PART 6 DEBUG

175 6-1 May 1983.

175 62 May 1983.

1 INTRODUCTION

The debugging package DEBUG is used to help in testing programs written in
Assembler.

The user may define breakpoints where the package will suspend execution of the
user program. At a breakpoint one or more DEBUG commands may be executed,
allowing the user to examine or modify registers or memory locations within his
program. This allows the user to check the program, section by section.

DEBUG makes temporary changes to the program under test, which must therefore
be declared either memory-resident or swappable. A re—entrant program cannot be
used and debugged simultaneously. The DEBUG package itself is re-entrant; it
creates its workspace in the dynamic area of the program to be tested, so
several users (up to a maximum of 16) may debug their programs simultaneously.
However, it is not possible to debug a main program and its scheduled label
routines at the same time, because the workspace may be corrupted between
queueing a scheduled label and calling it for execution, and this will confuse
the DEBUG package. It is in any case recommended not to use breakpoints within
scheduled labels, as DEBUG performs all its input/output with wait, thus
holding up execution of the user program.

STARTING DEBUG

DEBUG is called by the FCL command:
DEB <program-name)

which is described further in Chapter 11 of the MAS Manual.

DEBUG occupies 6K words in memory-resident area; it allocates a 2K word buffer
in the dynamic area of each program to be debugged.

T75 6-3 May 1983.

T75 6-4 May 1983.

2 PROCESSING

GENERAL

DEBUG establishes control of the user program by means of scheduled labels
which handle any interrupts produced by it. The user may set up to eight
breakpoints within the boundaries of the program under test. A breakpoint is a
location within the program where execution will be suspended, allowing the
user to perform DEBUG operations.

DEBUG’s main functions are:

- Examine memory contents (DM command);

- Examine register contents (DR command);

- Modify memory contents (WM command);

~ Modify register contents (WR command);

- Read data from an external device (RE command);

- Trace the execution of user program instructions (TR command);
— Restart the user program at a given address (GO command).

These functions may be executed either unconditionally or conditionally, by use
of the IF command. Connecting the user program to a level is optional; if it
is not done by the user it will be done by DEBUG.

ADDRESSING
Memory location addresses may be specified in one of three ways:

- Absolute

~ Relative

- Symbolic.

Absolute Addressing

An absolute address is indicated by a slash (/), followed by up to four
hexadecimal digits giving the address, e.g. /3Al6 .

Relative Addressing

A relative address is specified as a displacement from the start address of the
user program under test. It is indicated by an at sign (@) followed by up to
four hexadecimal digits giving the address, e.g. @1B2E . Note that the first
address of the program is @8.

Symbolic Adressing

A symbolic address may be specified in one of two ways, either as an entry
point or as a symbol table name followed by a symbol (a label). 1In either case
an optional decimal offset may also be specified.

An entry point address may only be specified if, when the program under test
was Link=Edited, the parameter DBUG=ENTR was supplied to the OPT control

statement. The syntax is:

$<entry-point>[{+|-}<offset>]

T75 6-5 May 1983.

For example:
SSTART
SENT1+64
SENT2~2

A label symbolic address may only be specified if the assembly directive STAB
was specified for one or more modules at assembly time and the parameter

DBUG=STAB, or the parameter DBUG=ENTR, was supplied to the OPT statement when
the program under test was Link-Edited. The syntax is:

$<table-name>&<label>[{+|~-}<offset>]

(in which <table-name> is the name specified in the END assembly directive of
the module in which <label> is defined). For example:

$MOD1&LAB023

$MOD1&LABO31+64

$MOD2&LAB60-2

BREAKPOINTS

The user may specify up to eight breakpoints within his program. For each
breakpoint one or more DEBUG commands may be specified; these commands will
only be executed when the breakpoint is reached. Thus there are two modes of
operation; "online mode", in which DEBUG commands are executed immediately, and
"offline mode", in which DEBUG commands are stored for later execution.

Online Mode

This is the mode in which DEBUG starts operating. In this mode any DEBUG
commands, except the IF command, may be entered and will be executed
immediately the command is terminated by (CR)(LF). Entering the AT command
switches DEBUG to offline mode.

