PART 7 TDFM

T75 7-1 May 1983.

T75 7=2 May 1983.

1 INTRODUCTION

FUNCTIONAL CHARACTERISTICS

The Transaction-oriented Disc File Manager (TDFM) possesses the following
characteristics:

Simultaneous Access: several user programs may independently access the
same record of the same file, without needing to know what other user
programs are doing.

s Transactional Access.

- File Structure Independent of the Program: a user program does not need to
know such things as the number and locations of keys in a record, or where
a record is physically stored, since all this information is stored in a
part of the file itself. Also, if the file structure is modified, by
adding a new key, for example, none of the existing user programs need to
be rewritten to take account of the change.

= Integrity and Uniqueness of Information: since there is only one file, in
which each record is unique, the information in the file is always the
latest available and is the same for all user programs accessing the file.
Furthermore, all control information exists in only one place; the system
updates this automatically for each request, and the user need not concern
himself with it.

- Distributed Storage: different parts of the file may be held in the first
userid’s of different DAD’s and on different physical disc volumes. Very
large files may thus be created.

- Security Features: security copies of a whole TDFM file, or of selected

portions, may be made. Changes to records in the file may be recorded in a

back-up file and used with the security copies to recreate the file if
necessary.

FILE STRUCTURE

A TDFM file is structured as a number of sub-files, as follows:

1 Descriptor sub-file;
n Index sub-files, one for each key;
m Data sub-files, each containing part of the data.

The descriptor subfile name may be treated as the name of the TDFM file as a
whole, since the descriptor file is the first part of the TDFM file to be

accessed. It contains information on all the sub-files in the file, and also
some logging information.

Each index sub-file has a tree structure; level zero is the top level, level n
(n > 0) records point directly at the data records. The key values in each file
are stored in ascending order.

Each data sub-file contains a number of data records. A record may be of any
length between 1 and 4095 characters; however, a data record must be long
enough to contain all the keys defined for this file. Apart from these
restrictions, it is not necessary that all records within a data file should be
of the same length.

All the sub-files comprising a TDFM file are consecutive permanent files of
type UF.

75 7=3 May 1983.

KEYS

A key is a character string within each record, starting at a defined position
and with a defined length. The first key defined for a file is the primary key;
all other keys defined for the file are secondary keys. A key may be up to 20
characters long.

If the value of a key must be unique within the TDFM file (if it exists at
all), it is called bijective. If several records with the same value for a key
may exist within the file, the key is called homonymous. The primary key must
always be defined as bijective; the secondary keys may be either bijective or
homonymous.

One key = not necessarily the primary key - may be defined as a criterion key.
In this case, each data subfile has a value for this key defined for it, in
ascending order of the key values and data files; a record with a value for the
criterion key will be placed into the first data file whose criterion value is
not less than the key value in the record. If no criterion key is defined, the
user may specify into which subfile a record is placed; otherwise the first
data subfile will be filled, then the second, and so on.

ACCESS METHODS

A TDFM file may be opened by the user in one of three modes:

= Read-only: no updating is allowed;

= Update: updating is allowed;

- Exclusive Access: no other user may access this file until this user

releases it. This access mode will only be used occasionally. Updating is
allowed.

Once the file is opened, the user may access records in one of four ways:
- Direct, by key name and value;

- Sequential, read next (ascending order of key values);

= Sequential, read previous (descending order of key values);

- Direct, by physical location.

If the key specified with direct access (by key) is homonymous, the system
returns the number of records with the same value for the key, as well as the
first record with this value. The remaining records may then be accessed in
sequence (read next).

If a record is to be updated, it must be attached; this prevents other users
from accessing it until the record is detached after updating.

RECOVERY

In order to recover a TDFM file after a system failure, two optional recovery
methods may be used, back-up and back—out. There are three levels of security:
= no protection;

& back—-up protection;

- both back—-up and back-out protection.

Back-up

As each update request is processed, information is written to a back-up file.
If the system crashes, the back—-up file may be used to update a security copy
of the file with all updates made since the copy was taken, up to the time the
system failed.

T75 7-4 May 1983.

Back-out

A transaction is a set of requests to access a TDFM file. If the system fails
in the middle of a transaction, some records are updated and some are not. In
order to be able to restore the file to the status before the transaction was
started, a back-out record for each update is written to the back-out file;

this record allows the system to undo all the updates performed by the
incomplete transaction.

If the transaction is successfully completed, all the back-out information
relating to this transaction is erased.

SYSTEM STRUCTURE

The Transaction-Oriented Disc File Management system comprises:

= the TDFM file-handling routines, linked into the Monitor at SYSGEN time and
called by LKM and the MAS file assignment routines;

- the EDF standard processor, which is activated in the background machine by
a standard BCP call. It allocates disc space for the TDFM files,
initialises the system data on these files, and provides facilities for
copying, restoring, deleting, re-organising and for specifying back-up and
back—-out files.

T75 7=5 May 1983.

T75 7-6 May 1983.

2 STRUCTURE

FILE STRUCTURE

General

A TDFM file consists of a number of subfiles, which may be held in the first
user areas (userid’s) on different DAD’s and possibly on different physical
disc volumes. Each subfile is a permanent consecutive file of type ‘UF’. The
TDFM file is structured as follows:

1 Descriptor subfile;

n Index subfiles, one for each key (1 < n £ 255);

m Data subfiles, each holding part of the data (1 < m < 32).

Descriptor Subfile

The descriptor subfile contains two types of information, permanent and

logging. The permanent information consists of:

~ The date the file was created or last restored;

- the level of protection for this file;

- for each index subfile: the file name, userid and DADname, keyname, key
position and length, whether the key is bijective or homonymous and whether
it is the criterion key;

- for each data subfile: the file name, userid and DADname and the criterion
key value, if any.

The logging information consists of:

- for each subfile: status, i.e. whether overflow has occurred;

- for each data subfile: numbers of records in the file and deleted from it;

- a pointer to the record which caused overflow of an index file (if this has
occurred);

- a scratch area, containing "before" images of logging information before
update.

The logging information is read into memory when the TDFM file is opened,
updated in memory and written back to disc when the file is closed.

Index Subfile

Each key may have a maximum of 32768 different values. All keys within one
index file have the same length, which may be between 1 and 20 characters.

Each index subfile contains all the values of a given key, sorted into
ascending order and stored in a tree structure. The root of the tree (level 0)
consists of only one physical sector on the disc; the leaves of the tree at
level n (2_> 0) point directly at the data records. All the sectors at

each level are chained forward, to speed up sequential access; at the lowest
level the sectors are also chained backward.

To compute the size of an index file in sectors, let:
K = number of entries per sector;

W = sector size (words);

k = key-length (words, rounded up if necessary);

n = level number (0 to N);

S(n) = number of sectors at level n;

R = expected maximum number of records in the file;
T = total number of sectors in the file.

T75 1=7 May 1983.

Then:

K -8/ (k+ 6)
S(N) = R/ K (rounded up to an integer)
S(N-1) = S(N) / K etc.
S(0) = 1 (by definition)
So T = (1 + S(1) + S(2) +...4+ S(N)) * 115 / 100 + 2N + 9

Except at the lowest level, each record in a sector points to a sector one
level down; the key value of the record is the highest key value found in the
sector. The records within a sector are arranged in ascending order of key
values. Thus, when searching for a record with a given key value, only one
sector needs to be searched at each level. The system scans the records in a
sector until one is found whose key value is not less than the given value.

When a new key record is inserted into an index file, all the subsequent key
records are shifted towards the end of the sector and the new key record is
inserted in the space thus left. If there is no more room in the sector, a new
sector is claimed, the key records are distributed between the two sectors and
a new record, pointing to the new sector, is inserted in the sector one level
up. This may in turn cause splitting, which can be propagated right up to
level 0; if it reaches this level, the index file is said to be in overflow and
must be re-organised before further records can be added. Overflow also occurs
when no free sector can be claimed.

When a key record is deleted from an index subfile (because the corresponding
data record has also been deleted), the space occupied by it is not re-used
until the file is re-organised; the record is merely flagged as deleted. This
means that a file with frequent updating will, after a short time, contain
numerous ''dead" entries.

Data Subfile

Each data subfile contains a number of records. Each record may be of any
length up to 4095 characters, but it must be long enough to hold all the keys
defined for this file. Every record is preceded by a control word; a record
may span several sectors on the disc.

A new data record is written into a subfile chosen according to the following

rules:

1) if a criterion key has been defined for the file, the new value is compared
with the criterion value for each subfile in turn, and the record is
inserted in the first subfile found whose criterion value exceeds the new
value;

2) if no criterion key has been defined, the record is inserted into the
subfile specified by the user in his write command. If he does not specify
a subfile, the record is inserted in the first subfile which has room for
it.

After modification, a record may be written back so as to re-occupy its
original place if:

1) the length has not been changed, and
2) no key field has been altered.

If neither of these conditions is fulfilled the record must be deleted and re-
inserted.

T75 7-8 May 1983.

When a record is deleted the space it occupied is flagged, but is not re-used
until the file is re-organised. This means that a file with frequent updating
will, after a short time, contain numerous '"dead" entries.

KEYS
A data record consists of a number of fields; each field contains some item of
data. In a TDFM file, one or more fields may be defined as key fields, that
is, a record may be accessed by specifying the required key name and value. A
key field is of fixed length, between 1 and 20 characters, and starts at a
fixed location within the record, specified as an offset from the first
character (if the key begins in the first character, the offset is zero).

A key field may be defined as bijective, that is, at most one record with a
given value for the key may exist in the file. If several records may exist
with the same value for the key, the key is said to be homonymous or multiform.

The first key field specified when a TDFM file is created is the primary key;
all other keys are secondary keys. The primary key must be bijective; any
secondary key may be either bijective or multiform, at the user’s option.

For each index subfile a padding character is defined; it may be used to pad
key values to the defined length, if necessary. A key consisting entirely of
padding characters is the padding key; it will always be the lowest key value
in the file, and so the padding character must not be higher in the ASCII
collating sequence than the lowest character which will be encountered in the
key.

When there are several data subfiles in the TDFM file, one key may be defined
as a criterion key. As each data subfile is defined, a criterion value is
supplied; these values must be in ascending order in the data subfile
definitions. When a new record is to be inserted, its value of the criterion
key is compared with the criterion value of each subfile in turn until a value
is found which is not greater than the value in the record; the record is
inserted in the corresponding data file. A criterion key need not be bijective.

1f a record is added whose value of the primary key is the same as that of an
existing record, an error status is returned and the new record is rejected.
If the same thing happens with a bijective secondary key, a warning status is
returned but the record is inserted into the file.

ACCESS METHODS

A TDFM file may be opened (by a ‘Transaction Ready’ call - see Chapter 4 of

this Part) in one of three modes:

- Read Only: no updating allowed;

= Update: updating is allowed;

- Exclusive Access: updating is allowed. No other user may access the file
until this user releases it.

In order to modify a record (add, delete or alter it) the user must first
attach it; this prevents any other user from accessing the record until it has
been detached. The user must attach and detach a record even though he has
opened the file for exclusive access. If the file is open in read-only mode,

attaching a record is erroneous. Attaching and detaching is done through
Monitor calls.

75 7-9 May 1983.

Once the file is opened, the user may access records in one of the following
ways:

= Direct, by keyname and value;

. Sequential (either the next or the previous key);

- Direct, by physical location.

Direct Access on Key

The user specifies in his ‘Read on Key’ call the name and the desired value of
the key he wishes to use for access. The record with that value for the key is
returned to the user. If the key is homonymous, the first record is returned,
together with a count of the remaining number of records with that value.

These records may be read by using sequential access; the count of remaining
homonymous records is decremented by one for each record read, until it reaches
Zero.

Sequential Access

The system maintains a pointer into the file; this pointer is initialized by a
‘Position’ or ‘Read on Key’ call, and is then maintained through a series of
"Read Next’ or “Read Previous’ calls. ‘Read Next’ returns the record with the

next higher key value; ‘Read Previous’ returns the record with the next lower
key value. Within a homonymous chain of records, the next (or previous) record
is returned along with the count of records remaining in the chain.

With the ‘Position’ call, no error is returned if the record with the specified
key value does not exist; with the ‘Read on Key’ call, a warning status is
returned under these conditions, but the pointer is correctly set up and may be
used by “Read Next’ or ‘Read Previous’ calls.

In order to set the pointer to the start of the file, so that a sequence of

"Read Next’ calls will read every record, the “Position’ call should be used
with the padding key value. A ‘Read Previous’ call will cause ‘Beginning of
File’ status to be returned.

