardware interrupl action.

AL this point the P and P3W registers contain information which is relative to the
new level of program, the address at which the interrupted level is to restart and the
PSW for this level. Further interrupts are inhibited. Instructions are now carried
out from the new program level and it is these instructions which service the
interrupt and define the software interrupt action to be taken, (usually an INR,
OTR, S5T, C1O Halt or an RIT instruction).

SLULOW INTERRLUPTS

SERVICE INTERRLIPT

FESTORE REGISTERS

. It may be required that the content of working registers being used by the
interrupted level need to be stored. If this is required ihen the system stack
may be used for this purpose and the contents of the registers will be stored
consecutively with the contents of the P and PSW regisiers of the inter-
rupted level, Alternatively a scparate safc arca may be designated and used
lor the preservation of the working register’s contlents.

2 H:ncﬂ:_:m (Tom higher levels may of course oceur at any time and il may be

required that these are serviced, Tt this is the case then interrupts may be

E_EJ....E belore any action 1o store the working regisiers, and in this case

the higher interrupting level should store the contents of the working registers

it mtends to use. The order in which storing of registers and the enabling
a_r.__.__E_.E:z is carried out is @ matter for the programmer to decide with

Emn._.n_._nn to the specilic requirements of the overall program,

Whichever action or device caused the interrupt may now be serviced and

any necessary program flags or switches must be set before completing the

routine.

mnﬁo_ﬁ. d return is made to the originally interrupted level any working

registers which were saved must be restored correctly either from the system

stack or from the specific safe area used, :

Pt

10-4

Al this point the required action of the interrupt routine is complete, all
necessary flags and switches are set, and the working registers contain the
values required by the originally interrupted level. The PSW and P register
values required by the original level are addressed by register Al5. Return
action may now be requested using the Return instruction and specifying
register A15 as the stack pointer within this instruction.

RETLRK

upDaTEREGISTER AL

SET FIRST WOHDINSTACK
INTD PaW RESISTER

SET GECOMD WORD 1IN
STACK INTO P REGISTER

CORTINLE

I. The contents of register A15 are updated 1o address the first word of the
stack as it stands. The PSW and P registers still contain the original level.

2. The first word of the stack is set into the PSW register, restoring the priginal
level's PSW.

3. The sccond woed of the stack is set into the P register, thus specifving a
branch to continue the original level when program action is resumed.

Before program action is resumed any outstanding interrupts are checked for
priority against the value in the PL part of the PSW register. If a higher level
interrupt exists then this is serviced in the manner just explained. If no higher level
interrupt exists then the original level continues.

Figure 10.1 shows diagramatically a possible interrupt sequence.

LEVEL 6 HARDWARE SYSTEM m.H....brﬁ.Ezn

HCTICN STACK
AT EEvELS e kol W = The use of register A15 as a stack pointer gives the user the facility of auto-
| o . matic updating of this register. Updating is carried out each time Al5 is used
_ sl S B for addressing purposes by decrementing its contents by 2, thus the stack
EYSTEM STA0H Al5 _ is filled from the higher addressed locations to the lower addressed locations,
i _ EVEL 3 “ P The programmer is responsible for determining the size of the stack required
: 2 I ¥ - a
HHTERENET _ e | and for setting the start address of the stack into register AlS. A further
gy v LEVEL B P facility available to stack handling is the generation of an interrupt when the
CANNOT BE AGTIONED _ A orD TEvEL B FEw stack pointer address is </128, this enables action to be taken to ensure that
AS ALL INTERRLIFTS SYSTEM STACK , e S
ARE IKHIBITED: _ n ffff.ff a1 . the stack does nol overwrite any of the reserved arca at the beginning of
_ .A. ; ! MEemory.
L i
EMABLE A4 |
_ IMTERALIFTS 1
AL] q
| LEVEL & INTERRUPT =r IIIII ...i_l ——
STiLL CAMNMOT RBE
ACTIOMED A% LEVEL 2 wﬂwm.._mm.___.__.m
R it ROUTINE — .
e LEVELB P
K_Y LEVEL & FSW
AESTORE WORKING a1 ALE