O0ffline Mode

In this mode all DEBUG commands are stored for later execution when the
breakpoint, with which they are associated, is reached. Entering any of the

GO, RT or // commands causes the command to be stored, but also switches DEBUG
back to online mode.

INPUT/OUTPUT

At initial entry, DEBUG reads all commands and data from, and outputs all its
messages to, filecode /0l. Commands entered from filecode /0l are echoed to
filecode /02. If the system aborts the program under test, and the abort
address is not one of the breakpoint addresses, DEBUG outputs the following
information to filecodes /01 and /02:

- program status word;

- abort address, relative to the program start address;

- the contents of user registers Al to Al4;

- (to the line-printer only) a memory dump of the user area.

The DEBUG commands CI (Change Input Device) and CO (Change Output Device) may
be used if it is required to input from, or output to, a device other than
filecode /0l. The filecodes given in these commands must have been assigned
before the debugging package is called.

75 6-6 May 1983.

If DEBUG reads a command from a device other than the operator’s console, and
finds an error in it, it prints the command together with an error message on
the console and then prompts the user to enter the correct command. The
remaining commands are then read from the other input device.

DEBUG may read data from a specified device through the RE command. If the
device is not the operator’s console, its filecode must have been assigned
before DEBUG is called.

Prompts

When DEBUG first takes control of a program, it assigns a two-character
identifier to it. From this point onwards, all messages associated with this
program are prefixed with this identifier; in this way, when DEBUG is being
used on more than one test program, the user knows to which program each
message belongs.

Filecodes
The DEBUG package uses filecodes /01 for the operator’s console and /02 for the
line-printer; these filecodes do not need to be assigned explicitly before

DEBUG is started. Any other filecodes may be used, for alternative input or
output devices, but they must be assigned before use.

PROGRAM ABORT

If the system aborts the program under test, a check is made that the abort
address is not a checkpoint address. If it is, the command string associated
with that checkpoint is executed. If it is not, the information given above
(see "INPUT/OUTPUT") is printed. In either case DEBUG is put into online mode,
so that the user may continue debugging.

MONITOR CALLS

The DEBUG package makes use of the following LKM instructions:

LKM Special (/2884 - planted at each breakpoint)

LKM 1 (Input/Output)

LKM 3 (Exit)

LKM 4 (Get Buffer)

LKM 5 (Release Buffer)

LKM 7 (Keep Control on Abort Condition)

LKM 25 (Read Unsolicited Operator Message)

LKM 35 (Get Name and Load Address of Test Program).

T75 6-7 May 1983.

T75 6-8 May 1983.

3 DEBUG COMMANDS

COMMAND SYNTAX

Each command consists of a two-character mnemonic, which may be followed by a
space and one or more parameters. Each command with its parameters must be
contained within a single line or input record; a continuation line is not
possible. A continuation character (full stop) immediately after a command
allows another command to be entered on the same line; this may be repeated
until the line is full.

A command mnemonic must start at the first character position on a line, or the
first character after a continuation character. Spaces after a command (and
its parameters, if any) are not significant.

PARAMETER SYNTAX

If a command has more than one parameter, the second and succeeding parameters
are each separated from the one preceding by one comma.

The following definitions are adopted in the description of the DEBUG commands:
<{memref)> ::= {<absolute-address> | <relative-address)> | <{symbolic-address>}
For the formats of these, see "ADDRESSING" in Chapter 2 of this Part. The IF
command has a special format for absolute addresses; see the command
description for details.

{register> ::= {Rl | R2 | ... | R14}

These refer to the programmer’s general purpose registers, Rl to Rl4
inclusive. RO and R15 may not be used.

{constant) ::= /<hexa-digitd>... (up to four digits)

{filecode> ::= /<hexa-digit>[<hexa-digit>] (one or two digits)

If the same syntactic item occurs more than once within the syntax of a
command, the occurrences are distinguished by appending a decimal digit to the

description within the syntax brackets, for example:

DM <memrefl)>,<{memref2>

T75 6-9 May 1983.

AT COMMAND {Define Breakpoint)

Syntax: AT <memref>

The AT command is used to suspend temporarily the execution of the user program
at the memory reference specified as a parameter, thus defining a breakpoint.