In order to set the pointer to the end of the file, so that a sequence of ’‘Read
Previous’ calls will read every record, the ‘Position’ call should be used with
the highest possible key value. A “Read Next’ call will cause ‘End of File’
status to be returned.

Simultaneous modification of the file by other users is taken into account,
e.g. if another user creates a record immediately after the one just obtained

by “Read Next’, then the new record will be the record obtained by the next
"Read Next’ call.

Direct Physical Access

The user may access a record directly within the data file by giving the
following information:

s data subfile number;

= sector number within subfile;

- displacement of the start of the record within the sector.

The user may compute these coordinates himself, or obtain them from the
information returned after a previous ‘Read’ call.

The data subfile number identifies the subfiles in the order they were defined,
starting from zero.

TI5 =10 May 1983.

3 THE EDF PROCESSOR

GENERAL

The EDF Processor may be loaded and started as a background (low priority)
program if required, and is controlled by a set of commands submitted by the

user. It may be terminated either normally or abnormally (when something has
gone wrong).

COMMAND SYNTAX

A command consists of a keyword, three or four characters long, optionally

followed by a space and one or more parameters. The keyword begins in the first
character position of the input line. The second and subsequent parameters are
each separated from the one preceding by one comma; if the command extends over
two or more lines, the last parameter on a line is followed by a semi-colon and

the next parameter begins in the first character position of the next line of
input.

All commands input through the operator’s typewriter are terminated by (CR)(LF).

PARAMETER SYNTAX

All parameters are keyword parameters, and may be entered in any desired
order. In the vast majority of cases, the keyword is followed by an equals sign
and a value.

The following conventions are used in syntax descriptions:

= Curly brackets {thus} enclose a list of syntactic items separated by
vertical bars (|) meaning "or"; one of the syntactic items must be chosen.

= Square brackets [thus] enclose an optional syntactic item. If it is
followed by three full stops (...) possible repetition is indicated.

= Angle brackets <thus> enclose a syntactic item whose nature is indicated by
the word(s) enclosed.

The following syntax items are used throughout the descriptions:

<dadfc> i:= <filecode>

{filecode>::= /<hexadigit>[<hexadigit)]

{userid> = <ASCII char>[<ASCII char>]... (max 8 chars)
{filename)::= <ASCII char>[<ASCII char>]... (max 6 chars)
<keyname> ::= <filename>

{integer> ::= <digit>[<digit>]...

Where two or more syntax items of the same nature appear in a description, the
appearances are distinguished by a decimal digit at the end of each item; for
example:

IDAD=<dadfcl>,0DAD=<dadfc2>

T75 7-11 May 1983.

The following syntax items appear only in the descriptions of error messages:

{dadname) ::= <filename)
<{ss> = <hexadigit><hexadigitd>
{ssss) = <{ss><ssy

CONCURRENT ACCESS

The execution of many of these commands makes physical alterations within a
TDFM file; in these cases the user should ensure that there is no other
activity within the relevant file due to other users, and he should delete all
the filecodes in all machines which refer to this TDFM file. This ensures that
the first access after the EDF session creates a new file table in memory.

If the user attempts to modify a file while other activity is still in
progress, the following error messages are output and the command is aborted:

THE FILE IS ALREADY ASSIGNED IN THE SYSTEM
USE PFC COMMAND (FCL) TO KNOW THE F. CODES ASSIGNED TO IT

The commands for which this is necessary are:
FILE KEY DATA LOAD IDRG MTDK NKEY DLKE
REST SAVE INSE RBUP SPRO DKMT NDAT

ERROR HANDLING

If an error occurs while executing an EDF command in batch mode, the command is
aborted and the EDF processor exits. The user must then correct the input and
restart the EDF Processor. If an error occurs in interactive mode, the user has
the choice of either retrying the command or aborting the EDF Processor.

T75 7-12 ' May 1983.

DISC SPACE ALLOCATION

The EDF Processor has three commands to allocate space on disc for a TDFM file,
and to initialise the system information; the FILE, KEY and DATA commands. The
nunbers of KEY and DATA commands are specified in the FILE command; there must

be at least one of each. Up to 255 KEY commands and 32 DATA commands may be

entered for each FILE command. All the KEY commands precede all the DATA
commands.,

If the name of a subfile created by one of these commands is the same as that
of a file already existing under the same userid and on the same DAD, the
previous file is destroyed before the new file is created.

If the user wishes to add a new key or data file to an already existing TDFM
file, he may use the NKEY or NDAT commands, respectively. The DLKE command
exists to delete a key file from a TDFM file.

T75 7-13 May 1983.

FILE COMMAND

Syntax: FILE FNAM=<filename)> ,USID=<userid> ,DAD=<dadfc>;
NKEY=<integerl> ,NDAT=<integer2),MREC=<integer3>[,SECU={BU | FULL}]

This command allocates space on the DAD defined by <dadfc)> for the Descriptor
Subfile <filename> within user area <userid>. The number of index files is
given by <integerl>, the number of data files by <integer2> and the expected
maximum number of records by <integer3>.

If the parameter SECU=BU is present, the file is protected by back-up; if the
parameter SECU=FULL is present, the file is protected by both back-up and back-
out. If the SECU parameter is omitted, no protection is applied to the file.
The security level applies to all subfiles in the TDFM file.

Errors

<keyword> PARAM MUST BE CHARACTER STRING

<keyword> PARAM MUST BE NUMERIC

-~ where <keyword) identifies the wrong parameter.
{value> PARAM FOR SECU NOT ACCEPTABLE

- <value> is neither BU nor FULL

FILENAME TOO LONG. TRUNCATED

<ss> FC NOT FOR DAD

- <ss> is the status from a ‘get device description’ request
{ss> ASSIGN NOT DONE

{ssss> I/0 ERROR DETECTED

PROCESSING OF COMMAND ABORTED

175 7-14 May 1983.

KEY COMMAND

Syntax: KEY DAD=<dadfc)> ,USID=<userid> ,KNAM=<keyname)> ,KP0S=<integerl>;
KLGT=<integer2> ,KPAD=<{padchar>[,FNAM=<{filename>][,BIJ][,DISP]

<{padchar> ::= /<hexadigit><hexadigit)>

This command allocates space on the DAD defined by <dadfe>, within user area
<userid>, for an Index Subfile with name specified by <filename>. If the FNAM
parameter is omitted, the file name is assumed to be the same as <keyname>.

The value of <integerl)> gives the start of the keyfield, as a displacement from
the start of the record; zero means that the keyfield begins at the first
character of the record. The value of <{integer2> gives the length of the
keyfield, from 1 to 20 characters.

The <padchar> has two uses: it may be used to pad key values, supplied in order
to access the file, to the defined key length, if necessary; and a key
consisting entirely of <padchar>’s will have a value less than that of any
other value in the file. Thus the ASCII character defined as a <padchar>
should not be higher than the lowest actual character expected to be used in
the keyfield.

The parameter BIJ, if present, specifies that this key is bijective. The first
key specified is the primary key, which must always be bijective; any of the
remaining (secondary) keys may be specified as bijective, if desired.

The parameter DISP, if present, specifies that this is the criterion key for
this file. At most one KEY command may have this parameter specified. (The
criterion key is also known as the dispatching key.)

Errors

FIRST KEY MUST BE BIJECTIVE

MAX. KEY LENGTH IS 20

<keyword> PARAM MUST BE CHAR. STRING
<keyword> PARAM MUST BE NUMERIC
{filename> FILENAME TOO LONG. TRUNCATED
<keyname> KEYNAME TOO LONG. TRUNCATED
DISPATCHING KEY PREVIOUSLY DEFINED

<ss> <userid)> <filename> KEEP FILE FAILED
<ss> ASSIGN NOT DONE

<ss> FC NOT FOR DAD

<{ssss> I/0 ERROR DETECTED

PROCESSING OF COMMAND ABORTED

T75 7-15 May 1983.

DATA COMMAND

Syntax: DATA FNAM=<{filename} ,DAD=<dadfc)> ,USID=<userid>;
NBGR=<integerl1>[,CRIK=<keyval>]

<keyval> ::= <integer2>{A | D | H}<value>$$[<keyval>]

This command allocates space on the DAD defined by <dadfc>, within user area
{userid>, for the Data Subfile named <{filename>. It also inserts information

into the Descriptor Subfile. <integerl)> specifies the number of granules to be
allocated to the file.

If the DISP parameter was specified for one KEY command in this sequence, the
CRIK parameter must be specified for every DATA command in the sequence. If
the DISP parameter was not specified, neither should the CRIK parameter be
specified for any DATA command.

The key value defined in the CRIK parameter is built up from one or more
subfields, each with length defined by <integer2>. The value is as follows:
A {integer2> ASCII characters

D a decimal number, left-padded with zeroes if necessary to a length of
{integer2>
H a hexadecimal number (two hexa digits per byte) left-padded with

zeroes if necessary.

The total length of the value so built must equal that of the key defined as
the criterion key. Successive DATA commands must have increasing key values;
the key value for the last DATA command should be at least as great as the
highest key value expected for the file.

Errors

<keyword> MUST BE CHAR. STRING

<keyword> MUST BE NUMERIC

<filename> FILENAME TOO LONG. TRUNCATED
CRITERION KEY NOT EXPECTED

LENGTH OF CRITERION KEY IS WRONG. SEE KEY COMMAND
KEY VALUE < PREVIOUS OR PADDING KEY VALUE
KEY VALUE = PREVIOUS OR PADDING KEY VALUE
CRITERION KEY MISSING

<ss> <userid> <filename)> KEEP FILE FAILED
<{ss> ASSIGN NOT DONE

" <ss> FC NOT FOR DAD

<{ssss> I/0 ERROR DETECTED

PROCESSING OF COMMAND ABORTED

T75 7=16 May 1983.

NKEY COMMAND

Syntax: NKEY FNAM=<filename)>,USID=<userid>,DAD=<dadfc>[,XNAM=<new name)]
,XUSI=<userid2>,XDAD=<dadfc2> ,KNAM=<keyname> ,KPOS=<int>
,KLGT=<int2)> ,KPAD=<padchar>[,FREE=<int3>][,B1J]

This command defines a new access key for an existing TDFM file, and generates
the corresponding index file. The new key cannot be either the primary key or a
dispatching (criterion) key.

For a discussion of the parameters see the KEY command. The default for the
XNAM parameter is the KNAM value.

It is strongly recommended to make a copy of the file before issuong this
command, in case of disc errors during execution. If the file is protected, the
copies must be updated after creating the new key.

The filecodes used during execution are:
/20, /21, <.. (/20 + <number of data subfilesd> - 1)
Errors

UNKNOWN DATA OR INDEX FILE DAD NAME: +.¢...
BAD ASSIGN DATA FILE STATUS = <ssss>
2 KEYS EQU IN BIJ. IND. seeee
INDEX OVERFLOW LEVEL 0O
BAD ASSIGN INDEX FILE STATUS = <ssss)>
INDEX FILE OVERFLOW: <ssss>
EMPTY DATA SUBFILES: cvecec.
WORK FILECODES /D6 OR /D7 NOT ASSIGNED
INVALID PARAMETER = .ecv..
BAD ASSIGN DESCRIPTOR FILE, STATUS = <ssss>
ERROR GET INFO ON DAD, STATUS = <ssss)
DAD NOT ASSIGNED TO A DAD
TOO MANY RECORDS DECLARED:
ONLY ONE INDEX LEVEL; PARAM MREC TOO SMALL
I/0 ERROR WHEN DELETING VERSIONS OF INDEX FILE
BAD ASSIGN NEW DESCRIPTOR, STATUS = <ssss>
KEEP FILE <name> ERROR STATUS = <ssss>
KNAM ALREADY EXISTING
THE FILE IS ALREADY ASSIGNED IN THE SYSTEM
USE PFC COMMAND (FCL) TO KNOW THE F. CODES ASSIGNED TO IT

Warning and Informative Messages

WARNING: OLD VERSION OF DESCRIPTOR NOT DELETED
<nn>7% FREE SPACE IN INDEX FILE

T75 =17 May 1983.

NDAT COMMAND

Syntax: NDAT FNAM=<name) ,USID=<useridl)>,DAD=<dadfcl>,DNAM=<name2>
,DDAD=<dadfc2>,DUSI=<userid2>,NBGR=<int>[,CRIK=<keyvald]

For the syntax of the CRIK parameter see the DATA command.

This command defines a new data subfile for an existing TDFM file.

If the existing TDFM file has a criterion key defined for it, the CRIK

parameter is mandatory in this command; the criterion key value supplied must

be greater than that of any existing data subfile. If no criterion key is
defined for the TDFM file, the CRIK parameter must not be supplied.

