
PSOOM PROGRAMMER'S GUIDE 3

VOLUME | : MULTI APPLICATTON MONTTOR

A Publication of :

Philips Data Systems,
Department SSS,T&D
P.O. Box 245, 73OO AE Apeldoorn, The Netherlands.

Publication Number 5122 991 28375

October 1983

Copyright : Philips Data Systems

Apeldoorn, The Netherlands

All rights strictly reserved. Reproduction or issue to third
parties in any form whatever is not permitted without
written authority from the Publisher.

Printed in the Netherlands.

PREFACE

This Manual, Volume I of a set, descrlbes the user interface wlth the l"lultl-
Appltcatlon Monitor; lt has been writt,en for use by system managers'
prograûrmers and operators. It should be read together with Èhe other volunes Ln
the set:

Vol. II: Instruction Set
Vol. III: Software Processors
Vol. IV: Trouble Shooting Gulde

the last of whlch describes the internal workings of the Monitor. A pocket-
sized stûmary, the MAS Reference Data booklet, is also available.

Since the last edltion, this book has been completel-y altered ln its layout'
with the object of naking it easier for Èhe user to find inforuaÈion he

requires. The l'lanual is now divided into Parts:

Part 1: General IbscriPtion
Part 2: ltre SYstem MachLne
Part 3: Ttre Background l'trachine
Part 4: Foreground Machlnes
Appendlces.

Reference t,o the Table of Contents should enable the user to Loeate hls
required infonnation quickly and easily. Ttre t,ext has also been extensively
revised to remove numerous mLnor errors, mostLy typographical or caused by

changes in a new Rel-ease.

While every care has been taken in the preparation of thls bookr some errors
may remain. Should the reader find an error or omissionr or have any oËher

comment to make, he is invlted to contact:

SSS, Training and Documenùation,

at the address on the opposite page. A form is provlded at the end of the book,
for the user's convenience.

PB00 MAS Manual 0.0.0 October 1983

TASLE OF CONTENTS

Page

0.0.0

PART 1 GENEML DESCRIPTION .. i.0.1

PREFACE ..

!!"plsr t Int.roduction

Hardware Configuration .

Chapter ? General Principles_

Machines
The System Machine
The Background l"trachine
Foreground Machines

DADs (direct access devices)...,
l'lachine Independence
Link to Monitor
Hardware Levels
Hardware InterruDts
Software Levels

Idle Task
Background
System
Foreground
Allocation of Software Levels

The DispaEcher
Standard Processors ...
Registers o. . .. o

P-Register ...
Registers A1 to Al4
Registers A7 and A8

System Interrupt Stack (Al5)
the Program Status trIord
l'{emory

I"lemory Allocation
Exclusive Use
Shared Use
The Dynamic Loading Area
lrçuvr J !4JvuL

Memory l"lanagement Unit
Physical Addresses
D^^.i -^f dËrrrË

The Page Table i
Absolute Addresses
System Mode
Extended Mode
Common Areas

1.0.r

1.0.r

2.0.r

2.0. I
2.0. i
2.O.2
2.0.2
2.0.3
2.0. 3

2.0.3
2.0.4
2.0 .4
2.0.4
2.0 .4
2.0.4
2.0.4
2.0.4
2.O.4
2.0. 5

2.0.5
2 .0.5
2.O.5
2.O.5
2.0.5
2.0.5
2.4 .6
2.0.7
2.0.7
2.0.7
2.0 .7
2.0.7
2,0.7
2.0 .9
2.0.9
2.0.9
2.O.9
2.0. i0
2.0.10
2 .0. 10
2.0.11

PB00 llAS ll,anual
u.u.t

October 1983

!=9"-

Programs 2.0. I I
Types 2.0. I 1

Foreground Programs ... 2.0.11
Disc-Resident Prograrns
Swappable programs 2.0.11
Disc Space Allocations for Swappable Programs 2.0.LI
Program Swapping i,Iechanism 2.0 .12
Srvappable Batch Progr.ams 2.0.12
Read-only Programs . 2.0.12
lJon-declared Prograns (Iliddleground Programs) 2.0.13
t,lernory Resident Programs 2 .0 " 13
ReentranE 2.0.13

Background Programs ... 2.0.13
Disc-Resident Programs 2.0. i3
llemory-P.esident Programs 2.0.13

Overlayin'è ... 2.0.13
Generating Programs Utilising Disc-Resident Overlays 2.0.L4
l{emory-Resident Overlaying ... 2.0.15

Execution 2.0 " 16

Commands 2.O.I7
Schedtrled labels 2.0 .L7
Catalogued Procedures 2.0. 19

File Identities 2.0.20
SCL Conunands 2,0.20
FCL Commands 2.0.20
BCL Commands 2.0.2I
Procedure Set-Up 2"0.2L
Data P.ecords 2.4 .21
Replacement Strings ... 2.0.21
Nesting 2.0.22
Cataloguing Procedures 2.0.22
Procedure Cal1s 2.0.23
Ca11 Paraneters 2.0.23
Examples 2.0.24
Error l'lessages 2 'O .26

Event Control Block (ECB) 2.0.28
EvenË Bir 2.0 .28
Clrairring 2.0 .29

l{iscellaneous llAS Services 2.0.30
Time and Date 2.0.30
n^L..^...i ^^ 2 .0 .30uçuuÈjËrt16

Error Control 2.ù.30
Float.ing Point Errors 2 .0 .31

Spooling 2.0.31
Using the Spooling t'acility 2..0.31

Transient Area 2.C.32
Error Logging 2.4.32

P800 liAS lfarrual
0.0.2

October t983

Chapter 3

Page

Data Managemet 3.0.1

Filecodes 3.0.1
Reserved Filecodes 3.0. f

Control Tables 3.0.2
Device-Type Codes 3.0.2
Discs 3.0.3

Types 3.0.3
Direct Access Device (DAD) 3.0.3
Transaetion-Oriented Disc File Management (TDFM) 3.0.3

Logical Disc (DAD) 3.0.3
Userids 3.0.4
Files
Granule r....... r. 3.0.4
Granule Organisation 3.0.4
Record Organisation 3.0.5
Sequential ... 3.0.5
Direct Access . 3.0.5
Sectors per Granule 3.0.5

Disc Files ... 3.0.6
File Granules 3.0.7
Granule AllocaËion 3.0.7
File Ileader Sector . 3.0.7
GMNTB Sector 3.0.7
Record Sectors 3.0.8
Choosing the Granule Organisation llethod 3.0.8
Disc File Access 3.0.9
Direct Access 3.0.9
Sequential Access 3.0.10

_C!_gpter_t_O_pgratigq 4.0.1

Introduction r 4.0.1
The Control Panel ,........ 4.0.1
Loading the Bootstrap .. o.. ... o........... 4.0.1
Running the IPL 4.0.2
Starting the System 4.0.2
Changing a Disc Pack . 4.0.2

Warning 4:0.4
Stand-Alone Dump 4.0.4

P800 MAS llanual
0.0.3

October 1983

@"-rl@
Method of Entry .. r..
Operator Command Syntax
Command Description ..

i--AB AborÈ a User Program

-AS
Assign a System Filecode

CR Patch llemory
DB Durnp the Background I'fachine

* Dl,{ Durnp }{ernory . .
KI I*ey-In Unsolicited Message ...

- 0F Device Off

-Ql{
psyice 0n

-PK
Disc Premark .

PS Pause a User Program
RS Restart a User Prograrn
SB Start the Background lfachine

\ SC Set Clock.-SD SeË Date
\ Sl,1 Start a l'lachine

-
SP Spooling
I'iM Write l4emory
Operator llessages and Replies

Overview* DKIR Disc I/0 Error
-PU Physical Unit Intervention P.equired*RD Release an I/0 Operation

-RY
Retry an TIO Operation

P-ege

5.0.1

5.0.1
5.0.1
5.O.2
5.0.3
5 .0.5
5 .0.6
5.0.7
5 .0.8
s.0.9
5.0 " 10
5.0.11
5 .0. 12
5.0,16
5 .0. 17
5.0.18
s.0.19
5 .0 .20
5.0.21
5.0.22
5.0.25
5.0.26
5.0.26
5 .0.27
5 .0.28
5.0.29
5.0.30

PART 2 THE SYSTEM MACHINE . 6.0.1

çh,1pset O The System _1l*ltins 6 .0. I

General 6.0.1
System Command Language (SCL).:... 6.0.1
Filecodes 6.0.2
CorrecÈ j-ons 6 .0. 3

Error }îessages 6 .0. 3

Syntax 6.0.3
Processi.ng SCL Commands 6 .0 .3
Waiting and Stopping 6.0.3

Commands;.. 6.0.5
Catalogued Procedures 6.0.5

P800 IîAS }tanual
0.0.4

october 1983

!.es
Cttqpter_Z SysEem Corunand I{rng_r5rge 7 .0. 1

-ABT
Abort a Program 7 .O.I

---ASG Assign a Filecode ... 7.O.2
---BYE End of SCL Processor 7.O.4
.-CLK Set the Clock 7 .0.5
, CLS Close a Machine 7.0.6
*4MA Defi-ne the Communication Area (segment 0)... 7.0.7

-DAT
Set the Date 7 .0.8

-DCB
Declare the Background }lachine 7,0.9

-DCF
Deelare a Foreground I'lachine 7 .0 . 10

J)EN End of Machine Declaration 7.0.1i
DLC Def ine a li.necode 7 .0.I2
DLN Define number of linecodes 7.0.13
DLP Define Lines per Page 7.0.L4

+-DOF Device Off 7.0.15
DON Device On 7.0.16
DTO SeÈ Device Timeout 7.0.17

*DUF Dump a Disc File or DAD 7.0.18
---DilM Dr:mp l,Iemory . 7 .0. 19

-FCD Define a llachine Filecode 7.0.20

-FOF
Floating Point Of f 7,0.2I

-JON Floating Point ûn 7 .0.22
-KIl'l Kill a llachine 7.0.23

-KLM
Delete a secondary load module 7,0.24

'--nAB Declare l"laximum Number of Scheduled Labels ... 7,0.25
*LSI"I Load a secondary load moduler 7,0.26
J'{AP l{ap of a llachine 7 ,0.27
J,IBF l{aximum Number of Blocking Buf f ers 7 .0.28
'-}{FC Def ine }dachine Filecode Table Size 7 ,0.29

ç\NDV New Device ... 7.0.30
'-PCll Print Core l{ap 7 .0. 3l

- PFC Print Filecodes of a llachine 7 .0.32
>-PLC Print assigned line code 7.0.33
- PLV Print Occupied Software Levels 7 .0.34.- POF Page Of f 7.0.35
* PON Page on 7 .0.36
'-PRG Print Registers of a Program . 7.A.37

-PRS Print Program StaÈus 7.0.38
. RAB Remove Abort SÈate 7.0.39
-RDV Release a Device . 7.0.40

RST Restart a Program . 7.0.4I
RYD Retry a Device 7 .0,42

'- SCR Scratch Filecode Entry 7,0.43
'"- SEG Def ine a Segment 7 .0,44

-
TII{ Get the Date and Time . 7.0.45

- I'IRD Write on a DAD 7 .0.46
* WRll I,Jrite l.femory 7.0.47

PB00 IÎAS lu{anual
0.0.5

October 1983

Page

PART 3 THE BACKGROUND MACHINE 8.0.1

_CIgptJf 3 Itr"_l=Slatg"lq l{achine 8.0.1

General 8.0.1
Background I'Iachine Programs 8.0. I

General Characteristics 8.0. I
lulemory-Resident Background Programs . . . 8.0. I
Disc-Resident Background Programs 8.0.2
Programming Techniques 8.0.2

Background lulachine l,lemory Organisation . 8.0.3
Background llachine Types 8.0.3
Non-Swappable Background }fachine 8.0.3
Example 8.0.3
Swappable Background I'lachine 8.0.3
Example 8.0.3

Defining a Background l{achine with SCL . 8.0.4
Introduction. 8.0.4
Example of Background l,fachine Def inition 8.0.4

Background Machine Filecodes 8.0.5
Filecodes /5, /O and /L 8.0.6
Background Machine Filecode /E0 8.0.6
Background l4achine ERR Device ... 8.0.7
Background I'fachine Filecode /02 8.0.7
Background }lachine Filecode /01 8.0.7

Accounting Routines ... 8.0.8
FuncÈ1ons 8.0.8
Naming Restriction r. 8.0.8
BCP Interface 8.0.8
USRJOB B.O.B
USREOJ 8.0.8
Standard Accounting Information 8.0.8