THE SYSTEM STACK

|_| pem

RET _L...d—..n ACTION
HESTORES LEVEL G

P& PEW FROM
SYSTEM STACK /

e — r

_
_
|
_ REGISTERS FROM —— |
_
_
_

| ! LEVEL © P A5 _
LEVELESETINPSW —— gl — — — — — -
REGISTER, LEVEL § LEVEL & P5W
INTERSUET ACTION — ...,ml e e ——] !
HTARTE
= kg INHIBIT
_ ETORE LEYELS
P& PEW I THE T
_ SYSTEM STAGK ./ LEVEL & P
; |
LEVEL:S ! LEVEL & S
_ —— s — |
|_|.. AlG
_ ISEE LEVEL 3 —_—]
_ AETURM & TION
_ HESTORES LEVEL 8
B & EEW FROM] LEVELGF s
m.;.m.—lmﬂ STAGE LEVEL 5 FEW
KO COUTSTANDING e e
INTERRUPTS T

ACTION .|vl_|

CONTINUE
WITH LEVEL 6

Figure 10.1 Diagram of interrupt sequence

10-6 10-7

11 Input/Output

Data transfers within the system may take place belween any unit which is
destinated a master and another master or slave unit, or between two slave units
under the control of a master, All data transfers take place via the general purpose
bus and within the system take the form of parallel 16-bit word, or 8-bit character
transfers. Figure 11.1 shows a diagramatic layout of the units concerned with data
transfers and the channels with which cach is associated, The exchange paths
available within the system are:

CPU/Control Unit
CPU/External Register
Memory Slave
Memory Master

The basic transfer channel is the programmed channel which uses only the
CPU/Control Unit path to transfer data, one character or word at a time.
between a CPU register and a control unit. Optionally available within the
standard system are the input/output processor channels. These channels may
be used by devices connected directly to the general purpose bus and may
use the same control units which are used for connection to the programmed
channel. Up to 64 input/output processor subchannels may be connected and
used simultaneously via a priority system of servicing exchange requests.
Priority allocations being made initially to an input/oulput processor as a master,
and secondly to one of the subchannels available within each processor. Trans-
fars carried out via the input/output processor channels use three of the
gxchange paths:

- CPU7External Register to set up the transfer parameters

- CPU/Control Unit to start or stop the transfer and check the states of a
device as Necessary.

- Memory/Slave to allow the direct transfer of data between the memory and
the control unit as initiated by the input/output processor.

In addition to these chanmels, two non standard modes of operation are
possible, each using one of the available exchange paths. Direct access 1o
memory is possible using the Memory/Master path and transfers between inter-
nal and external registers are possible using the CPU/External Register path.

11-1

CU (MASTERD)
i : ABLE TO
cPU MEMORY ACCESS MEMORY
DIRECTLY
— T
|
GEMERAL PURFPOSE BUS
|
|
| 1/0
i ﬂ i BREAK | PROCESSOR
|
PROGRAMMED 1 IMFUT /OUTPUT .
CHANMEL _ FROCESSOE CHAMMEL

Figure 11.1 Units concerned with transfers

CONTROL UNITS

Details af the standard control units available within the system are given in
chapter 16. A control unit is required to connect any external device to the
system. The function of the control unit is to translate the address, control, and
timing signals of the general purpose bus into the necessary signals to exercise
discrete control of the device. The basic requirements of any control unit are:

1. Address Decoder

2. Functlion Decoder

3. Sequence Control - to enable the device to transmit and receive data and
to control the initial starting and stopping of the device.

11-2

il

=—NTERRUPT—

INACTIVE

ﬁ

Prooram Action
CIOD START

QUTFRUT

¥
q

[NTERRUPT __ | i
OR BREAK : | EXCHANGE
DCU ACTION
DMA MULTIPLEX
0R
Program Action
INRSOTR h
i :]
MRS N
i i EXECUTE

p—

e

Program Actinon
CIO STOP

WAIT

sl e

Pragram
fction
85T

&

Figure 11.2 Four states of standard control unit

11-3

The standard control units used within this system are ._.m.”_ER.; to carry out
four separate actions and have a state of operation associated with each of the
actions, particular functions are carried out with respect to the commands
received and the current state of the unit.

Figure 11.2 shows the four possible states of a standard control unit and indicates
the actions necessary to change from one state to another.

The four staies are;

1. fnactive In this staie no exchange is possible. The control unit must be sent
a start command belore any transfer can take place.