Once the AT command
permits the user to
when the breakpoint
command must be one
will perform one of

a) Last command is

has been entered, DEBUG switches to "offline mode"; this
enter one or more DEBUG commands, which will be executed

at the specified location is reached. The final or only

of GO, // or RT; depending on which of these is used, DEBUG
the following functions:

GO: the user program will resume execution, after

DEBUG has executed the command(s) associated with that string.

b) Last command is
start address.
¢) Last command is

//: the user program will restart from its execution

RT: any pre-defined instructions associated with that

breakpoint are executed and then the online (interactive) mode is
entered. A prompt is output on the operator’s console, informing the
user that he may enter any DEBUG commands to be executed immediately,
other than the IF command. The user may resume execution of his
program by entering the GO command.

When a breakpoint is encountered, its absolute address is printed out in the
format: BP: <absolute—address>

Breakpoints are held in a table, along with their associated command strings.
The maximum number of breakpoints that may be defined at any one time is
eight. However, if eight breakpoints already exist, the user may delete
unwanted breakpoints by use of the DB command, thus allowing himself to create
alternative definitions if required. Address specifications for breakpoints

need not be defined

Restrictions

in ascending order.

The breakpoints defined may not:
= be modified by the user program;

- refer to memory

areas within the user program defined as DATA (the break-

point is not executed);
N contain commands to define a new breakpoint.

It is not allowed to test a main program and its scheduled label routines

simultaneously.

T75

6-10 May 1983.

IF COMMAND (Conditional Execution of DEBUG Command)

Syntax:

IF {<memrefl> | <registerl>}<operation>{<memref2> | <register2> | <constant>}
<operation> ::= {> | = | <}

The IF command is used in conjunction with the AT command. It allows condi-
tional execution of the command string attached to the breakpoint being
executed. It need not immediately follow the AT command; any intervening
commands will be executed unconditionally.

The contents of one general purpose register or memory location are compared
with a constant or with the contents of another register or memory location.
If the condition is TRUE the command string associated with this breakpoint is
executed, otherwise an implicit GO command is generated to continue execution
of the program from the breakpoint.

If a memory location is specified as an absolute address, then it must have the
format: M nnnn

i.e. a letter M followed by a blank, followed by a hexa-decimal number of up to
four characters without a preceding slash.

:T7:5 6-11 May 1983.

GO COMMAND (Restart User Program)
Syntax: GO [<memref)]
This command may be used in two ways:

a) In offline mode, during definition of a breakpoint. It will be the last
command entered in the stored string of commands, to be executed when the
breakpoint is reached; it also terminates the breakpoint definition and
returns DEBUG to the online mode.

b) In online mode, entered when the last command executed in assocation with a
breakpoint was the RT command. The user program is restarted at the point
specified by <memref> or, if <memref> is not specified, at the breakpoint.
If the user program has not yet been started by the // command, the GO
command is rejected with the message:

REFUSED IN ON-LINE MODE

The specified memory address must lie within the boundaries of the test
program, and not within an area defined as DATA.

T75 6-12 May 1983.

DB COMMAND (Delete Breakpoint)

Syntax: DB <memref>

d is used to delete a previously defined breakpoint, together with
the command string associated with it. A breakpoint may be deleted from the
breakpoint table at any time; if the command is used to delete a currently
executing breakpoint, deletion is postponed until a GO command is executed.

The DB comman

75 6-13 May 1983.

DM COMMAND (Dump Memory)
Syntax: DM <memrefl>[,{memref2>]

The DM command allows the user to examine any memory area within the boundaries
of the program under test. The dump is output on the operator’s console,
unless an alternative output device has been defined through the CO command.

The dump is presented eight words to a line. Each line is preceded by an
absolute address as a multiple of /10. The dump begins at <memrefl)>, rounded
down if necessary to an exact multiple of /10, and ends at <memref2)>, rounded
up if necessary to an exact multiple of /10 plus /E, thus filling the last line
of the dump.

If <memref2> is omitted, one line is output including the contents of <memrefl).
The dump is in hexadecimal, and to the right of each line its character

contents are also presented. To the left of each line the program name and its
two—-character code (in brackets) are given,

T75 6-14 May 1983.

DR COMMAND (Dump Registers)
Syntax: DR [<registerl)>[,<{register2>]]

The DR command allows the user to examine the contents of a range of the
general purpose registers Al to Al4. Registers AO and Al5 cannot be examined.