Debugging Notes 8.0.9
Background }dachine Operation 8.0.10

Background llachine Activities ? 8.0.10
The Background Control Processor (BCP) 8.0.10

l'lethod of Operation. 8.0.10
Operating Nlodes 8.0. 10
Closed-Shop
InÈeractive 8.0.11

BCL - Background Command Language 8.0.11
Tasks and Programs 8.0.1I
Batches, Jobs and Steps 8.0.12
BCL I'unctions 8.0.12
BCL Scheduling Commands-Recommendation . 8.0.12

P800 l{AS }îanual
0.0.6

0ctober 1983

Chapter 9 Background Connand Language

Page

9.0.1

Job Scheduling Commands 9.0. f
:EOB End of BCL 9.0.1
:EOJ End of Job 9.0.2
ERR Set Interactive Mode 9.0.3
:JOB Beginning of a Job 9.O.4
:STP Init,iate Closed-Shop l'lode ...o....o..... 9.0.6

BCL File Allocation Commands r...... o.. 9.0.7
Default allocation . .. 9.O.7
ASD Assign a file code to a DAD 9.0.8
ASG Assign a Filecode 9.0.9
SCR Scratch a Fi.lecode9 .0 .1 2

BCL Tape and Cassette Cornmands 9.0. 13
FBS File Back Space tnIT or TK .. 9.0.14
FFS File Forward Space l'1T or TK 9.0.15
PLB Print I{T or fK Label 9.0.f 6

RBS Record Back Space MT or TK .. 9.0.17
RXF Rewind File 9.0.18
REL Release a Device 9.0.19
REQ Request a Device 9.0.20
REI.I Rewind MT or TK .. 9.0.2L
RFS Record Forward Space l,lT... 9,0.22
ULD Unlock MT or TK 9.0.23
WEF hlrite EOF. . 9 .0 .24
WES hrrite EOS . 9.0.25
trtEV Write EOV on MT or TK . . 9.0.26
I.ILB l,Irite llT or TK Label ..o.. 9.0.27

BCL Interactive Comrnands 9.0.28
l,lES Output l[essage 9.0.28
PSE Pause 9.0.29
ROI Request OperaEor Intervention 9.0.30

BCL Task Initiation Commands 9.0.31
[Iow the BCP inltiates Tasks ... 9.0.31
Task Initiation Connandb 9.0.31

Fortran Diagnostic Error Messages ,..... 9.0.32
Non-Standard Processor Cal1 9.0.33
RUN Run a Program r 9.0.34

l{iscellaneous BCL Commands 9.0.35
INC Include a Module 9.0.35
NOD Declare a Node o.. r...... . 9.0.37
HLP Help command 9.0.38
SKP Skip a number of pages 9.0.39

BCL Data Conrnunication commands 9.0.40
DAS Assign a linecode 9.0.40

Other BCL Data Communicat,ion commands .. o.. 9.0.41

PB00 IIAS Manual
0.0.7

October l983

IAET-I.

Page

FOREGROUND MACHINES 10.0.1

!h"pt.L_l!. Foreground l{achines- 10.0. I

General 10.0.1
Memory Allocation 10.0.1
Multi-User FaciliLies 10.0.1
l{emory Organisation 10.0.2

Segments 10.0.2
Communications Area 10.0.2
Public Library Area 10.0.2
Dynamic Area 10.0.2
Segment OrganizaËion . r......... 10.0.2
Dynamic Loading Area 10.0.2
Example 10.0.3

Foreground Tasks 10.0.4
Initialising the Task Environment . 10.0.4
Task Scheduling 10.0.5
Activation Queues o. 10.0.5
Activation with Scheduled Labels 10.0.6
Task Synchronisation .. 10.0.6

Foreground Programs ... 10.0.7
l{emory-Resident,.. 10.0.7
Disc-Resident 10.0.8
Read-Only Programs . 10.0.8
Swappable Programs, 10.0.9
Mlddleground Programs 10.0.9
Swapping . 10.0.9

Middleground Processing 10.0.10
Use of Middleground 10.0.10
Printing r.... 10.0.11
Ornission . 10.0.11
Exampleo........... 10.0.11

Defining a Foreground Machine f0.0.12
Sequence of operations 10.0.12

P800 MAS Manual
0.0.8

OcÈober 1983

gesler_U FCL Commands

FCL Commands ... r.
Error Messages
Corrections
Filecodes
Parameters ...

Declaring Foreground Programs ...
Default values

*LOD Load a l,lemory-Resident Program
- LSM Load a Secondary Load Module ...
- REP Load a Re-Entrant Program ,....
- RON Declare a Read-Only Program
*SWP Declare a Swappable Prograo o.... o..
Starting the User Program
-ACT Activate a Program

-CNL Connect a Program to a Level

- CNT Connect a Program to a Timer or Clock
---RUN Run a Program o. .
Controlling the User Applicat,ion

-ABT Abort a Program
--ASG Assign a Filecode
-BYE End of FCL .
-- CLS Close a machine or a spool file

DAS Assign a linecode
DDC Disconnect a line
DDL Delete a linecode
DHD Disconnect a line and halt

. DHL Halt a line

-DLF
Delete a File

.-- DSL DisconnecE a Prograu from a Level

-DST
Disconnect a Program from a Tiner

-DUF
Dump a File

-Dtn1 Dunp Menory
EOJ End of Job in FCL

* INC Include an object file
JOB Set default DAD and Userid

* KIL Kill a Program
KIS fill a Segment

.-KLlt DeleÈe a Secondary }{odule
* KPF Keep File
- I.IAP Print Èhe Status of All Programs
'.- NOD Declare a mode
* PCI{ Print Core Map
'- PFC Print Machine Fi,lecodes

PLC Print linecodes
PLV Print Software Levels

,- PRG Print the Registers
- PRS Print the Program Status

PSE Pausg a Program
RAB Clear the Abort State of a ProgrÉlm .
RDV Release an I/0 Operation
RST Restart a Progrâm
RYD Retry an I/O Operation

- SCR Remove a Filecode Entry
.* TIM Get the Time
*WRI,I Write }lemory

Processor Call

Page

11 .0. I

11 .0. I
11.0.I
I1.0.1
1I .0. 1

1l .0.2
11 .0. 2
11 .0.2
11 .0. 3
11.0.4
11 .0.5
i 1 .0.6
11 .0. 7

11.0.8
I I .0.9
1 I .0.10
11.0.11
11.0,13
11 .0. 14
ll.0.l5
11 .0. i6
11.0.19
11.0.20
11.0.21
rr.o .22
r l .0.23
rL.0.24
I 1 .0.25
11.0.26
rt.o.27
11 .0.28
1r.0.29
11.0.30
11.0.31
11 .0.32
11.0.33
1l .0.34
11.0.3s
11.0.36
11.0.37
11 .0.38
1r.0.39
r 1 .0.40
11.0.41
t t .0.42
11.0.43
1r .0.44
r r.0.45
1r .0.46
I I .0.47
11 .0. 48
l I .0.49
11 .0. 50
r 1 .0.51
1t .0. 52
1 1 .0.53
11 .0.54

P800 I1AS Manual
0.0.9

October l9B3

Appendix A Systeln GeneraÈion 4.0. I

Introductionr.................................. A.0.1
General o . o... A.0.1

Sr:rnmary of the Generation Processo. . 4.0.1
Creating the StarÈer Pack . A.0.2
CreaËing the System Pack A.0.3

Step 1 IPL o........ 4.0.3
Step 2 Declare Devices A.0.3
SËep 3 Premark System Disc A.0.3
SÈep 4 Declare Background Machine A.0.4
Step 5 Start Background Machine o. A.0.4
Step 6 Create DADs D:CI and M:SEG 4.0.4
Step 7 Copy Starter to System Pack A.0.4
Step I Create Configuration File A.0.5
Step 9 GeneraËing the System Modules ... A.O.22
Step 10 Assenbllng and Cataloguing the l'lAS Tables L.0.22
Step 1I Link Editing the System L.0.22

P800 t{AS }Lanual
0.0. 10

October 1983

APP.Si" s l.{onitor Reouests

Page

.. .. . c.0.1

General C.0.1
LKM I I/0 Requests ... r......... C.0.2
LKM 2 lJaiË for Event C.0.11
LKM3Exit .C.0.12
LKI"I 4 Get Dynamic Buffer C.0.14
LKI"I 5 Free Dynamic Buf fer . C.0.16
LKI"I 6 Pause C.0.17
LKll 7 Keep Control on Abort C.0.18
LKM 8 DaËem II or TI"IS Request C.0.20
LKM 10 Connect a Program to a Timer or the Clock ... C.0.22
LKM tl Disconnect a Program from a Timer or Clock C.0.25
LKI{ 12 Activate a Program C.0.26
LKI'{ 13 Switch Prograro Levels C.0.28
LKI'I t4 Attach a Device or File . C.0.29
LKI'{ 15 Detach a Device or File . C.0.30
LKM 17 Get Tirne and Date .. C.0.31
LKM 18 Set Event C.0.32
LKM 20 Connect a Program to a Level C.0.33
LKM 21 Disconnect a Program from a Level C.0.34
LI...Ur 22 Wait for a Given Time ... C.0.35
LKM 23 Assign a Filecode C.0.36
LI{Ir 24 Delete a Filecode ... C.0.41
LKI'I 25 Read Unsolicited Key-In C.0.42
LKM 26 Cancel LKM 25 Request C.0.44
Lre| 27 Load an Overlay Segment C.0.45
LKM 28 Set Timer C.0.46
LKl'l 29 Reset Timer . . . C.0 .48
LIOI 30 Queue Handling Request C.0.49
LKM 3l Cancel 'Keep Cont,rol on Abort' C.0.53
LKM 32 Set/Reset File Attributes C.0.54
LKM 33 Check and Assign a Filecode . . C.0.56
LKM 34 Check and Write an EOF on a File C.0.57
LKM 35 Get a Program's Charâcteristics o................. C.0.58
LKM 36 Signal the Start of a JOB (BCP 0n1y) C.0.61
LKM 37 Keep Control on FloaËing Point Error C.0.62
LKM 38 Cancel LKI{ 37 Request,..... C.0.63
LKM 39 Get l4achine Options o......... r.......... C.0.64
LKM 40 Keep File C.0,65
LKII 41 Delete a File .. o.. . C.0.67
LKM 42 Initialise BCP (BCP Only) C.0.69
LKM 43 Allocate Permanent Granules (LIB Only) C.0.70
LKll 44 Release Permanent Granules (LIB 0n1y) C.0.71
LKM 45 Dr:mp Memory .. . C.0.72
LKII 46 Abort the Program .. C.0.73
LKM 47 User-lJritten Request C.0.74
LKM 48 Assign a Linecode C.0.77
LIOI 49 Delet,e a Linecode C.0.79
LKM 50 Submit a Job to the BCP . C.0.80
LKII 51 Spooling Request (BCP Only) C.0.82
LKM 52 Send or Receive a LetLer C.0.83
LKM 53 Conditional Dump,... C.0.85
LKM 54 Request/Release a Device C.0.86
LKM 55 Semaphore llandling . C.0.88
LKM 56 Request/Release Pages C.0.91

P800 MAS Manual
0.0.11

October 1983

LK}I 57
LKll 58
LKl,t 60
LK}I 62
LKM 63
LKM 70
LKM 7I
LKrl 7 3

LKr"r 7 4
LKI.I 75
LKM 76
LKl.{ 77

LKl"l 78
LKY 79

Connect/Disconnect. a Secondary Load llodule '.........
i,Jait ltultiple.
Load/Delete a Secondary Load l'lodule
Check if DAD assigned
Set Date and Clock .,........
Interf ace FCL and i'liddleground Processor
Assign a filecode to a DAD
Set default DAD and Userid ...
Read the default ttAo and Userid ...
Dump sysEen area
Abort another program in Ehe sane mactrine
Accept an attention key
Cancel the last attenEion key reqrrest
Close a spool file,

Aopendix D Utilities+

Page

c.0.93
c.0.95
c.0 .96
c.0.98
c.0 .99
c.0 . t00
c.0.l0r
c.0.103
c.0 .104
c.0.105
c.0 . 106
c.0 . 107
c.0 . 108
c.0.109

D 0.1

D.0.1
D.0.2
D.0 .6
0.0.8
D.0.10
D.0. I I
D.0.12

8.0.1

CO}IASG

COPY

IiRLOG

I'ILEXC
IPL-DK
LDI'IASR
OVLGEN

Appendix

Copy the I'{AS segments file
Copy or certify a CDO-SI"ID disc .
Error Logging ...rr
File Exchange .
Disc IPL
Loatl the 1'1458 }loniÈor .
l,tAS segmenE to D:},1ASG f ile

E l'lexible Disc Drivers

Flexible DISC Driver 0.25 M...8.0.1
Flexible DISC Driver ltl E.0.6

Appendix F User Drivers F.0.1

Gengralr........ F.O.I
Preparation of the Driver Package ... F.0.1
The LOCAT l"lodu1e .r......o.o F.0.1
The DWT ctrain ... F.0.1
i"lAS routines l'.0.3

Appendix G Internal Structure G.0.1

Programs running in t.he system machine G.O.t
i"lAS aborcions G.0.4
The stand alone dump G.0.4
Error codes G.0.5

PSOO MAS Èlanrra'l
0 .0 .12

0ctober l9u3

PART 1 GENERAL DESCRIPTION

INTRODUCTION

l"lAS is a powerful operating system, combining t.he features of the Batch
processing and real time processing in one central machi.ne. l,lq,S-Ïll-been
designed on a hardware feature called lulemory Management uniË (lO'fU) , which
provides the ability to use relative addressing. Its working is described in
the following chapt.er (General Principles).