2. Exchange In this state the control unit is waiting for a transfer to be ini-
tiated. The transfer may be inpul or outpul and must be intialized by a
master unit, On completion of the exchange the control unit switches to the
execule state,

3. Fxecute In this state the control unit carries out either an exchange with
the device it is controlling, or any other command it has received. The action
is carried out entirely independant of the remainder of the system and on
completion the control unit switches to the exchange state.

4. Wait State This state is entered from the exchange or execule states when
a stop command is received or on the occurrence of an error. In this state
the control unit is waiting to send its status and will switch to the inactive
slale when il receives a request for status command.

Because all transfers are carried out via the general purpose bus on a priority
basis all control units connected directly to the bus, whether lor fast or slow
devices, can use the same basic design and may be connected at & priority level
in accordance with the remainder of the system. When connection is made
via the inputfoutput processors the break line from the unit is connected
directly to the appropriate channel and not via the general purpose bus.

Control Units Connected Directly to the GP Bus

These control unit form their own encoded interrupt signals, Figure 10.3 sHows
an overall block of such a control unit and the signals associated with it

11-4

DEFINITION OF UNITS

The definition of units as masters or slaves and the control exercised by masters
within a standard svstem is:

CPU - Master :
Normally given the inwest priority access to the bus, apart [rom specilic
cases. As a master it is able to control exchanges between itself and
other masters or slaves.

Input/Output Processors - Master | AT .
As a master an input/foutput processor is normally given a priority i
accordance with its importance within the system and is able to control
exchanges between the memory and a device control unit, both of which
will be designated slaves. Acting as a slave the input/outpul processors
are initially set up by the CPLUL.

Memory - Slave .
The memory is always a slave and is controlled during an exchange by
4 master,

Standard Device Control Units - Slave :
Standard device control units are always slaves, and are controlled during
an exchange by a master.

11-6

I.II..II.III.III'I.IIIII.IJ

CU connected directly to GP BUS

i Data Lines
ISSE— ——— -
ORIA BIEERE “ BIO 00N-BIOD 15M
|
l Address
—
" MAD LON-MAD 15N
RODRESS i ’
AND I Functiom
" FUNCTION _.h
DECODE i MAD 04, DB, OON
“ Function Accepted
1
ﬂ ACH
|
.I:a._._m_
“ THPN
|
I Timing
-
“ T PN
SEQUENCE I
AND | Reset
-3 GENERAL I
CONTROL I opeiy
|
[
rlmnsmﬂ Failure
U purn
|
I End of Tranzfer
=
| MAD O3
I
|
| 5can Interrupts
“ SGEIN
EREAK
AND _ Interrupt
- INTERRUPT _n >
CONTROL 1 BIEC 00-05
|
| Break
_ BRN
|
|

Figure 11.3 Signal Exchange

PROGRAMMED CHANNEL

The programmed channel is the basic transfer channel and is standard with all
systems. Apart from providing an exchange facility between a control unit and
the CPU, it also provides the initialization path between the CPU and the
input/output processors. In all actions concerning the programmed channel the
CPU is the controlling master,

Dhata are transferred by the use of specific input/output and external register
instructions within a program and each word or character exchange reguires
a separate instruction. Apart from the instruclions which carry out the ex-
changes, instructions are available to start and stop a device and to check the
status of a device. In practice program loops are used in the control of a block
transfer.

Two possible modes of operation exist when using the programmed channel
{or data transfers:

Wait Mode

This is the simplest bul slowest form of transfer and is in most cases never
used. Fach word or character is exchanged separately and the complete pro-
gram is held up in a waiting loop between individual exchanges. Tn this mode
the maximum transfer rate obtainable is dependant on the time taken Lo execute
the necessary program loop, or the time taken by the device concerned to
execute a single exchange, whichever is the slowest.

Interrupt Mode

By the use of this mode, operation of the programmed channel is carried out
without the use of time consuming waiting loops. Each word or character is
still exchanged separately, but the necessary instructions form a parl af an
interrupt routing, This means that the main part of any overall program can
continue to be executed during the time taken Lo actually carry oul an
exchange.

When the device control unit is ready to exchange another character it raises
an interrupt and the main program is stopped whilst the new exchange 18
initiated by the interrupt routine, On completion of the interrupt routine the
main program is restarted and continues whilsi the exchange is in progress.
This sequence can be continued until either the necessary transfer is complate
or until the main program requires to use the transferred data. In the second
case the main program must be made to wait as necessary.