If no parameters are specified, the contents of registers Al to Al4 inclusive
will be dumped.

If only <registerl> is specified, only the contents of that register will be
dumped.

If both parameters are specified, the contents of <registerl> to <{register2>
inclusive will be dumped. Note that <registerl> must be less than <register2>,
but not less than Rl; <register2> must not be greater than Rl4.

The dump is in hexadecimal format and, unless an alternative output device has

been previously defined by the CO command, will be output to the operator’s
console typewriter,

T75 6-15 May 1983.

WM COMMAND (Write into Memory)
Syntax: WM <memref)>,<{constantl>[,{constant2>]...
The WM command allows the user to place the values of one or more constants

into any memory area located within the test program’s boundaries. The
constants are moved into contiguous memory locations, starting at the point

specified by <memref>.

T/5 6-16 May 1983.

WR COMMAND (Write into Registers)
Syntax: WR <register>,<{constantl>[,<constant2>]...

The WR command allows the user to move constant values into any of the general
purpose registers Al to Al4 inclusive. Registers AO and Al5 may not be altered.

The contents of <register> will be set to the value of <constantl>; if more
than one constant is specified, their values will be moved into consecutive
registers, starting from <{register>.

T75 6-17 May 1983.

RE COMMAND (Read from a Device)
Syntax: RE <filecode>,<{memref)>,<{constant>

The RE command allows the user to read a number of characters into a buffer

from an external device. The number of characters specified by <constant> is
read from the specified <filecode> into the buffer whose start address is
specified as <memref>. The filecode must have been assigned before DEBUG was

invoked.

When this command is executed, a standard read is sent to the Monitor with the
specified filecode, buffer address and number of characters. If the user
requests data input from the console, a prompt "READ’ is printed on the console
log, informing the user that DEBUG is ready to accept the specified number of
characters.

The <constant> specifying the number of characters must be specified in hexa-
decimal format.

T75 6-18 May 1983.

RT COMMAND (Return to Online Mode (Interactive))
Syntax: RT
The RT command may be used in two ways:

a) In offline mode, during definition of a breakpoint. It will be the last
command entered in the string of commands, to be executed when the
breakpoint is reached; it also terminates the breakpoint definition and
returns DEBUG to the online mode.

b) When the commands associated with a breakpoint are executed, this command

returns DEBUG to the online mode, allowing the user to specify more DEBUG
commands.

T75 6-19 May 1983.

CO COMMAND (Change Output Device)
Syntax: CO <filecode>

The CO command directs the output from DEBUG to the device with the specified
filecode. This filecode must have been assigned before DEBUG was invoked.

T75 6-20 May 1983.

CI COMMAND (Change Input Device)
Syntax: CI [<filecode>]

The CI command causes further DEBUG input commands to be read from the device

with the specified <filecode>. The filecode must have been specified before
DEBUG was called. If no parameter is specified, the filecode of the operator’s
console is assumed.

T75 6-21 May 1983.

TR COMMAND (Trace)
Syntax: TR <chl>[<ch2>]

where <{chl> and <ch2> are ASCII characters.
The TR command allows the user to associate an ASCII identifier of one or two
characters with a breakpoint. The defined ASCII identifier is written to the
defined output device every time the associated breakpoint is encountered. This
is particularly useful for checking a branch instruction which may place the

test program into a loop.

The ASCII identifier may not be two spaces, nor contain a full stop (the
command continuation character).

T75 622 May 1983.

RX COMMAND (Exit)
Syntax: RX
This command causes execution of DEBUG, and of the program under test, to be

abandoned. Execution of the RX command takes place immediately, whatever mode

DEBUG is in at the time. Control is returned to the Control Command
Interpreter.

T75 6-23 May 1983.

4 ERROR MESSAGES

UNKNOWN BP

The debugging package has been asked to delete a breakpoint which either has
not been defined or has already been deleted.

BP DOUBLE DEFINED

An attempt has been made to define a breakpoint which already exists; to re-
specify the breakpoint, it must first be deleted (see ‘DB’ command).

REFUSED IN ON-LINE MODE

The ‘IF’ command was entered outside a breakpoint definition, or the ‘GO’
command was entered before the program was started by the ‘//’ command.