In MAS a virtual machine concept is used. In one physical machine - one P800
co''figuraachinescanbedefined.TheMASnonitoritse1f
runs in a real ti-me processing entityrlknown as the System Machine . This
Systern I'lachine can support one Background Machine and one or more Foreground
Machines

TI{e System Machine is defined at system generation time; the other machines can
be defined at any tine by the user. The machines are described in Parts of the
same name, which appear later in this manual.
l"lAS is particularly suited to:
- Multi-tasking applications, The large memory size allows several

simultaneously memory-resident programs and data areas, with good response
time and overall performance.

- Data coununication applications. The large memory size allows a large nuuber
of buffers and tables to be memory-residenÈ for data entry, verificaÈion and
eollection.

- Foreground/background applications. Batch, real-time, on-line and process
control acÈivities can be performed concurrently.

Allocat.ion of peripheral and processor resources is controlled by a system of
hardware interrupts and software priorities. These determine which application
within the foreground or background machine shall have a particular resource.
This allocation is dynarnic, and a re-allocation of resources will occur when a
greater need is determined by MAS.

Communicat.ion between all the programs in one machine is possible; this is
achieved by the provision of common areas of memory. Foreground and background
machines are directed by the user by use of System Command Language (SCL),
Foreground Conrnand Language (FCL) and Background Command Language (BCL)
respeetively; SCL and FCL commands are processed within t,he system machine and
BCL commands within the background machine, if present. These commands may be
catalogued, and as such they are known as Catalogued Procedures. The following
Chapter(GeneralPrinciples)out1inesthe@parËicu1ar
interest to the individual reader. System managers, prograurmers and operators
may each find specific information necessary for their successful use of l,lAS.

HARDI^IARE CONFIGURATION

MAS requires the following configuration in order to run:

a P857, P858, P859, P854 or P876 CPU wiÈh Memory Management Unit and ar
Ieast 64K words of memory, up to a maxj-mum of 128 Kwords for a P857 or
P858 configuration and 512 Kwords for a P859, P854 or P876 configuration.
a console typewriter for the system manager and system operator;
one or more discs, other Èhan flexible discs;
a line printer;
magnetic tapes, cassette drives, card reader, video displays, etc., as
required by the application programs to be run.

P800 MAS Manual
I.0.1

Ocrober 1983

GENERAI PRINCIPLES

MACHINES

MAS consists of a nr:mber of virtual. nachines, each of which j-s a separate
processing environment. A P800 configuration under MAS supports a System
Machine, one or more Foreground Machines and optionally a Background l"lachine.

Applications are designed as either foreground or background applications.
Programs which are of real t.ime nature are placed in a Foreground Machine.
Batch programs can be placed in the Batch l"lachine (background processing) or in
a Foreground Machine (niddleground processing).

During a MAS session each foreground application to be executed requires a
foreground machine. All background applications are run one after the other (as
determined by the systems manager) in the background machine, or in a
foreground machine, when middleground proeessing is used.

MAS controls the simultaneous perfornance of, and provides services for, all
the foreground applications and the background application (if any). MAS
performs its act,ivities in the system machine. Each machine is defined as
required at the starÈ of or during each session. A machine consists basically
of:
- A set of programs to perform the application.

An area of memory reserved exclusively for the application.
- A Filecode Table which defines the files and the I/0 devices required by
the applieation. (Filecodes are described in Chapter 3.)

The I/O devices are available to all machines. As will be explained later, the
filecode tables (one for each machine) are used to identify the devices to be
used for the files required by the appli-cation.

Each user machine (foreground or background) is controlled by a user wit.h
control commands entered from an input device. The system machine is controlled
by the systems manager with control commands entered fron an input device.
Additionally, I'IAS is controlled through an interactive device, by means of
which control commands can be given to I,IAS by the operator and reply messages
given to the operaÈor by l.{AS.

The System Machine

Each user machine i.s controlled by the system machine, which is an independent
machine within which I,IAS is executed. As well as controlling the user machines
it provides service functions which can be requested by any user program via
LKll (Link to Mqnl-qgrl requesrs.

An operator console is assigned to the system machine; a wide range of operator
commands is available for controlllng user applications. MAS also uses the
operator console to inform the operator of all unusual conditions, such as a
devj.ce requiring operator intervention or repair. User programs rnay send
messages to the operator (to mount or dismount tapes, for exarnple) and may
specify routines to be started when the operator enters an operator comm4nd.

P800 MAS Manual
2.0.1

0ctober 1983

A service program in the system machine obeys SCL (System Conrnand Language)
conmands submiÈËed by the systems manager from an interactive device. They are
processed sequentially; if one is found to be invalid, then facilities are
available for it to be correcLed interactively. SCL commands are used to:
- Define memory, devi-ces and DAD's for user machines, prior Èo sÈarting user

applications.
- Initialise the system date and real-time clock values.
- Perform system on-line debugging.

T'he sysÈems manager may, during the session, obtain a map showing the resources
used by each application being performed, and may instruet MAS as to the I/O
devices and memory pages which may be used.

These facilities may also be used in the case of memory pages and devices which
become inoperable, or where the system has been generated to support a larger
nr:mber of devices than is presently installed. MAS nay also be inforned that
floating point instructions are not used by particular programs; floating point
registers will not be saved when these Èasks are interrupted, and this will
increase throughput.

The SCL service program ls loaded into the system machine automatically at the
sËarÈ of a session. It can be deactivated (to free the devices it uses) by the
SCL BYE command, and it can be subsequently reloaded with the SM operaÈor
command, or by a BYE SYSTEM command from a foreground uachine.

In addition to the SCL control program, each user machj-ne has its own control
program providing control services for its own user.

The Background Machine
The background machine executes user applicat,ions where the inpuË ent.ities can

be batched into a file or files, which are then subnitted to the computer for
batch processing. The programs in a background application control the input;
data is only input, when a program is ready for it and has issued an inst,ruction
to read it.

As well as user batch applications, activities such as program compiling,
program link-editing and file copying may be regarded as background
applications.

Foreground Machines

Foreground machines execute user applications which must process input
innediately as it, arrives at the computer. The input may arrive as a series of
isolated entities (for example, a signal from a piece of equipnenE used in a
process cont,rol application, or a message from a VDU or teletype used in an on-
line application). The input may arrive at predictable intervals (for example,
equipment sending a signal to the computer every trrro seconds) or unprediet.able
(for example, a photo-electric cell sending a signal every time a vehicle
approaches a traffic light). Ihe user application may be real-time, in that the
computer reacts to the sending signals which cause some external effect (for
example, an application which corrects deviation from the planned flight path
of a rocket). It may be conversational, in Lhe sense that lhe input and ouËput
enti.ties are in the forrn of sentences in a human language. It may be
interactive, in the sense that humans are kept informed of the computer's
activities and may continuously adjust, correct or stoP them.

P800 MAS Manual
2.0.2

0ctober 1983

Ihe main feature of foreground applicatlons is that each input entity is
received as an isolated unit by the computer and must be processed inmediately,
interrupting if neeessary whatever tasks are being executed. Sometimes the
processing that must take place is merely recording the input entities for
subsequent batch processing.

Each foreground machine supports one or more applicaÈions, each of which may
conÈain several prograos running concurrently.

DADs (direct access devices)

JusL like a physical machine is divided lnto virtual machines, the discs are
divided i-nto virtual devices, called DAD's. A DAD is the largest entiÈy on a
disc, thaÈ a user can access. It consIEFîf an integer nunber of cylinders and
it is accessed via filecodes. These filecodes must have a value ranging from
/fO to /ff. Filecodes are described Chapter 3.

MACHINE INDEPENDENCE

Memory consists of up to 256 pages. Some pages (depending on the options
specified at system generation tine) are reserved exclusively for Lhe system
machine. Each of the remaini-ng pages rnay be reserved during any one session
exclusively for one user machine (foreground or background), or it nay be
placed in a pool of pages whlch may be used as required by any user machine. In
the latter case, MAS ensures that no page is allocated to more than one machine
aL a time.

Devices and disc areas may Eheoretically be shared bet\Àteen machines merely by
assigning filecodes in several machines to the same device or disc area. It is
possible to envisage disc areas being used for inter-machine communication. In
practice iÈ is easier to control the machines if no sequential devices (apart
from consoles and possibly the line printer) are shared between machines. This
remains true even if the operator, the systems manager and all the foreground
and background users are in facÈ one person.

LINK TO MONITOR

Programs in foreground and background machines may request rnonitor services by
issui-ng LKM instructions. The sÈeps necessary to issue an LKNI depend on the LKM

involved and, moreover, whether iË is issued by a foreground or background
machine. The sequence of steps required t,o issue a particular LKll is described
in Appendix C.

To summarise, the processing of LKMs involves an LKM sequence which must
include the LKM inst,ruction and in most cases one or more of the following:
- Registers A7 and AB Èo be loaded wiÈh values.
- A paræeter value.
- An associated Scheduled label. (Scheduled labels are described later in thls

Chapter.)

Scheduled labels may only be associated with some LKMs, and must not be
associated with others. I,Iith some LK]'Ls, particularly when issued from the
background machine, scheduled labels are irrelevant or their use is not
rneaningful, e.B. LKM 3 (Exit) and LKM 46 (Abort).

The Chapters on foreground (10r11) and background (9) machines and Appendix C

give details for each LKI"I call, describing the required values of RegisÈers A7

and A8, scheduled labels and parameters.

P800 MAS Manual
2.0.3

October 1983

HARD}JARE LEVELS

The P800 series of computers utilises a 64 level hardware interrupt structure,
these levels being ntmbered 0 to 63 inelusive. The lowest levels (highest
priority) are reserved for hardware functions. Level 62 is reserved for the
moni-Lor, and the highest levelr 1evel 63, is available for user programs.

HARDI^IARE INTERRUPTS

A hardware interrupt represenÈs a hardware level, so thaË if an i.nterrupË
occurs before a previous one has been cornpletely processed, the one with the
lower hardware level (higher priority) is processed first. The addresses of
routines which process hardware levels are specified at system generation
ti.me. These addresses are contained in the first 61 words of the system machine
memory area.

SOFTI,IARE LEVELS

Up to 240 software levels but with a multiple of 30, may be defined at system
generation time. Ihe software level that a particular program occupies is deter-
mined by the system or systems manager. The factors to be considered are
described in Part 2 (The System Machine).The highest level (lowest priority)
is always occupied by the ldle Task, the next highest by the idle task I/0
routine (if any).

Idle Task

This is a simple instruction loop which is executed when no other programs need
to be executed. Execution of the idle task is always discontinued in the event
of any hardware interrupt or sofÈware priority. The user may rewrite the idle
task to include instructions which accumulate a count of idle time for use by
another application, for example for accounting and statistical purposes.

Background

The background machine,
levels dedicated to the

if present, usually occupi-es the level below t.he two
idle task, although it nnay occupy a lower level.

System

The lowest sofÈware levels, i.e. the highest priorities, are reserved for the
system machine at system generation time. Usually it is levels 0 through 15
which are occupied by system tasks.

Foreground

The remaining 1eve1s are available to foreground machines, and foreground and
middleground programs.

AllocaÈion of Software Levels

Each program running under l"lAS occupies its or^rn software level . The background
machine runs only one program at a tine, so background programs ah{ays occupy
the same software level. The systems manager must determine the inportance of
foreground programs, because a foreground program with a low software level
will run before a foreground program with a high software level. Middleground
programs are connect.ed by the system t.o the highest free software level.

P800 MAS Manual
2.0.4

October 1983

DISPATCHER

This is a monitor module which distributes central processor time by starting
programs according to their priority.Ihe dispatcher canno! be entered direetly
by the user, but only from an interrupt routine, ê.g. Èhe I/0 interrupt and
monitor request handlers.