The TDFM file date is updated.

Errors

BAD ASSIGN DESCRIPTOR FILE, STATUS = <ssss>
ERROR GET INFO ON DAD STATUS = <ssss>
CRITERION KEY NOT DEFINED

WRONG CRITERION KEY LENGTH

USE A HIGHER CRIK VALUE

CRITERION KEY EXPECTED

DDAD NOT ASSIGNED TO A DAD

DATA FILE NAME ALREADY EXISTS

I/0 ERROR WHEN DELETING VERSIONS OF DATA FILES
BAD ASSIGN NEW DESCRIPTOR, STATUS = <ssss>
KEEP FILE <name> ERROR, STATUS = <{ssssd>
INVALID PARAM =

BAD ASSIGN DATA FILE, STATUS = <ssss>

Warning Message

WARNING: OLD VERSION OF DESCRIPTOR NOT DELETED

T75 7-18

May 1983.

DLKE COMMAND

Syntax: DLKE FNAM=<name)> ,USID=<{userid>,DAD=<dadfc)> ,KNAM=<keyname>

This command is used to remove an access key and its corresponding index sub-
file from a TDFM file. Neither the primary key nor the criterion (dispatching)
key may be deleted in this way.

It is strongly recommended to make a copy of the file before issuing this
command. If the file is protected, existing copies must be updated after
deletion of the key.

The TDFM file date is updated.
Errors

INVALID PARAMETER = ...
BAD ASSIGN DESCRIPTOR FILE, STATUS = <ssss>
ERROR GET INFO ON DAD STATUS = <ssss>
UNKNOWN KEY NAME
BAD ASSIGN NEW DESCRIPTOR, STATUS = <ssss>
KEEP FILE <name> ERROR, STATUS = <ssss>
THE FILE IS ALREADY ASSIGNED IN THE SYSTEM
USE PFC COMMAND (FCL) TO KNOW THE F. CODES ASSIGNED TO IT

Warning Message

WARNING: OLD VERSION OF DESCRIPTOR NOT DELETED

75 7-19 May 1983.

LOADING and UNLOADING

The EDF Processor has two commands for loading a TDFM file from, or unloading
it to, a sequential file; these are the LOAD and UNLD commands, respectively.
Together, these commands are useful for reorganising a file, or providing a

tool for recovery; the LOAD command may also be used for initial loading of a

file, for which it is faster, and gives a cleaner index structure, than a loop
of Monitor calls to write new records.

The sequential file may be:

a) a DFM disc file, held on one volume;

b) held on magnetic tape or cassette. Both multi-file volumes and multi-volume
files are handled; end-of-volume within a file is signalled by the
sequence :EOV (TM) (TM).

c¢) (for input only) punched cards;

d) (for input only) paper tape, terminated by :EOF.

The sequential file records are handled on a multiblock basis, i.e. one record
on the TDFM file may be split into, or built up from, several records on the
sequential file. For an output sequential file the blocking factor is always
fixed. For an input sequential file the blocking factor may be fixed or
variable; in the latter case, the last input record used to build a TDFM record

is terminated by two ASCII characters not otherwise used together within a
record.

T75 7-20 May 1983.

LOAD COMMAND

Syntax: LOAD ONAM=<filename)>,0DAD=<dadfc>[,0USI=<userid>],ICOD=<filecode>;
TYPE={CONT | CRIK | <integerl> | SAME}
[,{N=<integer2> | SEP=<separator>}]
[,IGEN={YES | NO}][,FREE=<integer3>]

{separator)> ::= ‘<ASCII char><ASCII char)>’
This command uses the records in the sequential file specified by <filecode> to
build data records in the TDFM file whose Descriptor file is located on DAD
{dadfc>, within the user area <userid> and with name <filename>. If the userid

is omitted, the :JOB USID is assumed.

The TYPE parameter specifies where TDFM records are to be stored:

CONT specifies that the first data subfile is to be filled, then the
second, and so on;
CRIK specifies that the criterion key is to be used to decide into which

data subfile this record is to be inserted. It may only be used if a
criterion key has been established for this TDFM file.

{integerl)> specifies that all records are to be inserted into the <integerl>th
data subfile.

SAME specifies that the records are to be partitioned between the data
subfiles in the same way as they were stored on a TDFM file, of
which this input file is a copy produced by UNLD.

The N and SEP parameters are mutually exclusive. The N parameter specifies a
fixed blocking factor of <{integer2> input records to build one TDFM record; the
SEP parameter specifies the two ASCII characters used to terminate the last
input record of a set used to build one TDFM record. If neither parameter is
present, N=1 is assumed.

The IGEN parameter specifies whether the index files are to be updated with the
keys of the loaded records; if omitted, NO is assumed. Not updating the index
files allows the user to load a number of input files, letting the indexes be
updated once when all data has been input, and thus saving time (index
generation is a very slow process). However, the index files will not be
updated until IGEN=YES is entered, and consequently they will not be consistent
with the data. For this reason, and because there is no error recovery, it is

advisable to make a copy of the TDFM file before starting to load new records,
if the file already contains some data.

The FREE parameter is only significant if IGEN=YES; <integer3)> specifies the
number of free entries to be kept in each sector of an index, as a percentage
of the total number of entries per sector. This may be done in order to avoid
early overflow of the index, or splitting of index blocks, if many records are
to be added later by write calls. If the parameter is absent, the default
value is 0%.

Filecodes
The LOAD command uses filecodes /20 to /3F for its processing; these codes must

therefore not be in use elsewhere while the LOAD command is still in operation,
either as the value of the ICOD parameter or in any user program.

T75 1=21 May 1983.

If IGEN=YES, two temporary work files with filecodes /D6 and /D7 must have been
previously assigned. If these files are consecutive, their minimum size may be
calculated as follows:

No. of sectors = R* (K+3) / (S-1) + 10%

where R is the total number of records in the TDFM file, after loading;
K is the keylength, in words, of the longest key;
S is the size of a sector, in words, in the work file.
Errors

2 CHAR FOR ‘SEP’ PARAMETER

N OR SEP IS SUPERFLUOQUS

INVALID PARAM = <keyword)

WORK FILE /D6 OR /D7 NOT ASSIGNED
ERROR GET INF. ON DAD STATUS = <ssss>
DYNAMIC AREA OVERFLOW

ERR. DATA FILE NB. IN TYPE PARAM
TOO MANY SUBFILES (32 MAXIMUM)

DAD NAME: <dadname> UNKNOWN

BAD ASSIGN DATA FILE STATUS = <ssss>

ERROR ICOD, STATUS = <ssss>

BAD ASSIGN DESCRIPTOR FILE, STATUS = <ssss>
INPUT DEVICE: <dev> NOT COMPATIBLE WITH SEP. PARAM
INPUT DEVICE: <dev> REFUSED

OVERFLOW IN DATA FILE

INPUT RECORD TOO LONG

PAUSE ERROR

END OF TAPE (INPUT FILE)

BEGINNING OF TAPE

INPUT FILE = INCORRECT LENGTH

INPUT FILE = DATA FAULT

EOS INPUT FILE, NEED 1 MORE DATA FILE

DATA FILE <filename> OVERFLOW

INPUT FILE I/0 ERROR, STATUS = <ssss>

PARAM VALUE OF N MUST BE SMALLER

- a record has been found with length less than the value of N
UNKNOWN (DATA OR INDEX FILE) DAD NAME: <dadname>
2 KEYS EQUAL IN BIJ. IND. <filename)

INDEX OVERFLOW LEVEL O

BAD ASSIGN INDEX FILE STATUS = <ssss>

INDEX FILE OVERFLOW: <filename)

Report Messages

END OF VOLUME, LOAD NEXT TAPE AND RESTART
- end-of-volume has been recognized on the current input magnetic tape or

cassette. The next volume in sequence should be loaded and the EDF
Processor restarted.

**{integer>% OF FREE SPACE IN INDEX FILE <filename>

= the named index file has been updated; it contains the stated percentage of
free entries.

T75 71522 May 1983.

s

UNLD COMMAND

Syntax: UNLD FNAM=<filename)> ,DAD=<dadfc)>,USID=<userid>,0COD=<filecode>
[,DATA=<integerl>] [,N=<integer2>]

This command outputs data records to a sequential file identified by <filecode>
from the TDFM file whose Descriptor subfile named <filename> is held within the
used area <userid> on DAD <dadfc>. If the DATA parameter is present, records
are only output from the <integerl>th data subfile, otherwise from all data
subfiles.

The N parameter, if present, gives the blocking factor, i.e. a single TDFM
record will be split into <integer2> records on the sequential file. If the
parameter is absent, N=1 is assumed. <integer2)> must satisfy both the
following conditions:

1) it must not be greater than the minimum logical record length, and
2) <integer2> times the output physical record length must not be less than
the maximum logical record length.

The output sequential file may be used as input to the LOAD command, using any
of its four loading types.

Errors

INVALID PARAM = <keyword>
BAD ASSIGN DESCRIPTOR FILE STATUS = <{ssss>

ERROR GET INF. ON DAD STATUS = <ssss>

ERROR 0OCOD, GET INF. STATUS = <ssss>

OUTPUT DEVICE <dev> NOT ALLOWED

DADNAME: <dadname> OF DATA FILE: <{filename> IS UNKNOWN
BAD ASSIGN DATA FILE STATUS = <ssss>

OUTPUT DFM FILE IS FULL

ERROR BACKWARD ON TAPE STATUS = <ssss>

WRITE ERROR STATUS = <ssss>

N PARAM MUST BE SMALLER

- <integer2> does not satisfy condition 1).
N PARAM VALUE NOT VALID

- <integer2> does not satisfy condition 2).

Report Messages

THE TAPE IS NEARLY FULL, TAKE CARE!

= this tape should not be used to output a new data file.

END OF VOLUME, LOAD NEXT TAPE AND RESTART

- end-of-volume has been recognized on the current output magnetic tape/
cassette. The next volume in sequence should be loaded and the EDF
Processor restarted.

L75 7-23 May 1983.

FILE REORGANISATION

When either an index entry or a data record is deleted and then re-entered, the
space used by the deleted record is not automatically recovered for re-use.
Thus, after many amendments have been made within a file, it will require
reorganisation in order to recover the lost space.

There are two levels of reorganisation possible:
a) one or more index files need to be reorganised, and

b) part or all of the data needs to be reorganised.

Index Reorganisation

The IDRG command, described overleaf, is available for the reorganisation of
one index file. It may be repeated for each index file needing to be
reorganized.

Data Reorganisation

The following sequence of commands will reorganise not only the data but all
the indexes as well:

1) wunload the TDFM file to disc or magnetlc tape;
2) delete the TDFM file;

3) recreate the TDFM file;
4) reload the TDFM file and regenerate the indexes.

T75 7-24 May 1983.

IDRG COMMAND

Syntax: IDRG FNAM=<filename)> ,FDAD=<{dadfcl>,USID=<userid)>;
KNAM=<keyname)> ,KDAD=<dadfc2>[,FREE=<integer)]

This command reorganises the given index file, by re-using the space occupied
by deleted entries, freeing sectors used for splitting and no longer required,
and optionally leaving a percentage of each sector unused (to allow for further
updating without early splitting or overflow).

The <filename>, <dadfcl> and <userid> are those of the Descriptor subfile of

the TDFM file to which the index belongs; <dadfc2> specifies the DAD on which
the Index subfile for key <keyname)> is located.

The FREE parameter, if present, specifies the number of free entries to be kept
in each sector, as a percentage of the total number of entries per sector. If
the parameter is absent, the default value is 0%.

Since this command works directly on an index file, it is recommended to make a
copy of the index at least - possibly the whole TDFM file - before using this
command .

Errors

DEFINED KEY NOT FOUND

<keyword> PARAM MUST BE NUMERIC
<keyword> PARAM MUST BE CHAR. STRING
<filename> FILENAME TOO LONG. TRUNCATED
<keyname> KEYNAME TOO LONG. TRUNCATED
<{ss> FC NOT FOR DAD

<ss> ASSIGN NOT DONE

<{ssss> I/0 ERROR DETECTED

PROCESSING OF COMMAND ABORTED

Report Messages

{integer>7 OF FREE SPACE HAS BEEN GIVEN
- this message is issued when the IDRG command has completed its processing.

T75 =25 May 1983.

TDFM FILE HOUSEKEEPING

It is important to be able to make security copies of TDFM files, particularly
when they are protected by the back-up facilities. The EDF Processor provides
facilities to copy, restore and delete TDFM files, either at the subfile level
or entire files. (Subfiles may be deleted individually only through the use of
the Librarian.)