11-7

Commands and Responses s _
To enable operation of a control unit via the programmed channel the following

instructions may be used as commands to control units.
Cclo START
j cI0 STOF
INR
OTR
55T
TST

The responscs given to these commands are set into the condition register:

CR = 0 Command Accepted
CR = 1 Command Rejected
CR = 3 Address Unknown

The use of the External Register instructions used to initialize the input/output
processors will be coverad when the inpui/output processors are explained.

Control and Data Flow

As only one method of forming the operand for input/output instructions exists,
T# Shart Constant, the control sequence for all instructions is similar, the main
difference being between the input, INR, 55T, TST instructions and output, OTR.
C10 instructions. Figures 11.4 and 11.5 show diagramatically the data flow
invalved during the action of the input/output instructions.

11-8

OTRSCIO Instruction M

R =+ L

OTR SEQUENCE

P}

AL

The contents

of the addressed
ceratchpad are

M-REGISTER copied inte
nmu L-REG via the
] p-MuLTIPLERER ALY
.-_.lq_.-lm .—m i LA —— T
copied inte
5-REG wia
the ALU. #
L-REGISTER
1
5-REGISTER

The contents of

P-REG are copied

into 5-REG.

REGISTERS
1-A14

REGISTERALY

BUS
A CORTROL v K-R

®

The scratchp
addeessed fr
k3 field of
instruction.

ad is
om the
the

EGISTER

;

’

GEMERAL PURPOSE BUS

®

1
The Device Address Data s et The 1/0 function)
i¢ got from 510=-15 from L-REG is et from 52, KT
ahta (AL 10=15 . onto BIO 0-15. $4, 58-9 onto CIRTROL
MAD 04, 0B, DO, URTT

Figure 11.4 OTR/CIO Instructions Flow

11-9

INR/SST/TST Instruction
constant /JOD10

¥
Y YA @

RO REGISTER

ALU
REGISTERS

Al-414
®

H-REGISTER REGISTERALS
|

B10
"Xy
@_.N.T_E TIPLEXER
Q-REGISTER
C-MULTIPLEXER
| T
H L
¥ea S-REGISTER L-REGISTER
CORTROL
®

BUS X
E K-REGISTER

GENERAL PURPOSE BUS

® +

The Device Address Dats is set The 1/0
is set from $10-15 from the CU function CONTROL
onto MAD 10-15 onto BID 0-15. s set UNTT
fram 53,
S4, SB

and 5% anto
mADODE, 0B and 0G9.

Figure 11,5 INR/SST/TST Instructions Flow

11-10

The constent f1000 §5 loaded in M (/10 on A input af ALU,
D in exchange character mode, and C Multiplesxer).

The constant /800 is leaded in AQ through ALU, D in shift
right mode, and L register. In the same time § contents
(0, E08-K15) is loaded in M.

The logical "or" of M and A0 je lpaded in 5 register. ,
it the exchange time contents of 5 will be sent on MAD Tines.

The exchange ftself takes place - BIOD are copied in R3
register through D and L and the output of the Serial
Contro) Unit in M register - Then a logical "or" of R3
and M is returned to scratch pad R3.

11-11

INPUT/OUTPUT PROCESSOR CHANNELS

The input/output processor channels provide a fast method of block transfer
between the system’s memory and up to 64 different device control units.
Transfer rates of up to 830k words/sec or 1.2Mw for the fast memory being
possible. A maximum of § input/output processors is possible and each is
capable of controlling up to 8 subchannels, These channels replace the normal
instruction sequence of a programmed channel transfer with a hardware
sequence to carry out each exchange, and a data path is provided between the
appropriate device control unit and memory via the general purpose bus.

Both types of control unit available may be connected via the input/output
processor channels and in all cases the control units may be addressed from
gither the appropriate input/output processor or from the CFPLL. The normal
states and sequencing of the device control units apply but the interrupt raised
in the exchange state for the programmed channel is replaced by a break
signal wired directly to the input/outpul processor's priority system and used
Lo initiate each hardware exchange sequence.

Organization
Any number of the devices connected to the input/output channels may be set
up and started so that the overall transfers of sach are carried out together.
All break requests would be serviced according to a priority given to each
deviee and derived in two separate ways:

1. Where more than one input/outpul processor is connected to the system
euch separate processor would have a priority according to its position in
the chain of masters.

2. To enable each processor to differentiate between the 8 break signals from
the possible § devices connected to il, the break lines are connected to the
channels via a priority system.