STANDARD PROCESSORS

Standard processors are utility programs provided under MAS to run as batch
programs in the background machine, or as niddleground programs. Ihey are:

ASM Assembler
FRT Fort,ran IV
RTL RTL/2 Language Processor
LKE Overlay Linkage Editor
UPD Sequential Disc File Update
LIB Librarian
MAC l'lacro Processor
EDF EDFM/TDF},I Processor
SRT Sort processor

They are called inÈo execution by giving the appropriate processor calls to
MAS. A full description of each standard processor is given in the P800
Programmer's Guide 3, Vol. III: Software Processors, or in separate manuals.

REGISTERS

The following terms which appear in this manual are basic to the P800M and
should be understood bv the reader.

P-Register (A0)
This is a single l6-bit register contaj-ning the relative address of the next

i-nstruction to be executed in a program.

Registers Al to A14

General purpose 16-bit registers available to user programs.

Registers A7 and A8

These are single 16-bit regisËers which are loaded with data such as addresses
and numeric values by Èhe user prior t,o issuing various LKluls. In mosE cases,
the contents of register A7 indicate to t,he user successful or unsuccessful
completion of the LKM. If an LKM has not been conpleted successfuLly, L7
usually contains a status value indicat,ing the nature of the failure.

SYSTEM INTERRUPT STACK (Ai5)

When an interrupt occurs, certain information about the interrupted program or
rouÈine must be saved before the interrupt can be servj-ced. This is done in the
sysËem stack, the address of which is held in register A15. The start address
of this stack is defined at system generat,ion t,ime. The stack extends dor^mwards
i-n memory, i.e. towards the lower addresses. Register Ai5 always points to the
first free location in the sËack. Normally the highest address in the stack is
address /2Fg ar'd the lowest address is /100.

P800 MAS Manual
2.0.5

October 1983

During an interrupt, the Progran Status lùord (PSW) and the P-register (A0) are
always saved by the hardw of regisffil@6âÏIl-g)
and oÈher values can be saved by the interrupÈ routine. The interrupt routine
resets all saved registers and values by itself, except when i.t returns via the
dispatcher. Ihe dispatcher expects 8 registers (A1-AB) the PSl,l and the P-
regisËer in the stack and resets it. See Fig 2.1

High Address T-P-register GO-T
I

--TsI^I---i rnÈerrupted PSW

Low Mdress

t-----------------l
I A4 | Saved Registers of
l-------- | interruPted routine
la5 I

l-----------------l
lA6 l

l-----------------l
lAil
l-----------------l
IABI
r----------------lll
| | (Als)

Fig. 2.1 Stack

When the stack pointer (Af5) reaches or becomes lower than /f00 (the last
location before the stack overflow ar,ea), an interrupÈ occurs and the machine
halts.

PROGRAI"I STATUS I.IORD

This is a hardware 16-bit regist,er, containing the status of the currently
active program running under MAS. It is copied to the user program register
save area on interrupt. Ihe layout is as follows:-

Birl0 s 6 7 8 9 10 11 12 13 L4 ls
I

_l
Prioritylevell | |

Conditlon Register _l I

Rrt

--l

Interrupts Enabled
Control Panel Interrupt
Power Failure
Real Tine Clock
Extended Uoae (
Memory Protect
Systen/User Mode

FLs.. 2.2 Prosîan Status l'Iord

_l

P800 I'IAS l'lanual
2.0.6

October 1983

MEMORY

The basic unit of memory is the 16-bit word. The numbering
within a word is 0-15, counting from left to right. There
bits in each word; either bits 0-7 (tne left-hand byte) or
hand byte).

Memory Allocation

Memory may be reserved exclusively for a machine or shared

Exclusive Use

convention for bits
are two bytes of I
bits 8-15 (the right-

between machines.

For the foreground machine a set of programs nay be loaded into this reserved
area ca1led segment and will remain there until the nachine, segment or program
is killed, or until the next IPL.

For the background machine the Batch Control Processor (BCP), Standard
Processors and user batch programs will be loaded one at a time into this
reserved area within the background machine.

Shared Use

l'lemory may be shared between user
the active batch prograrn) will be
Dynamic Loading Area).

DYNAMIC LOADING AREA

machines. Foreground prograrns (and optionally
loaded into this shared area (known as the

The Dynarnic Loading Area (DLA) is the area in which user disc-resldent programs
are executed. It is variable in size, since it consists of the area remaining
after Èhe user machines have been declared (see Fig. 2.3, Memory Layout).

A program occupying pages in the Dynamic Loading Area is copied to disc, when
its state switches from active into walting or when it consumed its I'linimum
Core Resident Time. It is not copied to disc, when no ot,her program TJ waiting
@amicLoadingArea.MASautomatica11ykeepsdiscaccesses
required for this procedure to a nininum by copying only the nodified pages of
a program from memory to disc.

MEI'{ORY LAYOUT

For foreground machines memory is divided into segments. Segnent 0 is
addressable by all other segments in the same foreground machine. The maximum
size of a segment other than SegrnenL 0 is 32K words less the nrrnber of words in
Segment 0. I^lithin one segment, programs may address each other directly, buË
programs in different segnents of the same machine must communicate t.hrough
Segnent 0.

P800 MAS Manual
2,0.7

0ctober 1983

Schematically, an example of a memory layouÈ

0

would appear thus:

Interrupt, Locations

Trap

Reserved

coururunication -v-ector faUf-JTcvr)-?aaress --

/7c
/7n

/80

/82

(
Segrnent 0 (

(
(

t-_-
I
I

I
I

_l
=

/ roo l_-__---- ____lre -----l/zoo l_--_-_ _-__-l
I t'lonitor Transient Area (2040 words)

I

I nro l_-_ _ ____l

systern ltoades
--l

I

ll
I System Dynamic Area (SDA)

|

Page boundary It---

I Public Library

I Dynanic Area

Public Library

Batch Machine

Dynanic Loading Area erTÂ)--

)
)
)
)

Foreground

Ilachine I

Segment
(

0(
(
(

) Ibchlne 2

)
)

.IS_..__? . 3_Jlemory Layout

PSOO }{AS Ifanual
2.0.9

October l9B3

MEr'{oRY MANAGEMENT UNIT (}0{U)

Menory management is effecÈed by means of the hardware Memory Management Unit,
which in turn is software controlled by the systems manager using SCL connands
submitÈed during Èhe definition of user machines, although, as previously
mentioned, memory can also be dynanicaLly allocated and released by user
programs using LKM requests. The MMU allows a paging system to be used, which
provides user programs with the facility of virt,ual addressing within 16 bits,
although the absolute machine address of the program page may exceed t,his.
Physical Mdresses

A physical byre address ls 16 bits long, giving an address range of 0-65535
bytes. Bits f14 of the physical address identify the word (0-32K) and bit 15
identifies the byte (0 for the left byte and I for the right).

The MMU allows a progran to be loaded anywhere in the physical memory. I{it,hout
it, programs would always have t.o be loaded into memory module 0 and memory
modules I upwards would rernain inaccessible. The Mi'lU translates the relative
addresses within programs into physical addresses within particular memory
modules.

Paging

The total memory area is divided into pages of 2K words. The maximum numbers of
pages are 64 for P857 and P858 atd 256 pages for P859, P854 and P876 (the
P854is intended to support 1024 pages). When loaded into the machine, a program
needs not to occupy eontlguous pages; the system loads each 2Kw block of
program into a free page and enters the page address into the program's page
table. Each relative program address must now be regarded as having the
following format:

Bits 0-3: Contain the relati-ve page nunrber in this program containing the
byte to be addressed. Up to 16 pages are possible, giving a
maximum size of 32 KW per program.

Bits 4-15: Contain the displacement of the byte within the page.

T_he Page Table

The Page Table is the link between the relative addresses in a program and the
absolute address of the memory pages. Whenever a program is declared, a page
table of 16 MMU registers is creaÈed for it. When the program is loaded, the
MI,IU registers are fil1ed. Each MMU reglster has the following format:

Bits Contents
0T i'or p,g-572P858 the pagenunber, for P859/P854/P876 rhe leasr

significant bits of the pagenumber.
6: Set to I when the page is not connected Èo the program. An

access of a progran to such a page gives a page interrupt.
7 z Set to I when Ehe page is read only. A write of a program

to such a page gives a page interrupt.
B: Set to l, when the contents of the page have been modified,

since it was loaded.
9: Not used.

10-13: For P858/P859/P876 not used, for P854 in future these bits,
togeÈher with the bits 14 and 15 will be the most
significant bits of the page number.

14-15: Most significant bits of the pagenumber for P859/P554/P876.

P800 MAS Manual
2.0 .9

October 1983

For the P857, the bits 10-f5 contain the time the page was loaded.

Using a program with a
construct the following

virtual page nr
bir

length of 3 pages and 22 bytes as an example, MAS

table:
could

page table entry
s67

lx

Fig. 2.4 Page Table

In this example, the program consists of the pages /32, /33, /3C and /41 (the
last page is not possible in case of. P857 1P858). A relative program address
/ZO|C will be translated into the absolute address /3C0lC. The program address
/5500 will give a page interrupt and the program will, accessing this address,
be aborted with memory protect.

AbsoluLe Addresses

The 18- or 20-bit address used by the MMU is known as an absolute address. It
can range from 0 to 128KI{ or 512Ktrl respectivily and identifies one byte in the
bare machine. Absolute addresses are used in the paraneter fields of the
following operaÈor commands:

WM (Write Mernory);
CR (Patch l"lenory);
DM (Dunp Menory);

and also in the following SCL commands:

l,lRM (l,lrite Menory) ;
DIIM (Durnp Memory).

They are entered as 5 hexadecinal digits with maximum value /FFFFF, of which
bits 0-7 contain the page ntrmber and bits 8-19 the byte nr:mber within the 2K
word page.

Systen Mode

Running in System lnlode, the MMU is not used; instead 16 bits absolute addresses
are used. System lnlode can only be used in the first 16 pages of the memory. The
MAS system runs completely in system mode, except MAS release 8 for
P859/P854/P876 which runs partly in Extended Mode. In System Mode, priviliged
instructi-ons like CIO, INH and AI5 using instructions can be used.

Extended Mode

0
1

2
3

4

The Extended
instructions
Extended Mode

Mode is a System
can be used. MAS

to overcome the

Mode running under MMU. In this mode, priviliged
release 8 for P859/P854/P876 runs partly in
16 pages linit for the monitor.

P800 MAS Manual
2 .0 .10

October 1983

Common Areas

Communication between prograns within the same foreground machine is possible
via Èhe courmon 'communication atea' in Segment 0 of that machine. The
allocation of these areas is described in Part 4 Chapter 1l (Foreground
Machines).

PROGRAI'IS

Types

User program characËeristics depend on whether they belong to the foreground or
background.

Foregroùnd Programs

The way a foreground program is declared determines whether it, is Disc Resident
or Memory Resident.

Disc Resident Prograns

These are declared by the following commands:
- SWP which declares a Swappable program.
- RON which declares a Read-only program.
A third type of disc-resi-dent program may exist. This is a non-declared

program, known as a l"liddleground program.
A swappable or a non-declared program may be Overlaid. Disc-resident programs

rnay be r^rritten as Re-entrant, . In Èhat case they can be declared as Read-Only-
Reentrant. Disc-resident programs are loaded into t,he Dynamic Loading Area.

Swappable programs

A swappable program must be declared and connected to a software level before
activation; it can nodify code or data within its oerrr area during execuÈion.
The core inage is swapped out when its minimum core-resident time is exceeded
or when it turns into inactive state and anoÈher program needs memory space in
which to run. Only disc-resident programs may be swapped out.

Disc Space Allocation for Swappable Programs

The unit of allocation is the granule, where I granule = 1 program page. A
system DAD, D:CI, is allocated aÈ system generation time to accommodate all
declared disc-residenÈ programs . This DAD consists of two parts:

1) An area provided for Èhe initial inage of swappable and read-only programs;
2) A save area into which the core images of swappable and rniddleground

programs can be written when swapped out. They can be reloaded frorn this
area when they reach the head of the queue of programs waiting to run.

When an overlaid program is declared swappable, only the root is wriÈten to t,he
D:CI DAD. The overlay segments are still read in from the original load module.
When the overlaid program is swapped out, Èhe root and the currenË overlay Eree
are written to the D:CI DAD.

October 1983P800 MAS l"lanual
2.0. t I

Program Swapping Mechanism

The decision to interrupt and swap-out a program is based on the l"linimum Core-
Resident Tiroe (MCRT) for ttt"t progran. Whàn this tine has been exieeded-anZ-
Z[roE-er pîogran requiring memory space is eligible to run, the system program
X:S}IIO, which initiates the swapping process, is activated.