REFUSED IN OFF-LINE MODE

An attempt was made to define a new breakpoint without terminating the previous
one with the ‘RT’, ‘GO’ or ‘//’ commands.

BP TABLE OVERFLOW

An attempt was made to define a new breakpoint when the maximum number, eight,
had already been defined. The ‘DB’ command may be used to delete an unwanted
breakpoint, to make room for the new breakpoint. 1In this way more than eight
breakpoints may be defined during the run of the test program.

PARAMETER ERROR

An illegal parameter was specified.

SYNTAX ERROR

Incorrect syntax specified for a command.

FILE CODE NOT ASSIGNED

An attempt was made to use a filecode which was not assigned before DEBUG was
called.

COMMAND UNKNOWN

The previously entered command is unknown to this release of DEBUG.
SYMBOLIC REF. ERROR

The specified symbolic address does not exist within the specified reference
table, or the table itself does not exist.

NO START ADDRESS

The load module to be debugged has no start address.

75 6-25 May 1983.

COMMAND TABLE OVERFLOW
There is not enough space in the command table to record the command string

being entered. The breakpoint currently being defined will be deleted from the
table, together with all its stored commands. DEBUG is switched back to online

mode.

ERROR CQ. END OF COMMAND INPUT STREAM

An error has occurred on the input device, or the file containing the input
commands has been completely read. DEBUG exits the user program.

SP. CH. UNKNOWN

The special characters, used to identify input for a program being debugged,
are not recognised for any current program.

T75 6-26 May 1983.

5 EXAMPLE OF USE

The following example shows the use of DEBUG under MAS. The program EXl is to

be debugged in a foreground machine; filecode /0l is assigned to a terminal and
filecode /02 to the line printer.

The program EX1 is very simple; it reads a card image, counts the number of
occurrences of the letter ‘A’ in the first 20 characters and outputs this
number. A symbol table, TABTAB, was generated at Assembly time and kept at Link-

Edit time by the OPT option DBUG=STAB.
The following commands set up and start the foreground machine:

MACH-ID : SYSTEM DATE :
DCF WB,1

CMA 5,7000

SEG 1,1

FCD 1,DY18

FCD 2,LP

FCD /E0,DY18

FCD /CO

FCD /C3

FCD /F0,/CO,SUPERV
FCD /FA,/C3,WB200
DEN

BYE WB

The following commands and messages appear on filecode /01 of the foreground
machine:

MACH-ID : WB DATE :

LOD 1,EX1,/FA (or SWP EX1,/FA)
CNL EX1,44

DEB EX1

RUN EX1

DEBUG : EXI1 AT /AF46, COMM: %A
These messages appear on the operator’s console:

MAC:WB ,PROG:EX1 ,KEY-IN,SP.CH:%A
M:KI WB,EX1,%A,AT /AF5C.DM @8,@58.GO
MAC:WB ,PROG:EX1 ,KEY-IN,SP.CH:%A
M:KI WB,EX1,%A,AT $TABTAB&NEXT.DR Rl,R2.GO
MAC:WB ,PROG:EX] ,KEY-IN,SP.CH:%A

M:KI WB,EX1,%ZA,//

T75 6-27 May 1983.

The following is output on the line printer:

DEBUG : EX1 AT /AEE4 ,COMM: %A

EX1 (%A) AT /AF5C.DM @8,@58.GO

EX1 (%A) AT $TABTAB&NEXT.DR R1,R2.GO

EX1 (%A) //EX1 (%A) BP: AF5C

EX1 (%A) AEEO 0000 AOO1 AF5C 0001 0118 AFFO 4142 4142 \ ABAB
EX1 (%A) AEFO 4142 4142 4142 4142 4142 4141 4241 4241ABABABABABAABABA
EX1 (%A) AF00 4241 4241 4241 4241 4241 4241 4241 2020BABABABABABABA
EX1 (%A) AF10 2020 2020 2020 2020 2020 2020 2020 2020

EX1 (%A) AF20 2020 2020 2020 2020 2020 2020 2020 2020

EX1 (%A) AF30 2020 2020 2020 2020 2020 20200000 0000

EX1 (%A) BP: AF76

EX1 (%ZA) Al =FFEC A2 =0001

(These last two messages are repeated 19 times more, with different values for
the register contents.)

T75 6-28 May 1983.