When copying, the date and time of the copy process are written into the copied
file; the System Manager must therefore ensure that the date and time held
inside the machine are correct, and that the Real Time Clock is running, before
making a copy. When restoring, the date and time in the restored file are those
held in the file from which the restore is being made. This is important, as it
enables the back-up recovery process to update only those records which were
altered since the copy was made.

The COPY and REPL commands, working on individual subfiles, operate even when
the Descriptor subfile has been corrupted. The SAVE, REST and DEL commands,
working on whole files, fail unless the Descriptor subfile contents are still
valid.

T75 7-26 May 1983.

COPY COMMAND
REPL COMMAND

Syntax: {COPY | REPL} FNAM=<filename)>,IDAD=<dadfcl>,IUSI=<useridl);
ODAD=<{dadfc2>,0USI={userid2>

The COPY and REPL commands copy one subfile, with name <{filename>, of a TDFM
file held in user area <useridl> on DAD <dadfcl> to user area <userid2> on DAD
{dadfc2>. The COPY command updates the date and time, held in the Descriptor
subfile of the copy, to those when the copy is made; the REPL command does not
update the date and time. Otherwise the two commands are identical in their
operation.

An entire TDFM file should be copied (or replaced) by a series of commands.
Subfiles should be copied in the following order:

the Descriptor subfile;

all Index subfiles (in any order);

all Data subfiles (in any order).

A COPY should only be made between two ‘runs’ using this file. See below under
‘Recovery Procedures’ for more details.

None of the subfiles to be created by either of these commands should already
exist in the target DAD and user area. If necessary, the Librarian should be
used to delete previous versions before the COPY or REPL command is executed.

The sector sizes of both DAD’s must be equal.

Errors

OLD DAD AND USERID = NEW DAD AND USERID

<keyword> PARAM MUST BE NUMERIC

<keyword> PARAM MUST BE CHAR. STRING

{filename> FILENAME TOO LONG. TRUNCATED

<{ss> FC NOT FOR DAD

<ss> ASSIGN NOT DONE

<ssss> I/0 ERROR DETECTED

OLD AND NEW DAD MUST HAVE EQUAL SECTOR LENGTHS
FILE DESCRIPTOR REFERS TO <dadname)> <userid)> <{filename>. ERROR
USERID NOT CATALOGUED ON ODAD

FILE ALREADY CATALOGUED ON ODAD

ERROR WHILE SEARCHING IN DIRECTORY

CONVERSION ERROR (DEBI)

<ss) <userid)> <filename> KEEP FILE FAILED
<{dadname> <userid> <filename> INDEX FILE NOT FOUND
<dadname> <userid> <filename> DATA FILE NOT FOUND
PROCESSING OF COMMAND ABORTED

5 7-27 May 1983.

SAVE COMMAND
REST COMMAND

Syntax: {SAVE | REST} FNAM=<filename),IDAD=<dadfcl>,IUSI=<useridl>;
ODAD=<dadfc2>,00SI=<userid2>

The SAVE and REST commands copy an entire TDFM file, with name <filename)>, held
in user area <useridl> on DAD <dadfcl)> into a previously existing TDFM file
with the same filename held in user area <userid2> on DAD <dadfc2>. The SAVE
command updates the date and time, held in the Descriptor subfile, to those
when the copy is made; the REST command does not update the date and time.
Otherwise there is no difference between the two commands.

These commands only work if the contents of the Descriptor subfiles of both the

source and target files are still valid. If the target Descriptor subfile has

been corrupted, the user has two possible courses of action:

1) use the Librarian to delete all subfiles of the target file, then use a
sequence of COPY or REPL commands to copy each subfile in turn, or

2) recreate an empty target file using the FILE, KEY and DATA commands (which
automatically delete the previous versions), then use the SAVE or REST
command to copy all the subfiles.

In the rare case that a source Descriptor subfile is corrupted, the user should
recreate an empty source file using the FILE, KEY and DATA commands and reload
it from a sequential file produced by the UNLD command.

Restoring a TDFM file with back-up security should only be done before back-up
recovery is initiated.

Errors

OLD DAD FC AND USERID = NEW DAD FC AND USERID

<keyword> PARAM MUST BE NUMERIC

<keyword> PARAM MUST BE CHAR. STRING

<filename> FILENAME TOO LONG. TRUNCATED

<{ss> ASSIGN NOT DONE

<ss> FC NOT FOR DAD

<{ssss> I/0 ERROR DETECTED

OLD AND NEW DAD MUST HAVE EQUAL SECTOR LENGTHS

FILE DESCRIPTOR REFERS TO <dadname)> <userid)> <filename>. ERROR
USERID NOT CATALOGUED ON ODAD

FILE DESCRIPTOR NOT VALID. USE COPY COMMANDS

ERROR WHILE SEARCHING IN DIRECTORY

<ss> <userid> <filename)> KEEP FILE FAILED

<{ss> <dadname> <userid> <filename> INDEX FILE NOT DELETED
{dadname> <userid> <filename> INDEX FILE NOT FOUND

<{ss> <dadname)> <userid> <filename> DATA FILE NOT DELETED
{dadname> <userid> <filename> DATA FILE NOT FOUND

CONVERSION ERROR (DEBI)

{dadname)> <userid> <filename> NO DAD FILE CODE FOR THIS INDEX FILE
{dadname)> <userid> <filename> NO DAD FILE CODE FOR THIS DATA FILE
PROCESSING OF COMMAND ABORTED

T75 7-28 May 1983.

DEL COMMAND
Syntax: DEL FNAM=<{filename)>,DAD=<dadfc)>,USID=<userid)

The DEL command deletes all the subfiles of a TDFM file, whose Descriptor
subfile is held on DAD <dadfc)> in user area <userid> under the name

<{filename>. The command only works if the Descriptor subfile contents are still
valid; if not, the Librarian must be used to delete all the subfiles, one by
one.

Errors

DAD PARAM MUST BE NUMERIC

USID PARAM MUST BE CHAR. STRING

FNAM PARAM MUST BE CHAR. STRING

<{filename)> FILENAME TOO LONG. TRUNCATED

<{ss> ASSIGN NOT DONE

<{ss> FC NOT FOR DAD

<ssss>I/0 ERROR DETECTED

FILE DESCRIPTOR REFERS TO <dadname> <userid> <{filename>. ERROR
<{ss> <dadname> <userid> <filename> INDEX FILE NOT DELETED

<{ss> <{dadname> <userid> <filename> DATA FILE NOT DELETED

<{ss> <dadname> <userid> <filename)> FILE DESCRIPTOR NOT DELETED
{dadname> <userid> <filename> NO DAD FILE CODE FOR THIS INDEX FILE
{dadname) <userid> <filename> NO DAD FILE CODE FOR THIS DATA FILE
PROCESSING OF COMMAND ABORTED

T75 7-29 May 1983.

DKMT COMMAND

Syntax: DKMT FNAM=<filename)>,IDAD=<dadfc>,IUSI=<Kuserid>,0COD=<fcod>

This command is used to copy a TDFM file with name <{filename> onto magnetic

tape, assigned to filecode <fcod>. The date of the copy is set to the current
date.

If several TDFM files are to be saved, they are separated on the tape by one
tapemark; the last TDFM file is followed by two tapemarks.

The user must position the tape correctly before issuing this command.
If a physical end-of-tape is encountered during the copy, the EDF processor
halts after sending the following message:

LOAD NEXT TAPE AND RESTART

The operator must mount a new tape, position it to the start of tape and
restart the EDF Processor.

Notes:

1) Saving a protected file must only be done between two TDFM runs using this
file.

2) a protected file must not be saved using the Librarian, because the
internal date must be modified.

Errors

/XXXX: BACKSPACE ERROR ON MT

/XXXX: I0 ERROR ON MT WHEN WRITING EOV

/XXXX: I0 ERROR ON MT WHEN WRITING TM

/XXXX: WRITE IO ERROR ON MT

/XXXX: I0 ERROR ON MT WHEN WRITING EOS

/XXXX: READ IO ERR. ON SUBFILE FNAM = <name> USER = <userid> dad = <dadfc)
PACK = <pack>

/XXXX: BACKSPACE ERR. ON MT WHEN POSIT IT FOR NEXT DKMT
FILE CORRECTLY OUTPUT

/XXXX: ASS. ERR. ON DESC. FILE

/XXXX: ASS. ERR. ON SUBFILE FNAM = <name)> USER = <userid)> DAD = <dadfc)
PACK = <pack>

INCORRECT DAD VALUE

INCORRECT FNAM PARAM

DAD FC NOT FOUND FOR SUBFILE FNAM = <name> USER = <userid> DAD = <dadfc>
PACK = <pack>

WRONG OCOD FC

0COD IS NOT ASSIGNED TO A TAPE

T75 7-30 May 1983.

MTDK COMMAND

Syntax: MTDK FNAM=<name)>,0DAD=<dadfc)>,0USI=<userid>,ICOD=<fcod>

This command is used to restore a TDFM file from a magnetic tape copy; the date

on the restored file will be that of the copy. The user must correctly position
the tape before issuing this command.

If physical end-of~tape is encountered during execution of this command, the
EDF Processor sends this message:
LOAD NEXT TAPE AND RESTART

The operator must then mount the next tape, position it to start of tape and
restart the EDF Processor.

Notes:

1) During a restore run, all necessary DADs must be on-line.
2) When restoring a TDFM file whose Descriptor subfile is corrupt, one of the
following procedures must be used:

a) delete all subfiles using the Librarian DEL command, then use a
sequence of COPY or REPL commands to restore each subfile in turn, or
b) re-create the same empty TDFM file using FILE, KEY and DATA commands
(0ld subfiles are automatically deleted), then use SAVE or REST
commands to copy all the subfiles.
3) Restoring a protected file must only be done before back—-up recovery.

Errors

/XXXX: READ IO ERR. ON MT, DESC. FILE

/XXXX: READ IO ERR. ON MT, SUBFILE: FNAM = <name> USER = <userid> DAD = <dadfc)>
PACK = <pack>

/XXXX: READ IO ERR. ON DISC, DESC. FILE

/XXXX: WRITE 10 ERR. ON DISC, TEMPORARY FILE

/XXXX: ASS. ERR. ON DESC. FILE

/XXXX: ASS. ERR. ON SUBFILE: FNAM = <name> USER = <userid> DAD = <dadfc>
PACK = <pack>

/XXXX: DELETE ERR. ON DESC. FILE

/XXXX: ASSIGN ERR. ON TEMPORARY FILE

/XXXX: CATALOGUE ERR. ON NEW DESC. FILE

/XXXX: WRITE IO ERR. ON SUBFILE: FNAM = <name> USER = <userid> DAD = <dadfc>
PACK = <pack>

INCORRECT DAD VALUE

INCORRECT FNAM PARAM

DAD F.C. NOT FOUND FOR SUBFILE: FNAM = <name> USER
PACK = <pack>

WRONG ICOD FC.

ICOD NOT ASSIGNED TO A TAPE

DESC. ON DISC NOT = TODESC. ON TAPE, SUBFILE: FNAM
DAD = <dadfc> PACK = <pack>

THE FILE IS ALREADY ASSIGNED IN THE SYSTEM

USE PFC COMMAND (FCL) TO KNOW THE F. CODES ASSIGNED TO IT

{userid> DAD = <dadfc>

<name> USER = <userid>

Warning Message

NO MORE TDFM FILES ON THIS TAPE

T75 7=31 May 1983.

RECOVERY COMMANDS

The topic of recovery of TDFM files is covered more extensively in Chapter e
Here it suffices to mention that the EDF Processor contains commands to assign
back-up and back-out files, to initialise the recovery mechanisms, to perform
back-up and back-out recovery and to change the protection level of a file.
These commands are described on the following pages.

T75 7-32 May 1983.

BOGN COMMAND

Syntax: BOGN FNAM=<filename)>,USID=<userid>,DAD=<{dadfc>[,NBGR=<int)]

This command creates a back-out file with name <{filename)> in the user area
Cuserid> held on DAD <dadfc>. The file is a non-consecutive catalogued system

file, type UF. The userid under which it is catalogued must be the first userid
in the DAD. The file may provide back-out protection for a number of TDFM files.

The NBGR parameter specifies the number of granules to be allocated to the
file; if omitted, the initial allocation is no granules, but granules are
allocated to the file dynamically as they are needed. A granule must consist of
at least three sectors.

The sector size, s, within the back-out file limits the maximum number of
simultaneous transactions, t, as follows:

t=s5-3/2

Before issuing this command, the user must ensure that:

1) No back-out recovery is required for any of the TDFM files associated with
this file, and

2) the old back-out file, if any has-been deleted.