Each time a break request is received by a channel, the channel requests a bus
evele. When the cyele is granted the channel carries out a single exchange
between the device control unit having the highest priority break réquest
outstanding, and the memory.

Associated with each of the possible 8 control units connected o any channel
are two 16-bit registers which hold the parameters of any transfer to be carried
out with a unit. Prior to any transfer the two registers must be correctly set up
to hold the transfer parameters. During any transfer the registers are hardware
addressed from the priority decoding of the break signals and are used and
updated by the L/0y processor.

Figure 11.6 shows the layout of the control registers, the contents of which are
known as First Contrel Word and Second Control Word respoctively.

i} 1 2 3 L 15
1 I
FIRST
CONTROL WORD ;
b s
fMﬂI IM
TRANE - TRAMSFER LEN
mxw?wanrHﬂmm WORDS OR CHARACTERS
MOQE
I = WORD MODE
TRAMSFER DIRECTION HMAD Y ADDRESS ING
0 = INFUT B1TS RESERVED
1 = QUTPUT FOR THE
ADDRESS ING OF
UP TOD TZBK
MAD 1248 0OF MEMORY
nu 15
x F
SECOND T
MEMORY ADDRESS
CONTROL WORD = S0
Figure 11.6 170 Processor Control Words
||||||| e e T i e e ey
!]
“ TIMING, SEQUENGE AN FURCTION CONTROL "
i [T e e e S e T L TR = R T . I
_ __ UP 70 B 3UE CHAMMELS _“ “
I 1 - T |
B _ “ L
! | | BREAK |
| s T N
FIRET i _ |
“ CONTROL WORD _rllllll.ln _ “
I [H
i i 1 i |
| SECOND f _I|..|||||__ _“
“ BUS CONTROL CONTROL WORD “ I S
i S e |
_ i i
ﬂlll.ll.lll — . G — — —] T —— el . S [" — "|I||..|||Il|_llll |_|
¥) ! _
GEMERAL PURPDSE BUS
L] 1 [3l
| ¥ | ¥ .
MEMORY (=] cu I_

Fipure 11.7

170 Processor within the system

ntrol and Data Flow i R
Hmm.“w:nm 11.7 shows a diagramatic layout of an input/output processor within the

sysLem.

Three separate control paths are used during an input/output processor transfer:

to Taput/Dutput Processor
#...Mﬂﬁ_im _H_n: is ﬂ_ use the CPU is the master of the exchange and the
input/outpul Processor acls as a slave. The exchange takes place between the
CPU and the input/oulput processor using Read or Write _.tsm:._m_ Register
Instructions. Write External Register instructions being En.ﬂ._ n::nm the setting
up of the processors and Read External Register instructions being used to
read the contents of the contrel words during end or erfor routines,

The format of the Write External Register Instruction and the appropriate part of
the data flow concerned when setting up the two control words arc shows by
figures 11.8 and 11.9.

Lavoul of Read/Write External Register Instruction.

o 4 5 =] v il i 10 1" 12 13 14 15
m T
I
— L% J-I|\ e s e o
FORRAT AR OPC (5R] CrAMNNEL SUBCHANMEL
0 = Aed I = Firs1 Ward
1 = Wirile 1 & Gecond Yiarn

Gigure 1.8 Read/Write External Register Layout.

R3 _ The contents of B3 is the value which is to be sel into the
contral word.

— The channel is the number given 1o a g_E:n:_ﬁ. Processor
wilh respect to its priority relative to the possible § pro-
cessors which may be connected to the sysiem.

CHANNEL

SUB CHANNEL - The subchannel is the priorily given 1o a _,._.,Emn:_m_. contral
unit relative to the possible § devices which may be con-
nected to each channel,

The action of the instruction within the CPU is to copy bits 8-15 from K REG into
S REG via M REG and copy the contents of R3 into L REG, before carrying out
an OTR SEQUENCE. Nate, hit 4 from the OPC is used to define the instructions
as Read or Write,

11-14

Wrie Exlernal Aegisser [0TR SEQUENCE

INFUT/QUTPUT PROGESSOR CONTROL !