Ihe minimum core-resident time is defined at the time of:
System Generation, by adapting the CVT (Communication Vector Table)
Program Declaration. The default value is 3 seconds.

The conditions under which a program will be swapped out can be summarised thus:

1) The MCRT has elapsed and anot,her program is waiting for memory space. When

there is no other program waiting for memory space, the progran remains in core
and the I"ICRT is set to its iniÈial value.

2) The l"lCRT has not elapsed, but the program issued an LKM 2 (wail for event)
with an odd value in A8 (ECB address). The program is swapped out, regardless
whether there are programs waiting for memory space. The program is not
swapped, when event waited for, modifies the pages to be swapped out.

3) The MCRT has not elapsed, but the program issued an LKM 2 with an even value
in A8. The program is only swapped out, when another program is waiting for
memory space. The progran is only swapped when the event does not rnodify pages
to be swapped out.

4) When the program issued an LKlul 6 (pause).

5) Programs, which have issued an LKI"I 3 (exit) in the main sequence are not
swapped out, but are discarded from memory.

Bits 7 and 8 of the page table entries are used by I,IAS to control the swapping
operat,ion. If a program is to be swapped, its page table is located via the
Progran Control Table (PCT) for this program and the relevant entries are
examined. If bit 7 is 1, t,he page does not need to be swapped before being
overwritten, since the core image is identical to Èhe image stored on di-sc in
the Core hnage File. If bit 7 is 0 and bit 8 is also 0 (i.e. the page is
unrnodified), again there is no need to swap-out the page.

Swappable Batch Prograrns

These are slrapped in and ouË via the l'lCRT in the same r^ray as Foreground
programs.

Read-only Programs

A read-only program may occupy memory required by another program.In this case
it is overwritten. When able to resume, it is reloaded from its original core
image file. Its pages are set read-only; it may therefore not modify its own
area'andmayonlycontaininstructionsandconstants.Ituaymodifyvariab1es
in segment 0. Read-only programs are indicated by Bit 7 of their page table
entry being set to one. A read-only program cannot be overlaid.

P800 MAS Manual
2.0.L2

0ctober 1983

Non-declared Programs (l"liddleground Prograns)

Non-declared programs are identical to disc-resident swappable programs, except
that they are not declared by the user and they are connected by I,IAS itself ,
not by Ëhe user. They must be catalogued in the user program library, and
aretransferred to the DAD D:CI whenever their execution is reguested. They are
connected by the syst.em to a low priority software 1eve1.

Memory Resident Programs

These are declared by the following comrands:
- REP which declares a Reentrant program.
- LOD which declares a Non Reentrant program.

Reentrant

A reenÈrant program may be active for several tasks simultaneously in one
foreground rnachine. In effect, whilst a re-entrant program is still being
performed for one task anoÈher task may be using it, and so on. Re-entrant
programs cannot be overlaid.

Background Programs

Since the background machine may contain only one program at a time, the way
the background machine is declared deternines the characteristics of any
background progran it nay contain.

Disc-Resident Programs

These exist in a background machine when the machine is declared by
command with no number of memory pages given.

l"lemory-Res ident Programs

These exist in a background machine when the machine is declared by
command wiÈh the number of memory pages given as greaËer than zeto.
that run in the background machine nay be overlaid.

OVERLAYING

Ehe SCL DCB

the SCL DCB

Programs

A program with an overlay st,ructure may be executed with only a part of the
Program resident in memory. It is the user's responsibility to decide which
programs should be overlaid, and the overlay structure. Programs which occupy
over 16 pages of memory must be overlaid, as this is the maximr:m size allowed
by MAS. Programs under 16 pages in length could be overlaid if the functions of
the program can be clearly distinguished, and where a large number of other
programs must also be resident at the same time.

There are two types of overlay segment available for constructing overlaid
programs:

a) Disc-resident overlays;
b) I"lenory-resident overlays (secondary load nodules).

A program utilising di.sc-resident overlays consists of a root segment and one
or more disc-resident overlay segments. The root segment remains in memory for
the duration of Èhe program's residency, while Èhe overlays are loaded into the
dynamic loading area of the machine, one aË a Ëime, as they are needed. These
overlay segments may themselves be overlaid.

P800 MAS Manual
2.0.13

0ctober 1983

A program constructed of memory-resident overlays consists of a prirnary load
rnodule and one or more memory-resident secondary load modules. The prinary load
module and the secondary load modules are loaded before Ëhe program is
activated, and remain in memory throughout the execution of the program.
Secondary Load modules may be declared as read-only and nay be shared between
more than one prinary module.

These two methods of overJ-aylng allow the user to make a reasonable compromise
between the demands for memory space, on Lhe one hand, and the need to increase
throughput by cutting down on the high disc access time assoclated with
programs which utilise disc-resident overlay segnents, on the oÈher. The user
can save memory space by putting his overlays on disc, or increase his
throughput by naking his overlays memory-resident. These two methods can be
comblned if desired, the most frequently used overlays being made memory-
resldent and those which are used only occasionally being made disc-residenË.

-qelerat f r1g. progr.
=*"_llt :f lglqg- Disc resident Overlays

The loading of t,hese overlays during execuLion is effected by means of LKM 27
requests, embedded in Èhe user's program by the Llnkage Edltor. This is done
during t,he processing of the NOD staLements, which the programmer uses to
structure his overlay 'tree' and which are output to the object tenporary file
(filecode /D5) during the compilation process.

A sirnple example illustrates Èhisi Sl, 32 and 53 are all overlay segments of a
root module 'MAIN', and are to be loaded at the same address defined by the
node EXl, thus:

TldïN T+
I EXI

r-l__l__t__-t-_
|''L r_l]_:_t

Ilg.:_2_.5_9,._@

The following set of commands could be used:

ASM

OPT PROC=MAIN
NOD EXI
ASM
OPT PROESI
NOD EXl
ASM
OPT PROE52
NOD EXI
ASM

OPT PROFS3
LTG
OPT I,IAP=YES , CREF=YES, CATL=MAIN

P800 I"IAS Manual
2,0,L4

October 1983

Ihe temporary object module file (/D5 or /O) would appear thus:

and the temporary load module file (/O6 or /L), after linkage edit, appears as:

Fig. 2.6 Temporary Object _f

The menory-resldent segmenÈs (secondary load modules) of an overlaid program are
loaded into memory, prior to acÈlvation, by means of the FCL LSM command (Ioad a
Secondary l4odule) for Foreground programs and by SCL LSM conmand for Background
prograns. Once loaded, Ëhey remain in memory unti-l deleted; although the total
memory space occupied can exceed 32K, the longest overylay path cannot.

lhe program's 32K 'window' is altered by nodifying the Ml,lU page table to include
each module as required (excluding those which are no longer required) by means
of LKM 57 requests (Connect/Disconnect a Secondary Ioad Module) which have been
enbedded in the user program during the linkage edit process. For e.g. suppose
that a primary uodule Rl is loaded into a machine Ëogether wlth secondary load
modules 51, 52, and 53, and that these are linked by the node EX2, thus: iÉ

primary load module

IT---t--T--t__t--_t--I Sl | | sZ I I_S3_I secondary load modules

Fig. 2.7 l,tenory Resident Overlay Structure Example

P800 MAS Manual
2.0. 15

October 1983

Rl-Sl may be a program pat,h, as defined by the MMU page table, and this may use
the whole of the available 32K 'window', but suiÈable connectrequests could
change this to R1-S3 and Èhe other modules Sl and 32 would then become
'invisible'. N.B. For seeondary load rnodules, only one node is allowed for each
prinary load nodule,

Such a sÈructure could be generated by the following run stream:

ASM

OPT PROG=RI
NOD EX2,SLMI
ASM
OPT PROG:S1
NoD EXz,SLM2
ASM
OPT PROG=S2
NOD EX2,SLM3
ASl"l

OPT PROG=S3
LKE SIZE=MAX

:tt
MAP=YES , CREF=YES 1CROV= (Sl,l"ll , SLI"12 , SLM3) , CATL=RI

Fig. 2.8 Secondary Load Module Generation

The user should study the descripËions of the NOD st.atemenÈ in ChapÈer 9 of
this manual, the LI(E OPT stat.enent in the Software Processors manual and the
FCL LSI'I command in Chapter 11 of this manual.

If it is intended that secondary load rnodules be shared beÈween more than one
prinary load module, then absolute addresses should be used in the NOD and LKE
OPT statenents, and the modules should be declared read-only.

the secondary load modules must be loaded at page boundaries (see the
description of Èhe FCL LSM comnand).

Only disc-resident or non-re-entrant memory-residenÈ programs rnay be overlaid.

EXECUTION

The execution of programs rnay be started and controlled by l.{AS control language
(FCL or BCL) connands in two basic vrays:

- Programs in foreground or background machines may be 'run'. This means thaÈ
execution will- begin at the program's entry point, and that no further FCL or
BCL commands affecËing the program will be accepted until the program reaches
normal or abnormal conpletion. (Abnornal conpletion means a severe or fatal
error has occurred.)

- Programs in foreground machines may be 'activated'. This means the same as
'run' above, except that FCL commands w111 be accepted both before and during
execution of t,he program.

- Prograns in any one foreground machine nay also be activated by other
prograrnsin the same machine.

Further details about, the control language (BCL or FCL) comrnands ean be found
in Part 3 (The Background Machine) and Part 4 (Foreground Machines). l,iOt
requests are described in Appendix C.

P800 MAS Manual
2.0 ,t6

October 1983

COMMANDS

MAS is controlled by four basic types of eonrmands; they are given by the:-
Systems Manager (Systen Command Language, SCL);
- Background user (Background Command Language, BCL);
- Foreground users (Foreground Command Language, FCL);
- Operat,or (Operator Coromands).

SCL, BCT. and FCL Commands nay be made into C"t"logn"d P.o."dr* when they are
int'endedtoberepeatedinthesame'ornea@Cata1ogued
procedures are described later in this Chapter, and are referred Èo in the
other Chapters of this manual. The syntax rules for typing in these commands
are described in Appendix B.

SCHEDULED LABELS

A scheduled label is an address of a routine which is specified in an LKM

request sequence. The routine addressed by a scheduled label is known as a
scheduled label routine.

Most of the scheduled label routines are executed inmediality afËer the LKM.
Sorne LKMs cause continuation of the main program and its interruption on
conpletion of rhe procress started by the LKM. They are:

LKl,l -l (I/O, without inplicit wait);
LKI"I -12 (Activate);
LKI"I -25 (Read Unsolicited Key-in);
LKM -30 (Queue Handling);
LKM -77 (Accept an Attention Key).

Scheduled label routines relating to LKM requests containing the above LKMs are
not. processed iumediately. That is to say, a scheduled label routine will never
be executed until Èhe associated LKM is conplete. In effect, use is nade of the
time delay between any of Èhe above LKMs being initiated and being completed.

A LKM -12 request (Activate) indicates to MAS thaÈ a program is in a state that
it raay be run, but the scheduled label routine associated with it will not be
executed until the program concerned terminaËes.

An LKl"l -30 request (Queue Handling) refers to a queue which rnay be empty. In
this case the scheduled 1abeI routine associated with it will not be executed
until there is an entry in the queue.

An LKI"I -1 request (I/0) indicares to MAS that an I/0 operation is required,
but, there may be a delay beforê it, can be completed. In this case the scheduled
labe1 routine associated with it will not be executed until the I/O operation
is complete.

An LKM -25 request does not cause program suspension awaiting the operator Key-
In, but the scheduled label routine is entered when this occurs.

P800 MAS Manual
2,0.L7

October 1983

The main purpose in associating a scheduled-label routine wiÈh Èhe above four
LKM requests is that the routines in each case will set an event bj-t in an
Event Control Block, i.e., af ter any of the above LKI"ls have been init.iated, the
refatea nCn ca" Ue examined. This is done by the LKM 2 requesÈ (Wait for an
Event). When an LKIUI 2 is encountered, nothing furËher will be processed if the
event bit has not yet been set. I,Ihen the event has occurred, it is seÈ and
processing continues. This use of ECBs is described in more detail later in
this chapter.