This file may be used until it is full; with dynamic allocation of granules,
this means until DAD overflow occurs. Note that a granule is freed when a
transaction is successfully completed.

Errors

TEMP. FC. ASS. ERR.

WRITE IO ERROR ON B-OUT FILE
B-OUT KEEP FILE ERR.

B-OUT DAD GET INFO. ERR.
ERRONEOUS B-OUT F. CODE

SEC./GRAN. < 3

T75 1-33 May 1983.

BUGN COMMAND

Syntax: BUGN FNAM=<filename>,USID=<userid>,DAD=<dadfc>,NBGR=<integer)

This command creates a back-up file with name <filename> in user area <userid)
on DAD <dadfc>. The file is a consecutive catalogued system file, type ‘UF’.
The userid under which it is catalogued must be the first userid of the DAD.
The file may provide back-up protection for a number of TDFM files.

The NBGR parameter specifies the number of granules to be allocated to this
file. The file may be used until it is full, regardless of the incidence of
IPL’s or saving, restoring and recovery of associated TDFM files. The number of
free sectors is returned:

1) by the INSE command, on the operator’s console;

2) by the ’‘Transaction Ready’ LKM call, in the user’s ECB.

Before issuing this command, the user must ensure that:

1) no back-up recovery is required for any of the TDFM files associated with
this file, and

2) the old back-up file, if any, has been deleted, and

3) security copies have been made or updated of all TDFM files associated with
this file.

Errors

TEMP. FC. ASS. ERR.
B-UP SECTOR O WR. ERR.
B-UP KEEP FILE ERR.
B-UP DAD GET INFO. ERR.
ERRONEOUS B-UP F. CODE
B=-UP PREMARK ERROR

T75 734 May 1983.

INSE COMMAND

Syntax: INSE IDEN='<runident)>’,BUFC=<filecodel>[,BOFC=<filecode2>]
{runident)> ::= <ASCII char>[<ASCII char>]... (max 10 chars)

This command initialises the recovery mechanisms at the beginning of a ‘run’.
The <runident> may be chosen by the user; it must uniquely identify each run.
The BUFC parameter specifies the back-up filecode and the BOFC parameter, if
present, specifies the back-out filecode; these filecodes must previously have
been assigned in the System Machine - by SCL ASG commands, if necessary.

At the time this command is entered, the date and time in the system must be
correct, and the Real Time Clock started.

The number of free sectors remaining in the back-up file is printed on the
operator’s console before the command exits.

Errors

STILL ACTIVITY ON PR. FILES

UNKN. B-UP F. CODE

WRONG B-UP F. CODE

UNKN. B-OUT F. CODE

WRONG B-OUT F. CODE

DYN. AREA OVF. IN SYSTEM MACHINE

PREVIOUS RUN INCOMPLETE - B~UP RECOVERY COMPULSORY

PREVIOUS RUN INCOMPLETE - RECOVERY COMPULSORY

B-UP FILE PARTIALLY OVERWRITTEN - B-~UP RECOVERY COMPULSORY

B~UP READ IO ERR.

B-UP WRITE IO ERR. - RECOVERY NOT NEEDED - SAVE EXT. FILES & GENERATE NEW B-UP
FILE

B-UP OVERFLOW

= the command is executed in this case to enable back-out recovery of this
overflow

B-OUT READ I0. ERR.

B-OUT WRITE ER. - RECOVERY NOT NEEDED - GENERATE NEW B-QUT FILE

75 7-35 May 1983.

RBUP COMMAND

Syntax: RBUP BUFC=<filecodel>[,BOFC=<filecode2>][,NRUN=<integer>]

This command recovers a number of TDFM files from their back-up file, and their
back=out file if present, after a system failure. All the TDFM files are
assumed to have been restored from their latest copies; for each file, the date
and time of the copy marks the point at which recovery begins. From this point
on, all modifications made by complete transactions are re-performed.

For each run on the back-up file, the run identifier is output followed by one
of these messages:
a) EMPTY RUN
b) COMPLETE RUN
c) NOTHING TO BE REDONE IN RUN
d) FILE COPIES ARE POSTERIOR TO RUN
e) NO COMPLETE TRANSACTION ON FILES ANTERIOR TO RUN
f) INCOMPLETE RUN, RECOVERED TRANSACTIONS:
- followed by a list of the transaction numbers recovered.

When recovery is complete, the back—-out file is empty; both files may continue
to be used for subsequent runs.

If an unrecoverable I/0 error occurs while reading the back-up file during a
run, the recovery process should be restarted. When entering this command
again, the NRUN parameter should be supplied, where <integer> gives the number
of complete runs successfuly recovered. In this case the back-up file must not
be used again, but deleted and a new file generated.

Errors

INCORRECT BU FILE

INCORRECT BO FILE

BO ACCESS ERROR - RECOVERY SUCCEEDED - GENERATE NEW EMPTY B-OUT FILE
ST = /<ssss>, GET BUF. ERR.

BO FC. NOT GIVEN

B-UP FILE EMPTY

DYN AREA OVF. IN SYST. MACH.

ST = /<ssss>, GET INFO. ERR.

UNKN. FILE

FC = <filecode>, ST = /<ssss>, I0 ERR.

ST = /<ssss>, TR. READY ERR.

FC = /<filecode>, ST = /<ssss>, TDFM IO ERR
FC = <filecode>, ST = /<ssss>, ASS. ERR.

ST = /<ssss>, TR. FINISHED ERR.

FC = /<filecode>, ST = /<ssss>, DEL. FC. ERR.

B-UP WRITE ERR - RECOVERY SUCCEEDED - SAVE EXT. FILES & GENERATE NEW EMPTY B-UP
FILE
FREE BUFF ERR

Warning Messages

If the NRUN parameter is present, the following messages are output when the
command has finished processing:

END OF PARTIAL RECOVERY
CARE, BU FILE MUST NO LONGER BE USED FOR LOGGING!!!

T75 7-36 May 1983.

SPRO COMMAND

Syntax: SPRO FNAM=<filename>,USID=<userid>,DAD=<dadfc>,SECU={NO | BU | FULL}

This command alters the protection level of an existing TDFM file with name
{filename>, whose Descriptor subfile is held in user area <userid> on DAD
<{dadfc>. The new protection level is specified by the SECU parameter:

NO no protection
BU back-up protection only
FULL back-up and back-out protection.

The command must not be issued for a file which needs to be recovered. Before
altering the protection level, it is recommended to make a security copy of the
file, in case of write I/O error. After altering the protection level, all
existing copies should be updated so that they also have the new protection
level.

If back-up protection is removed from a file, but the current back-up file
contains records for that file, then all other TDFM files using that back-up
file must be copied before destroying the current back-up file and generating a
new one.

Errors

INVALID SECU PARAM VALUE

ASSIGN WORK FC. ERR. STAT. = <ssss)>
WRITE IO ERR ON DESC. FILE STAT. = <ssss)>
DELETE WORK FC. ERR. STAT. = <ssss>

T75 1=37 May 1983.

DIAGNOSTIC AND OTHER COMMANDS

Two commands, the DUMP ad STAT commands, allow the user to print diagnostic
information about a TDFM file. The SBUF command allows the user to alter the
number of buffers in the pool used for access to TDFM files.

Two commands exist, EFEN and ABT, to terminate the EDF Processor; EFEN may only
be used when all activity from other commands is complete, whereas ABT aborts
any such activity.

T75 7-38 May 1983.

DUMP COMMAND

Syntax: DUMP FNAM=<filename)>,USID=<userid>,DAD=<dadfc)> ,KNAM=<keyname)>
[,FROM=<keyvaluel>][,TO=<keyvalue2>][,PRNT=<filecode>]

<keyvalue> ::= <integer>{A | D | H}<value>$$[<keyvalue>]

The DUMP command dumps data records from the TDFM file with name <filename),
whose Descriptor subfile is held in user area <userid> on DAD <dadfc>. The data

records are dumped in ascending order of key <keyname)>, in hexadecimal format
with character equivalents.

If the FROM and TO parameters are both present, all records whose value of key
<keyname)> lies between the specified values are output. If the FROM parameter
is omitted, dumping starts with the lowest key value in the file; if the TO
parameter is omitted, dumping ends with the highest key value in the file.
Thus, omitting both parameters causes the whole file to be dumped.

The key values defined in the FROM and TO parameters are made up of one or more

subfields, each with length defined by <integer>. The <value> is as follows:

A - <integer)> ASCII characters.

D - a decimal number, left-padded if necessary to a length of <integer>.

H - a hexadecimal number (two hexa digits per byte), left-padded with zeroes
if necessary.

The key length defined in either parameter must be the same as that defined for

key <keyname>.

The PRNT parameter, if present, gives the filecode of the print device; if
omitted, filecode /02 is assumed.

Errors

ERR. WHEN ASS. WORK FC. TO DESC. FILE
/<ssss> READ I0 ERR. ON DESC. FILE
UNKNOWN KEY NAME

/<{ssss> DELETE DFM WORK FC. ERR.
/<{ssss> ASS. WORK FC. TO EDFM FILE ERR.
/<ssss> TR. READY IO ERR.

TO VAL. > PADDING KEY

FROM VAL. > TO VAL.

/<ssss> POSIT IO ERR.

/<ssss> TDFM READ IO ERR.

/<ssss> PRINT ERR. ON FC /44
/<{ssss> READ NEXT IO. ERR.

/<ssss> TR. FINISH IO. ERR.
/<ssss> DELETE TDFM WORK FC. ERR.
INVALID PRINT FC

LENGTH OF FROM VALUE IS INCORRECT
LENGTH OF TO VALUE IS INCORRECT
FROM VALUE > GREATEST KEY VALUE
UNKNOWN DAD

UNKNOWN FILE NAME

UNKNOWN USER ON GIVEN DAD

USER OF 1 SUBFILE IS UNKNOWN

NAME OF ONE SUBFILE IS UNKNOWN
DAD OF ONE SUBFILE IS UNKNOWN

ONE PACK NOT ON LINE

DAD OF ONE SUBFILE NOT ASSIGNED

T75 7-39 May 1983.

FILE ALREADY ASS. IN ANOTHER MACH. WITH DIFF. DAD FC. FOR SUBFILES
WORK FC. WAS PREVIOUSLY ASS. TO A TDFM FILE ON WHICH A TRANS. IS ALREADY

OPENED
DYN. AREA OVF. IN SYST. MACH. DURING ASSIGN

T75 7-40 May 1983.

STAT COMMAND

Syntax: STAT FNAM=<filename)> ,USID=<userid> ,DAD=<dadfc)>[,PRNT=<filecode)]

This command prints statistics concerning a TDFM file with name <filename),
whose Descriptor subfile is held in user area <userid> on DAD <dadfc>. Output
is always to the line printer; if the PRNT parameter is supplied, the
statistics will also be output to the specified <filecode).

The statistics give the following information about the file as a whole:
= date of creation or last copy;

= protection level;

- number of records currently in the file;

- number of records which have been deleted;

- whether index or data overflow has occurred.

For each subfile, the name, userid, DADname and pack number are output. For
all except the Descriptor subfile, the number of free sectors is output,
together with an indication of overflow. For each data subfile the number of
records it currently contains and the number which have been deleted are output.

If either an index or a data file has overflowed, or has only a very small
number of free sectors so that overflow is imminent, the file needs to be
reorganised. Refer to the section ‘File Reorganisation’ in this Chapter.

Errors

ASSIGN WORK FC. ERR. STAT = <ssss>
READ IO ERROR ON DISC. FILE STAT = <ssss>
DELETE WORK FC. ERR. STAT = <ssss>

T75 7-41 May 1983.

SBUF COMMAND

Syntax: SBUF NBUF=<integer)

This command alters the maximum number of buffers in the TDFM pool, held in the
CVT, to <integer>; the value must be a multiple of three, the number of buffers
used to access a file.

Errors

SBUF NOT A MULTIPLE OF 3

Note: Each transaction requires three buffers for each TDFM file opened; one
for the Descriptor subfile, one for the current key file and one for
the current data file. The number of buffers required is therefore:

3% T%*F
where:
T is the maximum number of simultaneous transactions, decided by the
system manager (not more than 100);
F is the number of TDFM files opened by each transaction.

T75 7-42 May 1983.

EFEN COMMAND

Syntax: EFEN

This command exits from the EDF Processor and returns control to the Monitor.
The command is rejected if the action of previous commands, such as disc space
allocation or TDFM file copying, is still in progress.

Errors

None.

75 7=43 May 1983.