'
|

FIAST
COMNTROL WORD

-

[t

e

._._._nrl.h_n.uEn ara lunchan are

mal arie MAT O8-15, and

__..ul kAl 04 Trom S08-15 &ad
o KD respect ey

The eontents of BIO 015

are ooind inn o

adifressad ward

SECOMND
CONTROL WORD

GENERAL PUAFPOSE BUS

|
(2)
o
Lo 15 sef Irom i
L-REG ante BIC 15 L-REGIETER S-MEGISTER

W-REGISTER

Figure 11.9 WER Instruction Flow

2. CPU o Canirol Unit

When this path is in use the CPU is the master of the exchange and the control unit
is the slave. The exchange takes place between the CPU and the control unit, data
fAlow being as for programmed channel transfers. (See figures 11.4 and 11.5). By the
use of this path the devices connected to the input/output processor channels may
be stopped and started, and their status requested.

3. Inpanes Ourpur Processor to Memory and Control Unit

When this path is in use the input/output processor is the master of the exchange
and the memory and control unit are slaves. The exchange takes place between the
memory and the control unit. Figures 11,10 to 11.12 show an outline of the
exchange action and the data fow during the two cyeles which comprise an
exchange.

Such an exchange would be initiated after the receipt of a break signal and
afler the input/output processor had requested and been granted a bus ¢ycle.
The break signal would be removed once the necessary actions Lo initiate an
exchange had been carried oul.

11-15

Note: A further exchange with respect Lo the overall transfer would be carried | Exchange Cucie DW
[" out immediately if the control unit raises its break line again, during the

|
|
execution of the current exchange, and providing no other higher priority _)

breaks or mastet requests are outstanding. IR L e R e |

_
— ﬁ _ﬁ_“ﬂ_ 7))

_ CONTROL WORD|

The required contl unil & sodiesses
| ©

[on MAD 1015 The required funstan
|
|
First Camrot Ward i _ &lwer recogniton (ha CU pencs address

w3 sob o MAD 04,08.09.

roae and updaion iseect il WLAD 10-15 may an

_ ¥ 1hLﬂﬂ
! k |

| — GEMENAL PURPOEE BUS

(7)

RECAUEST AND _ L
RECEIVE | The cantral und prépares
BLS CONTROL 1 pive Coulputh o serd

_ [inpatl date ea B0 0-15 LalH]

_|nﬁn:._u_mm...:_.m.._.m., _
_ Exchangs Cycla GW2

Figure 11.11 Exchange Cycle CWI1

READ AMD LPDATE
COMTACL WORDS INFUTOUTPUT PROGESSOR CONTROL
[I|_|I|l |
1
1
ANDARLEES AND
PREFARE CU TO GEND

O AECEVE DATA SECOND

COMTROL WORD
—L— © |

Sacond Conlrgl Ward |5 read

ADDAESS AND and uddated. Tho acdracs io be
COMNTROL MERIRY usod for ke axchangs i St b
T SEMD OR e memory on MAD O-15.
RECEIVE DATA |
— GEMERAL PURPOEE BUS
oM __"um.u_rrm_um__.._m_m_&z The nascharge 1akes Pa botwsn (ha memonyd
OF THE EXCHARGE and (e conbiol wnit on B 015 and unded
: MEMDRAY | cpilred o @ inpuliculput proGesar. cu
Figure 11.10 Exchange action Figure 11.12 Exchange Cycle CW2

11-16 1117

DIRECT MEMORY ACCESS

The Direct Memaory Access channel manages data transfers directly between
memory and a single high-speed control unil. This unit must be plugged into
the mounting box. Transfers of data do not use CPU registers and there is no
feed for program control except for starting the exchange and {esting the status
afier completion. At the beginning of a transfer the program uses a WER
instruction to load the starting address and block length into the control word
register. The DMA logic provides all Bus timing signals to control the data
transfers directly between the memory and the high-speed control unit, The
logic also updates the control word register for each data word and detects
when the complete block has been transferred. The data block transfer is
terminated with an S5T instruction 1o get the status.

TRANSFER CPU/EXTERNAL REGISTERS

The use of exchanges between the CPU and external registers to set up an
input/output processor within a standard system has already been explained.
Exchanges may also be carried out with non-standard control units to enable
transfers between the CPU and an external register within a control unit for
use by specialized input/outputl systems. Such systems would operate in a
similar manner to the programmed channel and may or may not use the inter-
rupt system to control the timing of exchanges.

Up to 256 external registers may be addressed by the svstem and the facility
enables exchanges in either direction.

11-18