If an LKM request sequence with a scheduled label j-s noË one of Ëhe above Eypes,
control will pass to the scheduled label routine when the LKI"I is exectued. After
the scheduled label routine has been executed, control returns to the first
sequential insËruction following the LKM request sequence. For example:

t1'"

Nornal LKM request, scheduled label

Fig. 2.9 Scheduled Label Exanple 1

If the LKM request is one of the above, control will pass to the scheduled
label routine only when the LKI"I request is finally conplete. Where an I/O
operation is invoTved, an interrupt will result, and the time spent waiting for
Èhe I/O t,o be cornpleted will be used by passing control to the next sequenÈial
instruction following the LKM request sequence. Consequently, if the user has
instructions following the I/0 LKM which refer to the I/O he must code a 'wait'-
for-event' LKM request sequence, to ensure that the I/0 operation is complete
before these specific instructions are executed.

In fact the scheduled label routine may be used simply to set the event bit in
an ECB. AfEer the scheduled label routine has been executed control reÈurns Ëo
the next unexecuted sequential instruction following the LKI"I request sequence.
ftre event referred to by this ECB can be the one that the user's'wait-for-
evenË' LKI"I request waits for. For example:

a

t
LKM

ù
l,Iait-f or-event, this EC

t InsÈructions
. requiring oPerator

Kev-In) scheduled labe1
It

(scheduled-label routine)
Set this ECB on: KeY-In received

-25 (Read Unsolicited

Ins tructions
not requiring
operator [Essage

-'

B

message

Fig. 2.10 Scheduled Label Exanple 2

(ECB)

| , (scheduled-label routine)

P800 MAS Manual
2.0. 18

October 1983

Scheduled label routines may be nested. A scheduled label routine may conËain
an LKM sequence itself addressing a scheduled label routine, and so on.

Scheduled label routines must exit by an LKM 3 (ExiÈ) or LKM 46 (Abort).
LKM -l request'SCHLI

: scheduled label I

:
instructlons

Main-Line
ins Èruct. ions

LKM

Exi t

request
'
qCHL2

Exi t

scheduled label 2

ins Èruct ions

Fig. 2.11 Exanple of Nested Scheduled Label Routines

The presence of a scheduled labe1 in an LKI"I request sequence is indicated by
coding the LKM with a negative nr:mber, followed by the scheduled label.

The following exarnple uses the DATA instruction, which codes daÈa into object
words and always follows the LKII instruction to indicate the type of LKM.

LK},I
DATA 1

This results in LKt"l I being output in object code, wiÈhout a scheduled label.

LKI"l

DATA -l,SCHLAB

This results in LKM I being output in object code, hrith the scheduled label
SCHLAB.

Scheduled label routines used with LKI'I 3 (Exit) or LKIvI 46 (Abort) are ignored.

CATALOGUED PROCEDURES

CaÈalogued Procedures may be construct,ed when a number of commands are intended
to be repeated in the sane, or nearly the same, format. Any SCL, BCL or FCL

commands can be set up as a catalogued procedure, to be invoked by a procedure
cal1.

Catalogued procedures are sinilar in concept to macro definitions, and readers
who have studied the P800M Macro Processor Manual will notice certain
similarities in const

In iEs sinplesË form a string of commands may be repeated sequentially, from
beginning to end. I,rlhen set up, the string is giveri a procedure name. When this
is referred to by this name in a procedure call, the entire string will be
processed sequentially as if it had been input manually through the console, or
some other device.

I/O conplete

P800 MAS Manual
2.0. L9

October I983

In its advanced form a string of commands nay contain items which are to be
specified at run Èine by the procedure call parameters. Ihese lÈems may or may
noÈ be given default values. When set up, the string is given a procedure name;
when this is referred to by name the string will be processed accordlng to any
nodifications caused by the procedure call parameters.

In this advanced form a catalogued procedure can be used any nrrmber of times
and also wiÈh any required varlaÈions.

For example, an application may be run at the end of every week. However, month
end and year end may have specl-al significance, in as much as extra programs
nay be required, different parameter values provided or new files creaËed, êtc.

Iherefore a single string of commands can be constructed as a single catalogued
procedure for all occasions. If this is done, then each time the application is
run the catalogued procedure call need only speeify that the run is 'end-of-
r^reek', 'end-of-month' or 'end-of-year' .

File Identities

SCL Conmands

Catalogued procedures for the system machi.ne must be contained in a file
identified by:-

DAD filecode = /F6 of the system machine
USERID = flrst user (normally l,lASUP)
Filename = S:PROC
File type = UF
Version = 0

The DAD code /F6 is autonatically included in the filecode table of Èhe system
at System Generation time.

FCL Conmands

These can be reserved for the exclusive use of one nachi.ne user, or made
available to all foreground users.

Catalogued procedures for the exclusive use of one foreground user must be
contained in a file identified by:-

DAD filecode = /F0 of the foreground machine
USERID = first user
Filename = F:PROC
File type = UF

Version = Q

Those which are t,o be available to all foreground machlnes should be set up in
a ftle identified by:-

DAD filecode = /F6 of the system nachine
USERID = first user (normally MASUP)
Filename = S:PROC
File type = UF
Version = Q

PB00 MAS Manual
2.0.20

OcÈober 1983

BCL Connands

Catalogue procedures lntended for the exclusive use of one background user
should be contained in a file identified thus:-

DAD filecode - as specified on the :JOB conrnand
USERID - as specified on the :JOB command
Filename = B:PROC
File type = UF

Version = Q

Those intended for public use should be contained in a file identified thus:
DAD filecode = /F0
USERID = first user (norrnally MASUP)
Filename = B:PROC
File type = UF
Version = Q

Procedure Set Up

The first record of every catalogued procedure must conÈain 7"7" (two percent-
signs) followed imroediately by the procedure name of between one and six
characters, not using blanks. Ihe %7" mtst begin in the first character
position. The last record must contain PEND as the first four characters. There
must be aË least one Data Record beËhteen tt:.e %i(and PEND record.

DaEa Records

Data records consist of ASCII characters, and may contain any nr:mber of
Replacement Strings.
A eommand may be coded on more than one data record. DaÈa records which are
continued must include the continuation character ' g' (seni-colon) as the last
character. The second example shows Èhe use of the continuation characÈer.

Replacement SÈrings

Replacement strings have the following foruat:

@{d | "i[.v | ?]

d is a number, I to 9999. The replacement string is replaced by a
positional parameter in the procedure call.

n is a name of I to 4 alphanumeric characters, the first of which must
be alphabetic. The replacement string is replaced by a keyword
parameËer

v is a valid default value for the procedure call pararneter.
T i-ndicates that no default exists, and that iL is intended that a value

must be provided in Lhe procedure call, otherwise Ëhe entire daÈa
record is ignored.

If Ehe options v and ? are bot,h omitted, then if the corresponding parameter in
the procedure call is empty the replaceuent string is ignored, but the resÈ of
the data record will be recognlsed. For mâxinum lengths, see Appendix B.

Here is an example of each of the six types of replacement string:
g4 (positional parameter)
G4.10 (positional parameter with default)
G4? (positional parameter, if ommitted, no output)
@f'Cf (keyword pararneter)
@FC1./30 (keyword parameter with default)
GfCtZ (keyword parameter, if ommitted, no output)

PB00 MAS Manual
2.O.21

October l9B3

Nesting

Catalogued procedures may be nested; that is, when a catalogued procedure has
been invoked by a procedure call its execution may encounter another call which
invokes another catalogued procedure, and so on. Execution of the calling
procedure is suspended until that of the called procedure is complete.

A catalogued procedure must never contain a call to itself or, if nested, a
call to another procedure which ca11s the first (or calls another procedure
which calls the first). A loop would obviously result if this situaÈion
occurred. A catalogued procedure may not conÈain a :JOB, :EOJ or :EOB conrnand.

If an error results in the above situation, MAS outpuEs an error message, sets
the sÈatus code and passes control to the comrand following the erroneous
procedure cal1.

The following illustrates the nesting of catalogued procedures:

ZZPROCA causes execution of %7"PROCB

%"IPROCB execution

T""(PROCC execution

7""âPROCD execution

of
in

l\.
I 'PEND

CNd Of PROCD

PEND end of PROCC

PEND end of PROCB

PEND end of PROCA

Fig. 2.12 Nesting of Catalogued Procedures

Cat,aloguing Procedures

Catalogued proeedures nay be set up in public or private libraries, by means
the standard processors Librarian (LIB) or Update Processor (UPD), described
Volune III: Software Processors.

In practice it is easier to catalogue a procedure which is already working Èhan
one which is not yet tested, and may need to be amended several times to get it
right. The string of conmands may be first operated manually. When they are
completer any required replacement strings may be noted on the command input
device log by hand, and the procedure may Ehen be catalogued using LIB and
UPD. Some corrections may still be needed, but the likelihood will be reduced.

P800 MAS lulanual
2.0.22

October 1983

Procedure Calls

A procedure call refers to a previously catalogued procedure, and:
identifies the catalogued procedure;
specifies parameter values to be given to replacement st.rings in the data
records of the procedure.

Procedure calls have the following format:

%%proeedure-name [[paran-1] [,param-2]. . .)

procedure-name is the procedure name, in the first record of the
catalogued procedure.

Elam-l, etc. are positional or keyword parameters, defining values
to replace the replacement strings.

When the procedure call is executed, the specified catalogued procedure is
located and its replacement strings are replaced by the parameters (if any)
specified in t,he call.

Procedure calls are input through filecode /E0. If entered in the system
machine, MAS searches t,he file named S:PROC. If entered in a foreground or the
background machine, MAS searches F:PROC or B:PROC, respeetively; if not found
in this file, MAS then searches S:PROC or the system's user B:PR0C.

If the procedure is found, MS creates a work-file on disc, with filecode /ED,
and writes the procedure into it, replaeing the expanded replacement strings.
The filecode /nn is assigned Èo filecode /EO and the conrmands are read back and
executed. If a nesÈed call to another procedure ls encountered, the procedure
is located, it,s replacement strings are processed and it is writ.ten to /ED.
hlhen the PEND statement is read, the command processor continues reading from
/EE. Upon completion, control passes to the conrmand following the first
procedure cal1.

Call Parameters

Parameters in procedure ca1ls are of one of two types:

Positional a st,ring of. zero or more ASCII charact,ers, except blank,
commâr serni-colon and equals sign.

Keyword a string of one to four alphanumeric characters, the first
of which must be alphabetic, followed by an equals sign and
a parameter value of one or more characters.

Positional parameters replace replacenenË strings according to their relative
positions in the procedure cal1. ThaÈ is, the first posit.ional replacement
string in the procedure is replaced with the first positional paraneter in the
procedure call, the second string with the second parameter, and so on.

Keyword parameters may be coded in any order within the procedure call. Each
keyword parameter is uniquely ldentified by a key-name, of one to four
characters. Every occurrence of a key-name in a catalogued procedure is
replaced with the value of the corresponding key-name in the procedure call.

P800 MAS Manual
2,0 .23

October 1983

Replacenent strings in a catalogued procedure which are not supplled with a
corresponding value by the procedure call are handled as follows:

If there is a default value, this will be used.
If there is no default value and the replacement string contains ? (query),
the entire data record of the proeedure is ignored.
If there is no default value and no ? (query), only the replacement string
is ignored.

1]wo consecutive commas in the parameter list of a procedure call inply that the
parameter is 'ernpty', i.e. no value is supplied, The parameter is assumed Èo be
positional. Thus, if two conmas were coded after the eighth parameter in a

ca1l, then lt would be assumed that the ninth Parameter was empty. Ihe next
positional parameter after this one would be positional parameter number 10,
and so on.

When all replacement strings have been replaced, the resulting data record must
not exceed 80 characters.

Errors in a procedure call result in an error message being outputl control
then returns to the eommand input routine of the relevant Command Processor.
The nexÈ ssmmand is then input through filecode /n0 or /nn.

Examples

The examples show catalogued procedures and their relat,ed procedure calls and
parameters. Ihe first shows procedure to declare a Batch machine.

ifl"DCB
DCB EI
FCD /C0
FCD /FO,/CO,SUPERV
FCD /î2,/C0,GDADl?
FCD G2?
FCD /82,@21. ,GDz.DAD2
FCD 1,TY10
FCD 2,GFC2.LP07
FCD /80,TYI0
DEN

PEND

Fig 2. l3 Catalogued Procedures Exanple 1.

There are two posiÈional replacemenÈ strings:
Gl This is Èhe first one, with no default value. I,Iith default value the

declaration would be e.g. Gl.16.
Q2 This is the second one, with no default value. If no value is supplied

the two records containing G2 will be ignored.

Keyword replacement strings occur in three positions:
GDl? The presence of the ? indicates that in this position a value j-s

necessaryl if none is given, the whole dat,a record is ignored.
GD2.DAD2 If no other value is supplied for D2, the default ls DAD2. Note

that the record is still ignored tf G2 is not supplied.
@FC2.LP07 Lt FCZ is not supplied, LP07 will be the defaulÈ.