ABT COMMAND

Syntax: ABT

This command exits from the EDF Processor and returns control to the monitor.
If the action of previous commands, such as disc space allocation or TDFM file
copying, is still in progress it is aborted.

Errors

None.

T75 7-44 May 1983.

T75

7-45

INPUT/OQUTPUT

Input and output to and from the extended file is effected by means of LKM 1
requests issued by the program.

CALLING SEQUENCE

requesting

LDK A7,C
LDKL A8,B
LKM
DATA [-11
[DATA L]
where:
L is the address of a scheduled label routine
B is the address of an event control block (ECB), whose format depends
on the order code.
C is a word having the following format:
bit 8 = 1 Implicit wait: The program is suspended until the I/0 is
complete.
bit 8 = 0 No implicit wait: Control is returned to the
program as soon as the transfer has been initiated.
bit 9 = 1 User error action: The requesting program will process all
abnormal or error conditions; the hardware status is
returned in this case.
bit 9 = 0 System error action: The system performs the

bits 10 to 15 contain one of the following order codes:

/02
/OA
/0B
/12
/1A
/1B
/1C
/25
/27
/28
/29
/2A
/2B
/2C
/2D
/2E
/3A
/3B
/3C
/3D
/3E
/3F

T75

standard error

action and returns a status code to the ECB of the calling

program.

Read Next

Read on Key Value

Write

Read Next and Attach

Read on Key Value and Attach
Read on Physical Coordinates
Read on Physical Coordinates and Attach
Transaction Ready

Abort Transaction

Finish and Cancel Transaction
Back—-out Recovery

Detach a Record

Detach All Records Attached to a Transaction
Write and Attach

Delete

Replace Record

Read Previous and Attach
Transaction Finished

Position on Key Value

Replace Record and Detach
Delete and Detach

Read Previous.

7-46

May 1983.

TRANSACTION READY (Order Code /25)

This is the first request issued by a transaction and serves to define the

transaction identifier and open all the files which may be accessed during
transaction processing.

ECB Structure

The ECB layout is as follows:

-4 I Transaction Number {
-2 : Linked Event Address (if L = 1)

0 | E| L | | Filecode 1

2 | Number of Files to be Opened |

4 Number of Free Sectors in the Back-up File

6 | Unused |

8 General Status |

10 | Filecode 2 E;;;_block of
L2~ " Opening Mode | four words is
14 | Zero | repeated for
16 | Opening Status | each file opened.
18 { etc. 1 —————

| |
Where:

- ‘Transaction Number’ is a unique identifier and must not be duplicated in
this or any other machine.

- “E’ (bit 0) is the event bit; it is set by MAS when the I/0 is complete.

~ ‘Filecode 1’ is a dummy filecode, and should be set to any extended
filecode in the application.

- ‘General Status’ is returned by MAS and, if the request is rejected, gives
the reason. These codes are described below under the heading ‘Returned
Status’.

- ‘Number of Free Sectors in the Back-up File’ is returned by MAS to allow
the user to terminate processing before a file overflow occurs.

- ‘Linked Event Address’ is the address of another ECB in a chain of ECB’s
which are all linked for event handling purposes (i.e. they are all
awaiting the same event). If the location ‘L’ of an ECB is set to 1, then
the Linked Event Address will contain the address of the next ECB in the
chain. If there are no linked ECB’s (this is the only member of the chain),
or this is the last ECB in the chain, then both the location ‘L’ and the
Linked Event Address should be set to zero.

Ti5 7-47 May 1983.

= Bytes 10 to 17 form a four-word block, repeated for each file to be used
during the processing of this transaction. Within each four-word block:

word O contains the TDFM filecode in bits 8-15.

word 1 contains the opening mode for the file (see below).

word 2 is unused (set to zero).

word 3 contains, on return, a status code which, if the request is

rejected, identifies the file and the reason for the rejection.

Opening Modes

/2F - Exclusive Mode

This mode reserves the file for exclusive use by this transaction until a
‘Transaction Finished’ request is issued. If the file is already in use, this
request is suspended until all current transactions have finished, and no new
‘Transaction Ready’ attempting to open this file will be accepted until this
transaction finishes.

Following acceptance of this request any of the other order codes may be used,

but any request to update or delete a record must still be done with ‘Attach’,
despite the exclusive use.

/39 - Read Mode

In this mode, records may be not be deleted, updated, written or attached, but
all other requests are accepted unless a record has been attached by another
transaction, in which case this request will be suspended until the record is
detached.

This ‘Transaction Ready’ request will be rejected if the file is already open
in exclusive mode.

/3A - Update Mode

All order codes will be accepted following the successful opening of a file in
this mode, but if records are to be deleted or updated, they must first be
attached.

Notes

If security protection is in use on one or more of the files, the number of
sectors remaining on the back-up file is returned to the user’s ECB by the

system and a special mark is written to the back-up file to indicate the start
of a new transaction.

If back-out protection is in use, a granule of the the back-out file is
allocated to this transaction. This granule is released on successful

termination of the transaction.

A "Transaction Ready’ request will be rejected if there are already
100 transactions currently processing.

T75 7-48 May 1983.

TRANSACTION FINISHED (Order Code /3B)

This is the last request issued by a transaction; it closes all the files
opened during the processing of the Transaction Ready request, detaches all
attached records and releases the exclusive use restriction on any files opened
in that mode.

If the back-up file was in use during the transaction, an end-of-transaction
mark is written.

The ECB layout is as follows:

-4 Transaction Number |
-2 Linked Event Address (if L=1) |
0 | E| L | | Filecode |
2 Unused
4 Unused l
6 | Unused
8 Status
I
where:

‘Filecode’ is that of any extended file in use in this application.

‘Status’ is a code returned by the system indicating the reason for rejection
if this request should fail.

This request is performed only when all outstanding requests issued by this
transaction have been completed. It is rejected if any request issued during
this transaction was rejected; in this case, the user must issue an ‘Abort
Transaction’ (order code /27) request.

After the Transaction Finished request has been successfully processed, any
requests from other transactions awaiting access to records which were attached
to this transaction will be actioned.

Note: When a user fails to send a ‘Transaction Finished’ request for any
reason (e.g. he forgets or is stopped by abnormal termination), and he
is using unprotected files only, the files opened by this transaction
may be damaged and must no longer be used. If protected files are used
this is detected by the system, and the user is forced to recover
before doing further work with the damaged file.

T75 7-49 May 1983.

ABORT TRANSACTION (Order Code /27)

This request is used to terminate a transaction for which the normal
terminations (Transaction Finished or Finish and Cancel) have been forbidden or
have failed. It is designed to prevent a blocking of the system, and for this
reason any Read requests queued for records attached to these faulty
transactions are serviced with an appropriate error status. In the case of
protected files further queueing of requests for these records is rejected,
while for unprotected files they are detached in the normal manner.

The ECB layout is as follows:

-4 Transaction Number
-2 Linked Event Address (if 1L=1)
0 E|L| | Filecode
2 Unused
4 Unused |
6 | Unused |
8 : Returned Status
Filecode is any extended filecode in use in the application.
Status is a code returned by the system; these codes are described below

under the heading ‘Returned Status’.

T75 7-50 May 1983.

FINISH AND CANCEL TRANSACTION (Order Code /28)

This request is actioned in the same way as the Finish Transaction request, but
has the additional function of undoing all the modifications that have been
performed on files protected in back-out mode betwen the time the transaction
started and the time this request was issued. It can only be used if all the
files opened in update or exclusive mode are back—out protected.

This request is rejected if any of the file-modifying requests on protected
files were incorrectly performed. The user must then use the Abort Transaction

request.

ECB Layout

l l

-4 Transaction Number
-2 | Linked Event Address (if L=1)
0 E| L | | Filecode
2 : Unused |
4 | Unused |
6 Unused
8 Returned Status
| l
Filecode is any extended filecode in use in the application.
Status is a code returned by the system; these codes are described below

under the heading ‘Returned Status’.

T75 7=51 May 1983.

BACK-OUT RECOVERY (Order Code /29)

This request must be the first one issued in the first TDFM run following a
system failure. It performs a multiple Finish and Cancel Transaction operation
on all the transactions which were incomplete when the system failure occurred.

If the recovery succeeds, the transaction numbers of all cancelled transactions
are returned to the user in a Result Block - an area within the user’s program
which he must provide for this purpose. The user enters the address of this
block in his ECB prior to issuing the request; he must ensure that sufficient
room is provided, otherwise the request is rejected and error status /A603 is
returned.

This request is only accepted if all the files opened in update or exclusive
mode are back-out protected.

Recovery

Recovery may be performed in two cases:

1) A complete system failure requiring IPL occurred.

2) One or more transactions cannot be terminated by a Transaction Finished or
Finish and Cancel order.

In case 1, an IPL is performed and thé EDF ‘INSE’ command is used.

In case 2, the user must delete all TDFM filecodes assigned in all machines and
then use the EDF ‘'INSE’ command.

ECB Layout

-4 } Zero

-2 i Linked Event Address (if L=1)
0 | E|L| | Filecode
2 : Result Block Word Address
4 ; Result Block Length |
6 | Length of Information Returned in Result

| Block by the System

8 i Returned Status

Filecode is any extended filecode in use in this application.

Status is a code returned by the system; these codes are described below
under the heading ‘Returned Status’.

T75 7=52 May 1983.

Result Block Layout

| |-

g Run -=|
- Identity -—

Transaction No. 1

Transaction No. 2

etc.

Transaction No. n

The unused portion of the block is zero filled.

T75 7-53 May 1983.

POSITION ON KEY VALUE (Order Code /3C)

This request ‘positions’ the file so that the next ‘Read Next’ request issued
by this transaction will read the first data record whose key value immediately
exceeds that specified in this request.

Similarly, if this request is followed by a ‘Read Previous’ request, the record
having the next lower key is delivered.

Both these rules hold even if records are added to or deleted from the file
between the ‘Position’ request and either of the read requests.

ECB Structure

|- |

=4 Transaction Number

-2 Linked Event Address (if L=1) |

0 E| L | | Filecode

2 Unused

4 | Unused

6 Unused

8 Status

10

18

Unused

20
22| Key Name (three words) |

24

26
= Key Value or
= Padding Key

b |
l |

If the padding key or a lower value is entered in the ECB when issuing this
request, the record with the lowest key value in the file is delivered.

If the maximum key value or a key higher in value than all existing keys is
used, the record having the highest value in the file is delivered.

I75 7-54 May 1983.

Example

Position Read Next Delete 3
on 7 (delivers 9)
Transaction A | | |
Write Position Read Previous
on 6 (delivers 1)
Transaction B -| -| |
1 1 1
File Key 3 3 6
Structure 6 6 7
9 7 9
9
Returned Status
See below.
T75 7=55

> time

> time

READ ON KEY VALUE

Order Code /0A (Without Attach)
Order Code /1A (With Attach)

This request is used to read the record with the specified key value. The
attach is required only if the record is to be replaced or deleted, and may
only be requested if the file was opened in update or exclusive mode.

If no records exist with the specified key value, this request is equivalent to
‘Position on Key Value’.

If several records exist with the specified key value, the first record in the
homonymous chain is read and the number of remaining records in the chain is
returned to the user in word 10 of the ECB. This number is not updated if
records are added to, or deleted from, this homonymous chain during the
processing of this transaction, either by this or any other transaction.

If the Attach request is used, the record becomes exclusive to this transaction
and any requests for the record from other transactions are queued until the
record is detached. This can be done:
explicitly by:
1) a Detach request,
2) a Replace and Detach request,
3) a Delete and Detach request;
or implicitly by:
a Transaction Finish request.

Notes:

1) A transaction may read a record attached by itself.

2) Requests for Attached records, the queueing of which would lead to dead-
lock, are rejected.

3) A transaction may issue more than one ‘Read and Attach’ request for the
same record.

4) If a transaction is reading a homonymous chain, the remaining count
returned by MAS may be incorrect if other transactions are adding records
to, or deleting records from, this homonymous chain. However, the warning
status ‘Beginning of Homonymous Chain’, returned to the user, is always
correct.

5) A Read on Key request for a non-existent record is equivalent to a Position
on Key for that key value.

Tl5 7-56 May 1983.

ECB Structure

~=4 | Transaction Number
-2 Linked Event Address (if L=1)
0 E|L| | Filecode
2 Buffer (character) Address
4 | Requested Length |
6 Actual Length
8 | Returned Status =
10 | Remaining Count :
12 Unused
i i
14
16 N Record Co-ordinates B
18 N -
I |
20
22 B Key Name -_l
24 B -
26
:: Key Value
44
I
where:

= Record Coordinates are:
the data file number (from zero)
the sector number
the record displacement within the sector.