P800 MAS I'lanual
2.0.24

October 1983

A sinple call for this procedure ls:
7"7"DCB L6

resulting in:
DCB 16
FCD /C0
FCD /Fo,/C0,SUPERV
FCD 1,TY10
FCD 2,LP07
FCD /E0,TY10
DEN

A more extended call is:
"/"/'DCB L6 , / C2 rDl=DAD7 ,D2=DAD8, FC2=TY10

resultlng in:
DCB 16
FCD /C0
FCD /F0,/C0,SUPERV
FCD /Fl , / C0 ,OtO7
FCD /C2
FCD /F2,/C2,DADS
FCD t,TY10
FCD 2,TYl0
FCD /E0,TYl0
DEN

Example 2

The following exanple concerns flle assignments (ASG commands).The procedure
has the nane PROC, and is called thus:

ZT"PROC ALFA, 1KEY1=4, BETATKEY2=XyZ r 15, / 7 O

MAS sets up the following internal table of replacement strings and thelrcorresponding values:

STRING VALUE

1 ALFA
2 (enpry)
KEYI 4
3 BETA
KEY2 XIZ
4 (enpry)
)5
6 /lO (hexadecinaL).

The catalogued procedure pROC was defined as:

%%PF|OC

ASG FC0D=@6,rcoo-G2. / Ao
ASc FCOTFG4? , ECOD=@2. / LO
ASG FcoD=@7 ./ 6O,DAD=GD . /F0 ;

FNAM=GKEY2 ,USID=G3?
ASG FCOF / 3S ,Ott: 1F4 , FNAl"tE=Gl , VERS=eKEyl . O
ASG FCOD= /og rottt=1F3,NBçR=G5?
PEND

P800 MAS Manual
2.0.25

October 1983

Consequently, when the catalogued procedure is invoked by the call above, the
following are recognised and executed:

ASG FCOD=/70,ECOD=/A0
ASG FCOD= /60 ,OAO=1F0, FNAI'T=XYZ ,USID=BETA
ASG FCOD= /35 ,DAD=/F4, FNAI"I=ALFA,VERS=4
ASG FCOD= /O9 ,OtO=1F3,NBGR=5

Error l'lessages

a) From BCP

No error message is output if a cat.alogued procedure data record exceeds 80
eharacters aft,er replacing replacement strings by parameters.

UNKNOI.IN PROCEDURE
A procedure call contains "/"7"tame, but name cannot be found in any of the
procedure libraries B:PROC in the :JOB userid and DAD, or B:PROC on the
first userid of DAD /F0.

PROCEDURE NAME },lISSING
A procedure call contains "47" foLLowed by a blank.

PARAM xxxx MISSING
A proeedure call contains a keyword parameter without a value (KEY=
followed by a blank, comma or semi-colon).

PARAI"I xxxx REDUNDANT
A procedure call contains more than one occurrence of the same keyword
parameter.

KEY PARAM TOO LONG

A procedure call conÈains a value (for a keyword parameter) which is too
long.

abc NOT ALLOI^IED IN A CATAL PRO

The string abc indicates one of :EOB, :EOJ, :JOB.

SYNTAX ERR:?
A catalogued procedure data record contains a replacement string which
cannot be analysed.

BAD ASSIGN FILE /xx STATUS=yy
The string xx indicates a filecode (/E0, /nY or /fC) which could not be
assigned while processing the catalogued procedure. The string yy gives
the ECts status code (see LKM 23: Assign)

I/0 ERROR FILE /xx STATUS=yy
The values of xx and yy are as in the previ-ous message.

LINE=nnn(p) PENEU NOT PROVIDED IN THE PROCEDURE CALL
The replacemenÈ strint €p in the data record nnn of a caÈalogued procedure
has no def ault value (the string does not conffin ' .') , and no parameter
was specified to replace it.

xxxx I,IRONG KIYI^IORD PAR

The keyword paramater contains a character, which is nor a letter, nor a
digit.

P800 MAS Manual
2.0.26

October 1983

If any of these error messages is ouÈput, the error code ls set to 05 and
control returns to the next comoand after the procedure call. These messages
are output to filecode /02.

b) SCL and FCL

DYNAMIC AREA OVERFLOI,I
There is no place in the monitor area to set up Eables for executing Ëhe
caÈalogued procedure.

SYNTÆ(ERROR

Error in procedure call. Ihe input line contains less than 3 characters,
there is no blank after the procedure name or the l-ast character of the
procedure call a deliniter, but not a blank.

INVALID PROC NAME
The procedure name contains zero or more than 6 characters.

ILLEGAL KEYVJORD PAMI"IETER
A keyword parameter in the procedure call contains zero or more than 4
characters or the value of the paraneter cont.ains more than 8 charact,ers.

READ COMMAND ERROR

An error occurred, reading the procedure call.

INVALID POSITIONAL PARAI"IETER
A value of a positional parameter in the procedure call contains more than
I characters.

ASSIGN ERROR /xx STA=/yy
An error occurred, assigning the work files for the procedure. For an
explanation of the status values, see Appendix C: LKM 23 (assign).

PEND RECORD NOT FOUND

Reading the procedure file (F:PROC, S:PROC) an :EOF was detected.

I/O ERROR ON /xx STA=/yy
An I/0 error occurred, accessing a procedure work file. For an explanation
of the status values, see Appendlx C: LKM 1 (I/O).

LINE: nn BUF OVERFLOI.I.
Expanding line nn of the procedure, the result exceeded 72 chatacters.

LINE: nn SYNTÆ(ERROR

In the procedure, a line ended with a deliniter and more characters nere
expected, e.g. ended with a period and no default value was given.

P800 MAS Manual
2.0.27

October 1983

EVENT CONTROL BLOCK (ECB)

An event control block, in its sirnplest form, is one l6-bit word long. Bit 0 of
t,his first or only word is known as the Event-biÈ and bit l as Èhe Chain-bit.
The event-bit ls initially seË to zero bfrËE-Gr when the ECB is co?AI.

Event-Bit

I{hen the event-bit is zero the event has not taken place, when it is one the
event has taken place. The event,-bit is set to one by an LKM 18 (Set Event)
request which refers to the particular ECB. Elsewhere the user may code an LKIut

2 (lJait for Event) request, referring to the same ECB, which will cause
execution to be suspended if the event-bit has not been set to one.

The task and the event it must be synchroni.sed with nay be in different user
programs within the same machine. That is Ëo say, a task in one program may be
synchronised with an event i-n another program.

Bits 2 to 15 may contain data relevant to individual LKM request sequences
which may refer to the ECB. In some cases ext.ra data nay be required in an ECB,
and this is coded in furÈher consecutive words. The number and contents of
these extra words depends on the indlvidual LKM requests, which are fully
described in Appendix C.

Where an LKM request sequence refers to an ECB, the contents of register A8
ooints at the first or onlv word of Lhe ECB.

P800 MAS Manual
2.0.28

October 1983

Chaining_

ECBs nay
follows:

be chained together. The construction of a chain nay be illusÈrated as

I

t___ECBI I event chain

address ECB2
|

___-___l
I

I urt
l0
I
|

--._.I furt
It__.

:

bir

her words ein-nfl-nGA by LKM

EC82

I address ECB3
|t___--______-_-_l

leventchain..
I

I uir bir
It_l

I further words (if any) used by LKM
It_.1

address ECB4

EC83

further words (if any) used by LKM

EC84 event, chain
bir bir

further wo.rds (if any) used by LKM

t________--l
ftg 3 ._13_ç!a m_Ii!_Ex"rpl e

As can be seen from the above illustraËion, the word precedlng the first ECB
(ECBI) contains the address of the beginning of the second ECB (ECB2), etc.

The chain-bit of the last ECB in a chain is coded as zero. The chain-bit of all
Èhe other ECBs in Èhe ehain is coded as one. In other words, when the chain-bit
of an ECB is set to one the word preceding the first or only word of the ECB
contains the address of the next ECB in the chain.

When an LKM requesL sequence refers to an ECB in a chain, register AB points at
the second word of the ECB. If the ECB ls the last in the chain. then rhe firsr
word- oTEe ECB will be zero.

15

PB00 MAS Manual
2.0.29

October 1983

MISCELLANEOUS MAS SERVICES

Time and DaÈe

Operator conmands are available to initialise or change the daÈe and the
Ëime.The time and date can be obtained and set by a program wit,h an LKM (l,int
to Monitor) request. They can be output by the BCP (Background Cornmand
Processor) onto the BCL (Background Command Language) 1og.

Debugging
The contents of memory words nay be printed by LKl"l requests, operator cornnands

or FCL (Foreground Comnand language) and SCL (Systern Commsn6 Language)
cornmands. The contents of memory words may be altered by FCL and SCL
comrnands ,and in emergencies by operaÈor commands.

Error Control

I'IAS traps all severe user errors, such as:
- The P-register containing the address of a word whlch does not
instruction.
- An instruct,ion atternpting to reference memory not allocated to
progrérm.
- A background program exceeding the time linit which the user specified for
its exeeution.

In the event of a severe error, MAS performs actions designed to enable Èhe
user to locaÈe the fault quickly. By using LIO{ 7 (Keep Control on Abort), a
program can request MAS noÈ to perform the standard actions in the evenË of a
serious error, but t,o transfer control to a user routine.

contain an

i.ts own

The standard actions which take place depend on whether the erroneous
is in the background or foreground.

For a background prograrn, the contents of the following are dunped to
command logging device through filecode /02:

program

the

- Program Status l.Iord (PSW);
- Registers Al to Al5;
- P Register;
- Floating-point Registers;
- Severity-code;
- Background machine (if DIIMP=PROG was given on the RUN cornmand);
- Whole memory (if DUMP=ALL was given in the RUN connand).
The BCL processor is then reloaded into the background nachine, ready to accept
further BCL commands.

For a foreground program, the program is placed in an abort sÈate and a message
is output on the comand logging device, containing the progrém ûâm€r the P-
register and the severity code.

The foreground machine may nor/ be dunped by the user or the operat.or. It is
also possible for the user to print the registers (P-reg, PSI^I, A1-A15, FloaËing
point reglsters) at the moment of abortion via the PRG command.

P800 MAS I'lanual
2.0.30

0ctober 1983

Floating Poi-nt Errors

Two LKl(s allow the user to rnodify the standard acËion taken by the systen in
the event of a severe error occurring during the execution of a floating point
instruction. These are:-

LKM 37 (Branch Ëo User's Error Extt);
LKI'I 38 (Cancel the Previous LKI"I 37, and reverÈ to sÈandard error action).

These two nonitor requests are described fu1ly in Appendix C.

In case of fatal errors, a jump to a Fatal Error l{alt location is performed and
register Al will contain an error code.

SPOOLING

Spooling is a Eerm used to describe a method of processing which simulates
several peripherals operating simultaneously. Under MAS the following devices
may be spooled:

The card reader;
The line printer;
The paper tape punchl
The graph plotter.

Spooled input to the card reader must be in the form of a JOB stream, which is
written to the card reader spool file and joins a queue of jobs watting to be
processed. When its turn comes to be processed, the job stream is read and
sÈarted as soon as the :EOJ or :EOB card irnage is encountered. If the output
peripheral has been declared as a spooled device, the ouÈput is written to the
specified output spool file and queued for output behind any previously queued
output. If this queue is enpty the output starts imrediatily after the output
file has been closed.

In the case of output spooling for foreground nachines, output is scheduled as
soon as the Write :EOF is sent to the outpuÈ spool file.

Using the Spooling Facility

Devices which are to be used for spooling must be defined as such at System
Generation time, and the following DAD's must. be set up:

D:SPCR for Èhe card reader,
D:SPLP for the line printer,
D:SPPP for the paper tape punch, and
D:SPPL for Èhe graph plotter.

Then, after machine declaraÈion, the operator conmand'st.art spooling' (Sp) can
be given for the appropriate device(s).

The system also offers the following supplementary spooling coûrmands:

Resune spooling following an error (not allowed on the card reader).
Delete the currenÈ spooled file (output only).
Rewind and restart spooling (output only).

- Rewi.nd to the beginning of the current page (output only).
Remove the vertj-cal fornat characters on the current LP output file.
Unspool output files still present in the spool queue from a previous run.

For a full description of these commands Ëhe user should refer to the operator
command SP in Chapt,er 5 of Èhis ParL.

P800 MAS Manual
2 .0 .31

0ctober 1983

TRANSIENT AREA

this is an area of memory within the system machine which is used to contai-n
those parts of l"lAS which are disc-resident, and consequently are loaded when
required. For example, to have all the routines associated with LKM 23(Assign)
memory-resident would take up too much memory. Sone MAS functlons can be
declared disc- or core- resident. at system generaÈion time. All transient
routines run within hardware level- 63, at software level 3.