These co-ordinates are returned by the system.

= Remaining Count is the remaining number of records in the homonymous
chain, and is returned by the system.

T75 | 7-57 May 1983.

READ NEXT

Order Code /02 (Without Attach)
Order Code /12 (With Attach)

This request is used to read the data record having the next ascending key
value to that specified in the user’s ECB.

The request may only be issued after a ‘Position on Key Value’ or ‘Read on Key
Value’ request, or after a previous ‘Read Next’ request.

‘Attach’ may only be requested if the file was opened in update or exclusive
mode, and is mandatory if the record is to be deleted or replaced (updated).

If a ‘Read on Key Value’ request has been given and the key specified in that
request was homonymous, the ‘Read Next’ command can be used to access the

remaining records of the homonymous chain.

ECB Structure

=4 Transaction Number
=2 Linked Event Address (if L=1)

0 E| L | | Filecode

2 | Buffer (character) Address

4] Requested Length |
6 Actual Length

8 | Returned Status |
10 | Remaining Count |
12 Unused

14 I
16 | Record Co-ordinates (if Attached) [y
18 N 3

Returned Status

See below.

T75 7-58 May 1983.

READ PREVIOUS

Order Code /3F (Without Attach)
Order Code /3A (With Attach)

Once the file has been ‘positioned’ (by a ‘Read on Key’ or ‘Position on Key’
request), the ‘Read Previous’ request can be used to access the record with the

key value immediately lower than that specified in the user’s ECB.

The ‘Attach’ request may only be used if the file was opened in update or
exclusive mode, and is mandatory if the record is to be deleted or updated.

ECB Structure

The ECB layout is as for the ‘Read Next’ request.

Returned Status

See below.

75 7-59 May 1983.

REPLACE RECORD

Order Code /2E (Replace Only)
Order Code /3D (Replace and Detach)

This request is used to update the data part of a record; the record must
already be Attached. File Positioning is not affected.

The record is written back to the identical position on the disc from which it

was read, and its key values are unchanged. The request is rejected if the user
has changed any key value, or if the record length differs from that of the
original record.

ECB Structure

-4 Transaction Number
-2 Linked Event Address (if L=1)
0 | E|L| | Filecode Q
2 Buffer (character)- Address
l
4 Requested Length
6 Actual Length
8 Returned Status
|
10
12 |
14 Record Co-ordinates (as returned by
-- a previous Read and Attach request -—|
16 (file No./ sector No./ recd displacement) |
~ -|
18 | |
l |
Filecode is that of the TDFM file to be updated, which must have been

opened in update or exclusive mode.
Actual Length is returned by the system.

Notes:

To change the key value or length of a record, the following procedure should
be used:

Read with Attach

Delete

Modify the record in the user buffer

Write the record.

T75 7-60 May 1983.

READ ON PHYSICAL CO-ORDINATES

Order Code /1B (Without Attach)
Order Code /1C (With Attach)

This request may be used if rapid access to a record is required and the co-

ordinates are known — either because they were returned by a previous Read
request, or they were computed by the user.

The requested length must be equal to the actual (effective) length of the
record.

File positioning is not affected by this request.

ECB Structure

=4 : Transaction Number

-2 : Linked Event Address (if L=1)

0 { E| L | | Filecode |
2 { Buffer (character) Address |
4 : Requested Length

6 | Actual Length (returned) l
8 [Returned Status

10 Unused

12 ' Unused

14 Record

16 N Coordinates N
18 - (File No. / Sector No. / Recd. Disp.)—-

Notes:

No remaining count is returned.

Returned Status

See below.

T75 7-61 May 1983.

DELETE A RECORD

Order Code /2D (Without Detach)
Order Code /3E (With Detach)

This request causes a record to be flagged as deleted in both the data and
index files. The remaining count of homonymous records is decremented as
necessary.

The request will be rejected if the record is not attached to the transactiom.

ECB Structure

|._

=4 Transaction Number
-2 Linked Event Address (if L=1)
0 E| L | | Filecode
2 Unused
4
l
6
8 | Returned Status |
10 Unused
I
12
14 | Record Coordinates
16 (as returned by a previous Read
- with Attach) - |
18 (File No./ Sector No./ Displacement) |
I
Notes:

1) This request does not affect file positioning for the requesting
transaction.

2) A ‘Delete and Detach’ request is rejected for a protected file.

3) If the ‘Delete and Detach’ request is used, an automatic detach is executed
following the the delete. Otherwise, if the detach option is not used, the
record remains attached and may have Reads queued on it.

4) There is no recovery of disc space by this request and an overflow
condition arising from a previous Write operation is not removed following
a Delete request. The overflow condition can be removed by file
reorganisation or back-out recovery.

Returned Status

See below.

T/5 7-62 May 1983.

WRITE A RECORD

Order Code /0B (Without Attach)
Order Code /2C (With Attach)

This request is used to add or insert a new record into a TDFM file, the
indexes being updated as necessary. The request is rejected if the file is open
in Read mode. In the case of a homonymous key for which one or more records
already exist, the new record becomes the last of the homonymous chain and the
homonymous count is incremented accordingly.

If ‘Attach’ is not used, the record becomes accessible to any other
transaction. A Write without ‘Attach’ is rejected for a protected file.

ECB Structure

l
-4 | Transaction Number
I
-2 | Linked Event Address (if L=1)
| l
0 E| L| | Filecode
2 Buffer (character) Address
4 Requested Length |
I
6 Effective (Actual) Length
8 | Returned Status |
10 Nbk (returned by MAS)
l
12 fn
where:

Nbk is the number of the KEY command defining the index file which was
bijective but, as a result of this command, has become homonymous by
the addition of this record.

in defines the data file to which this record is to be added; possible
values are:

/8000 Add to the first data file in which there is room.
/ C000 Add to the data file within whose criterion key range
the criterion key of this record lies.
Data file number; these run from O upwards, corresponding to the order
in which the files were defined.
Remarks

1) This request destroys file positioning.

2) 1If he uses file numbering, the user’s program becomes dependent on the
physical file organisation. This can be a serious inconvenience if it
becomes necessary to change the file organisation later.

Returned Status

See below.

T75 7-63 May 1983.

DETACH ONE OR ALL RECORDS

Order Code /2A (Detach One Record)
Order Code /2B (Detach All Records)

This request will detach one or all records attached to the requesting
transaction. If there are requests queued for these records, the following may
occur:
1) If the record has been deleted, a status is returned to the requesting
transaction.
2) If the record has not been deleted, all the read requests are serviced
until a “Read With Attach’ is encountered or the end of the queue is
reached.

ECB Structure

-4 | Transaction Number |
-2 Linked Event Address (if L=1)
|
0 E| L | | Filecode
2| Unused
4
| |
6 |
|
8 | Returned Status |
10
| Unused |
12
14 | Record Co-ordinates |
16 (for detach one record)
- |
18 (File No./ Sector No./ Recd. Disp.)
|
Notes:

1) 1In the case of request code /2B (Detach All Records), ‘Filecode’ in word 0
of the ECB refers to any TDFM filecode in the user’s application.
2) Request order code /2A (Detach a Record) is rejected if the specified file

is protected.
3) Request code /2B will only work for those files which are not protected.

T75 7-64 May 1983.

RETURNED STATUS

Apart from the general LKM 1 error codes, the user may receive the following
codes which are specific to TDFM:

Warning Status

Error Status

Value

/0008

/1000
/1008
/1001
/1002

/1003
/D000

T75

Value

/ A00O
/A001
/A002

/ A0Q4

/ A0O5
/A006
/ A007
/A008
/ AOO9
/A0OC
/ AOOD
/ AOOF
/A010
/A011
/A012
/A013
/AQ24

/A025

/A026
/ A027
/A060
/A061
/A062
/ A063

/ A064
/ A0GC
/A06D

Meaning

The requested length for a read operation is less than the record
length:
the transferred length = the requested length.
the effective length = the record length.
The record just read is the start of a homonymous chain.
Both the warnings for /1000 and /0008 apply.
The record to be deleted has already been deleted.
Position on Key request with key higher than all existing keys;
file is positioned at EOF.
No transactions for back—out recovery.
Internal system status for back—-up recovery - ignore.

Meaning

Requested file not opened by requesting transaction.

Detach forbidden because requested file is back—-out protected.
Detach forbidden, file was damaged by incorrectly performed
modifying operation.

Dynamic Area overflow in the system machine; cannot allocate
buffer for Transaction Table, EFT or file buffer. If this error
occurs with Cancel, the Cancel may be retried.

Back-out recovery refused because run without security.
Back-out recovery not first request of run.

Unknown order code in A7.

Buffer address not in user’s area.

Requested length is zero.

Back—out recovery compulsory; any other request refused.
Unknown transaction number.

Transaction Ready refused because back-out recovery failed.
Transaction Ready refused because transaction already exists.
Transaction Finished already received.

Overflow of system request number for logging.

Transaction already aborted.

Transaction cannot be cancelled because none of the files opened
in update mode is protected in back-out mode.

Transaction Finished forbidden because one modifying request
issued by the transaction on a protected file was incorrectly
performed.

Cancel Transaction forbidden (see /A025).

Abort refused because normal end of transaction allowed.
Transaction Ready for zero or negative number of files.

Two entries for the same file in Transaction Ready ECB.
Transaction Ready uses unknown filecode.

Transaction Ready on a file under exclusive access for another
transaction.

Date of one protected file greater than run date,

Transaction Ready in Read mode for an empty file.

File still locked after back—out recovery failure.

7-65 May 1983.

/ AOGE
/A070

/A071

/A072

/A120
/A123
/A150
/ A180
/A181

/A183
/ A185
/A186
/ A187

/A188
/A243
/ A244
[A245

/A246
/ A2A0
/ A2 Al
/A2A2
/ A2A3
/ A2AL

-/ A2A5

T75

/ A2A7
/ A2A8

/ A2B0O

/A2B1
/ A2B6
/A2B7
/ A2B8

/ A301
/A302
/ A304
/A305
/ A306

/A36A
/A36B
/A371

/A372
/A373
/A420
/ AL82

/ A4LFO
/ A4LF4
/A520
/A525
/A526

Transaction Ready with unknown opening mode.

Transaction Ready refused because back—out file not declared, or
not on-line.

Transaction Ready refused because back-up file not declared, or
not on-line.

Transaction Ready on a file damaged by previous modification
incorrectly performed.

Unknown key name.

File empty.

Erroneous coordinates or wrong requested length.

Sequential read on a file not previously positioned.

Read and Attach forbidden on a file on a file opened in read
mode; file positioning not destroyed.

Read Next refused because file is positioned at EOF.

Record attached to aborted transaction; queuing forbidden.
Record attached to unknown transaction.

Record to be read attached to another transaction; queueing
refused to avoid deadlock.

Read without queuing on attached record.

Read on Key Value less than or equal to padding key value.
Read on non—existent key value; file positioned.

Read on key value greater than all existing key values - file
positioned at EOF.

Record deleted.

Write without Attach attempted on a protected file.
Modification attempted on a file opened in Read mode.

Index overflow; Write not performed.

One key of written record less than or equal to padding key.
Requested length for Write greater than 4095 bytes.

Data overflow — Write not performed.

No criterion key defined for Write on requested file.

Written criterion key value greater than highest key declared at
generation for last data file.

Write performed, but secondary bijective key becomes multiform
(key number returned in ECB Word 10).

Written primary key value already exists.

Write uses an invalid data file number.

One of the written keys lies outside the user’s buffer.
Written primary key value exists in deleted record attached to a
still running transaction which may be cancelled.

Modification of a non-attached record.

Modification of a record attached to another transaction.
Detach forbidden on a protected file.

Length of replacing record not equal to record length on disc.

Not all key values are identical in the replaced and replacing
records.

Delete Record attempted using a key value not in the index.
Record coordinates not found in index; Delete undone.

The record in data file is already deleted; file is probably
corrupted.

Key value in data record not found in index.

Record coordinates not found in index; I/0 error when releasing.
Detach uses wrong record co—-ordinates in the ECB.

Read Previous attempted on a file positioned on the first key
value; file positioning is destroyed.

Previous logging error forbids further use of back—-up file.
Back=-up file overflow.

Previous logging error forbids further use of back-out file.
Back—out file overflow (Disc GRANTB).

Overflow of DAD containing the back-out file.

7-66 May 1983.

/A532

/A580
/ A590

/ A596
/ A5F3
/ A602
/A603

/ A620
/FFFF

Transaction Ready refused because too many simultaneous
transactions.

One file of a transaction to be undone is not assigned.

One of the files involved in the undoing of a transaction has
been damaged after the Cancel request.

Undo Write/Delete failed because a key value in the data record
was not found in the corresponding index.

Back—-out impossible because end of back-out file met before end
of one tranmsaction.

Back-out recovery stopped because inconsistency detected in back-
out file.

Result block for back-out recovery is too small.

In ECB for back-out, user’s buffer address not word—aligned.
Inconsistency detected in one index sector.

Disc I/0 Errors

All the status code values relevant to disc I/0 errors are of the form / Bxxx:

/ BOxx
/Blxx

/B2xx
/B3xx
/Bbxx

Note:

Disc not damaged.

Requested file(s) damaged (back-up logging not performed if file
protected).

Back-up logging incorrectly performed.

Back-out logging incorrectly performed.

I/0 error during Cancel or Back—-out recovery.

In the case of status codes /B441 or /B443 the back-out recovery is

succe
must

ssfully performed, but the back-out file is damaged and a new one
be generated.

Error Code Cross Reference Table

The table below contains a list of error codes, together with the requests

which may give rise to them. The requests are in coded form and these codes are
listed here for convenience:

Code

T75

< gt ROT OB BRI HD AU O

Request

Back-
Detac
Detac
Write

Write
Delet

Delet

out

h All Records

h One Record
and Attach

e and Attach
e

Replace and Detach

Repla
Read
Read
Read
Read
Read
Read
Read
Read

ce
on Physical Co-ordinates and Attach
on Physical Co-ordinates

Previous and Attach

Previous

Next and Attach
Next

on Key and Attach
on Key

Position

Abort

Cancel

Trans
Trans

action Finished
action Ready.

=67 May 1983.

Cross Reference Table

Error Code

Affected Request

T75

/ A00O
/A001
/A002
/ A004
/A005
/ A006
/A00C
/ AOOD
/AOOF
/A010
/A011
/A012
/A013
/A024
/A025
/A026
/ A027
/A060
/ A061
/A062
/ A063
/ A064
/ A06C
/A06D
/ AO6E
/AO6F
/A070
/ A071
/A072
/A120
/A123
/A180
/A181
/A183
/A2B6
/ A2B7
/A2B8
/A301
/A302
/A304
/ A305
/A306
/ A36A
/A371
/ A420
/AL82
/ A4FO
/ A4F4
/A520
/ A525
/A526
/A532

<STOT PP AANE

<< P S dd<S dAdd T E T QLD <

Js

-

-

W e W W v v e

-

< ALA AN FFD DM F O A

to r inclusive

to r inclusive

tor and t, u, v

tor and t, u, v

to u inclusive

to 1 and t, u, v

to u
to v

v

q, r

q, r

k

m, n, 0
1, n, p
e

e

e

g, h, i
g, h, i
h

i

i

g

g

m

to i and
to i and
to i and
to i and
to 1 and

< < rtortort

v v

= =i

< < <«

7-68

May 1983.

T75

/ A580
/A590
/A596
/ A5F3
/A602
/ A603
/A620
/ FFFF

(ST R R R VR R

and t

)dae:f,g,t

7-69

May 1983.

5 RECOVERY PROCEDURES

DEFINITIONS

An access is any access to a TDFM file at the record level, i.e. any read,
update, delete an existing record or add a new one.

A transaction consists of all the accesses, plus other processing, required to
perform some task (preparing an invoice, for example, or booking a passenger on
a flight).

A run consists of all the transactions between two points in time, decided by
the user, or until a system breakdown.

Back-up is the process of recording all the accesses in a transaction so that,
in case of system breakdown, all the modifications to a TDFM file may be re-

performed on a security copy of the file, thus restoring it to its condition at
the time of breakdown.

Back—-out is the process of recording all the accesses in a transaction so that,
if the transaction is incomplete at the time of system breakdown, all the
modifications to a TDFM file made by the incomplete transaction may be undone,
thus restoring the file to its condition before the transaction was started.

TRANSACTIONS

A transaction is initiated by a ’‘Transaction Ready’ call, which establishes the
mode of access to a TDFM file (read-only, update or exclusive). If the file is

protected it also writes a header into the back-up file, and into the back-out
file if appropriate.

Each transaction has a transaction number, which must be unique in the system
at any given time; that is, no two simultaneously running transactions may have
the same number. The user allocates transaction numbers in any manner he
chooses. The system identifies each transaction by its number.

Each access that causes a modification to the TDFM file is recorded in the back-
up file, as the "after" image of the affected record. Where back—-out recovery
is applicable, each modifying access is recorded in the back-out file as the
"before" image of the affected record.

A transaction is terminated in one of the following ways:

1) a ’Transaction Finished’ call, which deletes all back-out information for
the transaction, unless some error ocurred during a modifying access, in
which case the back-out file needs to be kept and the user must use the
"Abort’ call.

2) a ’‘Finish and Cancel Transaction’ call, which may only be used if all the
files opened in update/exclusive mode have back-out protection. It cancels
all changes made by this transaction and then acts like a “Transaction
Finished’ call. The “Abort’ call must be used if an error occurred during
a modifying access.

3) an ‘Abort’ call, which detaches all the records attached to the
transaction, thus allowing existing queued reads to be performed by other
transactions. However, for protected files no new queueing on these records
is allowed, and an error status is returned with each read performed in an
existing queue. Back-out information (if any) is kept.

175 7-70 May 1983.

4) a System Breakdown, i.e. an error of such severity that the system must be

restarted. All files are left in the condition they were in when the
breakdown occurred.

Recovery is clearly required in the last two cases.

RUNS
A run is initiated by the user giving the EDF Processor Command INSE, and is
terminated in one of three ways:
1) 1issuing another INSE command (thus starting a new run);
2) system closedown and power-off;
3) system breakdown.

Each run is identified by a run identifier, supplied with the INSE command.

All run identifiers must be unique within the system, i.e. back-up (and
possibly back—-out) information relating to two runs with the same identifier is
not allowed. For each run the identifier and other information is written into
the back-up file.

ESTABLISHING RECOVERY MECHANISMS

The user will, for each TDFM file in the system, specify what level of
protection he requires for that file; he will do this in the FILE command when
the file is first created. If he wishes, he may change this level of protection
at a later date by means of the SPRO command.

If the user is going to access protected files (other than in read-only mode),
he will need a back-up file and possibly also a back—out file; these are
created with the BUGN and BOGN commands, respectively, and may thereafter be
used until they are full or until an unrecoverable error occurs. At any one
time the system recognises one back-up and one back-out file, as specified (by
their filecodes) in an INSE command; each file provides the appropriate
protection for all the TDFM files known to the system.

Finally, the user needs a security copy of each TDFM file, since the recovery
mechanism is predicated on this. Security copies should be taken at times when
the user is sure that the file is consistent, i.e. just after recovery, and at
regular intervals such as at the start of each day, depending on the amount of
update activity expected. Either the DEL and SAVE commands or a series of COPY
commands may be used to make the copy.

RECOVERING TDFM FILES

Recovery is required either after a system breakdown or when a significant
percentage of transactions on a file have had to be aborted. It is always
performed at the start of a run; no other concurrent TDFM activity is allowed.

Recovery operates on all protected TDFM files simultaneously; it is not
possible to recover just one of a number of files.

The user begins recovery by restoring each TDFM file from its latest copy; see
"TDFM File Housekeeping" in Chapter 3 of this Part for the various methods of
restoring files. A filecode is assigned to the back-up file, and to the back-
out file if required, in the normal way (ASG command). Then the EDF Processor
RBUP command is issued; this first performs back-up recovery on a TDFM file,
then if back-out security applies to the file the relevant changes are undone.
This action is repeated for all files. (In fact all files are recovered
concurrently, and unnecessary back-up changes are not performed; the end effect
is the same.)

When the RBUP command has finished processing, the back-out file is empty and

75 7<71 May 1983.

the information in the back-up file, relating to update accesses which have
been backed-out, is erased. Both files may be used for further rumns, if
desired, unless some error has occurred while accessing one of these files, in
which case it should be deleted and recreated.

If the recovery procedure has had to be redone with the NRUN parameter to the
RBUP command, the only option open to the user is to repeat all transactions
which could not be recovered. The back-up and back-out files should both be

deleted and recreated before starting this procedure.

T75 7=72 May 1983.

T75 7-73 May 1983.

6 EXAMPLE OF USE

The following example illustrates the various procedures required to create,
load, copy and restore a TDFM file.

The TDFM file is to contain at most 200 records, each with length 50 characters
and the following keys:

1) BKEY, a binary number held in two bytes;

2) NAME, the name of the person, held in 12 bytes;

3) COUNTR, the country in which the person resides, held in 12 bytes;

4) PROF, the person’s profession or trade, held in 12 bytes.

BKEY is the primary key, and bijective; the remaining keys are homonymous. Data
fields also exist, containing the person’s age, address etc.

Creating and Loading a TDFM File

In the system machine:

DCB 16 - - declare a batch machine

FCD /01,TY

FCD /EO0,TY

FCD /CO

FCD /Cl

FCD /F0,/CO,SUPERV

FCD /F1,/Cl,WB200

FCD /F2,/CO,WBR

DEN

DCF WBT,1 — declare a foreground machine
CMA 2,2000

SEG 1,10

FCD 1,TY0A

FCD 2,LP

FCD /EO0,TYOA

FCD /CO

FCD /Cl

FCD /F0,/CO,SUPERV

FCD /F1,/Cl,WB200

FCD /F2,/CO,WBR

DEN

BYE BATCH

SB

MACH-ID:BATCH DATE:

:JOB USID=WB

ASG FCOD=/D6 ,DAD=/F1,TYPE=UF,NBGR=2

ASG FCOD=/D7 ,DAD=/F1,TYPE=UF ,NBGR=2

EDF

FILE FNAM=FEXD,DAD=/F1,USID=WB,NKEY=4,NDAT=1,MREC=200,SECU=BU
KEY KNAM=BKEY,DAD=/F1,USID=WB,KP0S=48 ,KLGT=2,KPAD=/00,BIJ
KEY KNAM=NAME,DAD=/F1,USID=WB,KP0S=0,KLGT=12,KPAD=/20
KEY KNAM=COUNTR,DAD=/F1,USID=WB,KP0S=25,KLGT=12 ,KPAD=/20
KEY KNAM=PROF ,DAD=/F1,USID=WB,KP0S=37 ,KLEN=12,KPAD=/20
DATA FNAM=FEXDAT,DAD=/F1,USID=WB,NBGR=3

LOAD ONAM=FEXD,ODAD=/F1,USID=WB,ICOD=/05,TYPE=CONT,SEP="1!’,IGEN=YES,FREE=50
EFEN

75 7-74 May 1983.

Saving and Using a File

In (the same) batch machine:

SCR FCOD=/D6 - delete filecodes no longer required
SCR FCOD=/D7

ASG FCOD=/10,DAD=/F2,TYPE=UF , FNAM=BACKUP

ASG FCOD=/13,DAD=/F2,TYPE=EF ,FNAM=FEXD

EDF

SAVE FNAM=FEXD,IDAD=/F1,IUSI=WB,0DAD=/F2,0USI=WB
BUGN FNAM=BACKUP ,DAD=/F2,USID=WB,NBGR=6

INSE IDEN=’19AUG 10:15’ ,BUFC=/10

EDF=FREE B-UP SEC.= nnnnn

EFEN

:EOB

SM WBT

MACH-ID:WBT DATE:

RUN <program> - Interactive access to TDFM file FEXD, using filecode /13 for
the purpose.

e e

BYE BATCH

SB

:JOB USID=WB

EDF

INSE IDEN="19AUG 11:30°,BUFC=/10 - end previous run, start new run.
EDF=FREE B-UP SEC.= nnnnn

EFEN

:EOB

SM WBT

RUN <program> - as before.

Restoring a File

If an IPL was necessary, the machine definitions given above should be repeated.
In batch machine:

EDF

REST FNAM=FEXD,IDAD=/F2,I1USI=WB,0DAD=/F1l,0USI=WB
INSE IDEN='19AUG REC1’,BUFC=/10

EDF=FREE B-UP SEC.= nnnnn

RBUP BUFC=/10

<{messages from RBUP)>

INSE IDEN='19AUG 13:20’,BUFC=/10

EDF=FREE B-UP SEC.= nnnnn

DEL FNAM=FEXD,DAD=/F2,USID=WB

SAVE FNAM=FEXD,IDAD=/Fl,IUSI=WB,0DAD=/F2,0USI=WB
EFEN

:EOB

SM WBT

- - continue running foreground program.

T75 7-75 May 1983.

75 7-76 May 1983.