ERROR LOGGING

Errors, detected durlng disc-, t.ape-, or cassetËe-access are retried up Ëo 5
times. Only when an error persisted 5 times, I"las reports the user that there
occurred an error on the device. Still, it night be interesting Èo know,
wheËher a device is giving errors now and then, so that a hardware engineer can
t,ake preventive acËions.
Therefore, Mas gives the possibility to 1og recovered errors in a flle. For a
description of this Error Logging facility see Appendix D.

P800 MAS ManuaL
2.O.32

October 1983

DATA MANAGEMENT

FILECODES

Filecodes are used to assign program files to individual peripheral devices or
disc areas. These codes are syrnbolic; consequently the actual device used can,
within reason, be changed at run Ëime.

For example, a program may require input data from a serial device. It may be
intended that it should be the card reader; however, shoul-d the operator find
it desirable, he may re-assign the inpuÈ file code to the console or the paper
tape reader, etc. Likewise, it may be intended that a program may ouÈput data
to the console; this output file nay at run Èime be re-assigned to the printer
or papertape-punch, etc.

Clearly this feat.ure of I4AS is not universal. Some complications nay possibly
result if, say, a papertape-punch is assigned to an input filecode.

Certain filecodes are reserved for MAS and have special significance. A list of
Reserved Filecodes appears lat.er in this ChapÈer.

The link between programs and devices is the Filecode Table. Under MAS

nachine contains a filecode table which aetinGJEEldevices required by
application running within the machine. A maximum of. 255 filecodes per
can be declared. Ihe filecode table consi-sts of 4 word chained entries
System Dynanic Area.

Reserved Filecodes

The following Filecode Reference List gives the reserved filecodes and
indicat,es within which machine or standard processor they are used.

I"lachines are shown as SYS for the system machine, FGR for foreground
machines and BGR for Èhe background machine.
Standard processors are shown as ASM for Assembler, FRT for ForÈran,
for Linkage-Editor, UPD for Update, LIB for Librarian.

The reserved filecodes are:
/01 and /02
/c0 thru /cF
/D0 rhru /D9
/eo tnru /nz
/nc rnru /rp
/r0 thru /16 and lw

The remainder are available to the user.

each
the

nachine
in the

P800 MAS Manual
3.0.1

October 1983.

MAS FILECODE REFEFûNCE LIST

FC Used For

01 Error l"lessages and Corrections
02 Co-mand Logging and Print Output
C* Physical Disc Drives
D0 l.lork File
Dl l^Iork File
D2 l.Iork File
D3 l{ork File Type UF

D4 Work File lype SC

D5 l,Iork File Type 0B
D6 l,Iork File fype LM

D7 Work File
D8 Work File
Drr Temp. Files
E0 Comrand Input
El ASCII Data Input
E2 Binary Data Input
EC CaÈ. Proc. Input Library
ED Tenp. File for Cat. Proc.
EE GeneraËed Cat. Proc.
EF Operator Commands and Messages
F0 System DAD (SUPERV) or

User DAD with F:PROC
D:CI File
DAD D:SPCR
DAD D:SPLP
DAD D:SPPP
DAD D:SPPL
System DAD wiËh S:PROC
oÈher DAD Codes
D:MSEG File

CONTROL TABLES

MAS maintains internal tables for each machine and each progran within each
machine. These are used to ensure Èhat commands and LKI"I requests are efficiently
processed. The construction of t,hese tables ensures that decisons affecting
machines and their prograns are taken by MAS depending on Èhe resurces they
require on the one hand, and their relative importance on the other hand.

DEVICE-TYPE CODES

Device-type codes are t\.ro-character mnemonics given Èo peripheral devices, as:
CR card reader
DK disc
FL Floppy Disc
LP li-ne printer
MT magneÈic tape
PL Plotter
PR high speed tape reader
PP high speed tape punch
TK cassette
TY console/typewriter
NO Dr:mny assignment
DD DAD

DY Display connected to Al'1A8.

Machines
SYS FGR BGR

Standard Processors
AS},1 FRT LKE UPD LIB

+++
+++
+++

+

++
++
++

+
+

+
+

+
+

+
+

+
+

+++++
+++

+

+
+
+
+
+
+
+
+

+
+

+
+

+
++
+++

1
ï
+

+++
+++
+++
+
++

+
+
+
+
+
+
+
+++
+

FI
F2
F3
F4
F5
F6
F*
FF

+

+

+

P800 I'IAS Manual
3.0.2

OcÈober 1983.

These mnemonics are used wiEhin language and operator coffitrands when it is
necessary to indicate a particular Ëype of peripheral device.

DISCS

Types

Five types of disc drives are available to be included - in P800 configurations:
the X1215 or X1216 disc, the CDC-SMD 40M or CDC-SMD BOM disc,the CDC-CMD discs,
ttte blC tixed ttead disc and the 0.'25M or IM Flexible-Gr Floppy) dis.'s.

Direct Access Device (DAD)

Areas of disc storage are known Èo MAS as Direct. Access Devices (DADs). This
tern should not be confused with the physical disc unit. In the same rÀray that
one physical eomputer configuraÈion can contain several 'machines', each
physical disc device can contain one or more 'DADs'.

TransacÈion-oriented Disc File lulanagement (TDFM)

An extended disc file managemenÈ system is available under MAS. It is described
in the P800 Programner's Guide 3, Vol. III: Software Processors, Part 7.

LOGICAL DISC (DAD)

The disc is divided into I or more sets of consecutive cylinders, each called a
logical disc or DAD. A DAD can be added or deleted by the LIB Standard
Processor, using the DCD or DLD commands.

Each user machine may use the disc space occupied by the DADs assigned to it.
The System machine uses the Systen DAD's, which are automatically assigned Èo

ir by IPL.

A VTOC (Volune Table of ConËents) at the front of the disc describes its DADs.
Each DAD has its sectors organised in a particular (not necessarily identical)
manner, as defined by two values, specified by the user when the DAD is created:

The number of sectors per granule.
The interlace number.

These values are specified:
As operator ansrrers to the following console messages output by Premark:

i/ OF SEC./GMN. OF XXXXXX:

// OF INT. OF)O(XXXX:
XXXXXX being a just defined DAD nane.
As values specified by the background rnachine user on Èhe DCD (Declare DAD)

command to LIB for the paraaeters:
NSPG=
NINT=

Before an explanation can be given of what these parameters mean, and what
factors the user should bear in mind when choosing values for Èhem, some

further concepts need to be introduced.

PB00 MAS Manual
3 .0.3

October 1983.

Userids

Each DAD is divided into one or more user areas called userids. The purpose of
this is to allow each background machine user a separate disc area. For fore-
ground and sysËem machines this is noË relevant, since each has only one user
and he uses the disc area of the first (or only) Userld in the DADs assigned to
his machine. A catalogue at the beginning of each DAD describes its location.

Files

Each Userid area contains zeto ot more fi-1es of user records. A DirecÈory at
the beginning of each Userid describes the location of each file belonging to
this user.

Granule

A granule ls the unit of disc space allocaËion for all files in one DAD, as an
integral number of sectors. For the first DAD on the disc, the minirnr:m is 8

sectors/granule; for the oÈher DADs, the rninimurn is 6. Each DAD has a granule
size. The maximum sector length for a DAD is 512 bytes (except for some system
DADs). Ihe granule sizes can be different for different DADs.

Each set of cylinders (Oln) consisÈs of a set of granules. A granule nay occupy
several tracks, and does not need to start or end on a track boundary.

The granules of one DAD may be:
The DA.D system granule. This uses 6 sectors of information abouÈ the DAD
for MAS (including 4 catalogue secÈors for this DAD). For the first DAD on
the disc, it also conÈains the IPL, defective track and VTOC and volume
label sectors.
A Directory granule for a Userid in this DAD. Each Userid has one Directory
granule, describing the locations of all the files for one user.
A granule allocated to a fl1e. Each file consists of one or more granules.
A granule cannot be allocated to more Èhan one file.
Unused granules. These are available for use by future files or for
extension of exist,ing files (if Èheir granule organisation allows this) or
for directories of future Userids.

A BITTAB in the DAD system granule indicates, for each granule ln the DAD,
whether it is used or unused.

Granule Organisation

When creating a new disc file, the user specifies whether the granules to be
allocated to it must be consecut.ive or noÈ.

If the granules are t,o be consecutive, the user must specify how many are to be
permanent,ly reserved for Èhe flle before wrlting any record to the file

If the granules are to be non-consecutive, the system will allocate a specified
number of granules (default 1) to the file; as soon as the user program has
filled this granule wlth records, another granule will be dynarnically alloeated,
and so on. When allocating a granule the system will choose any unused granule
in the DAD. A table at the front, of the file is maintal-ned automatically which
describes the DAD physical granules allocated to the file: logical granules 0,
I, 2 ... This table allows up to 200 granules to be dynanically allocated to the
file, and is called the GRANYB sector.

Some notes on how to decide whether to use consecuti-ve or non-consecutive
granules are given later in thls chapter.

P800 MAS Manual
3.0.4

October 1983.

Record OrganisaÈion

The user has Èwo met,hods available. Ihe I/O drivers for the disc always read or
write one sector at a time, except for floppy discs and CDC CMD discs.

Sequential

If the user wishes MAS to calculate the sector number(s) containing the user
record t-o be read or written and the user will always read and write the
records sequentially, he shou-I<l use the sequential record organisation.

Each record will have a header describing its length, and the last record,
will be followed by an end of file (:EOF) marker.
When the user i-ssues a Standard l^Irite LKI'I 1, the first free characters of
the current sector are used to cont.ain the record. If Èhe secÈor becomes
full, it is output and MAS continues if necessary writing the next
characters of the record in the next sector. If the end of a granule is
reached, MAS continues rrriting Èhe record in the first sector of the next
granule (which will be dynamically obtained if the file has non-consecutj.ve
granules) .
lJhen a Standard Read LKM 1 is given, MAS reads as many sectors as required
Èo extract the record into the user record area.

Direct Access

If Ëhe user wishes to access a file in which the records are not neccessarily
in sequential order, he must use Direct record access. In this case, the
required file relat.ive secÈor number must be specified when using the Direct
Read LKI"I I.

If a file is to be written by Direet Write LKM t, the required number of
granules must be specified when t,he filecode is assigned, as no dynamic
allocation of non-consecutive granules will be made by l,lAS.

Sectors per Granule

The ntrmber of sectors per granule can be specified to optimise disc efficiency.

For the first DAD on the disc it must be at least 8, since MAS uses sector 7 in
Èhe first granule of the first DAD for the VTOC. For every other DAD it musÈ be
aË least 6, since MAS assr:rnes sector 5 can be used for the catalogue. It must
be no less than the nuuber which would cause any file in this DAD to have more
than 200 non-consecutive granules. For example, a file with non-consecutive
granules,
which will require 3200 sectors, necessitates at least 16 secÈors per granule.

The larger the granule size, the larger will be the user direcÈories, and so
the greater the maximum number of files which one user can create in this DAD.
The larger the granule size, the bigger the amount of disc space allocated
every time a file with non-consecutive granules requires another granule, and
therefore, the more disc space will be wasted by files which do not conpletely
fill their last granule

If a file with non-consecutive granules is read sequentially, then the larger
the nr:mber of sectors per granule, the fewer the disc access arn movements
required Lo retrieve Ëhe sectors. Ihis is of course assuming Èhat the disc arm
is not repositioned by an I/0 operation to another disc file, during the
sequential read of the sectors for this file.

P800 MAS Manual
3.0.5

Ocrober 1983.

For Direct Access files with non-consecutive granules, normally one sector will
be identical to one user record. If, however, the user has designed a complex
file where one user record is contained in several logically eonsecutive
secgors, so that every user record will require one LKM I per sector to access
it, then to minimise the retrieval time for one record Ëhe granule size should
be as many sectors as ls necessary Ëo contain the record length (not less than
8 for the firsÈ DAD and 6 for subsequent DADs).
For example, on the X1215/16 tfre l,tAS Swapping Dad (D:CI) has 11 sectors per

granule, so lhat each granule contains one 2K core image page. The 1l sectors
can be retrieved in a loop which requires at most one access artn movement.
DISC FILES

Users may create nerf, disc files in the following ways:
- By assigning a filecode to a disc temporary fiLe (a set of consecuËive or non-

consecutive granules ln a DAD), using thls filecode to output records via LKI"I

I in a user program and then giving an LKM 40 (Keep File), or a KPF (Keep
File) coumand, when the file has been created.

- By the LIB commands SVU, CSF, CDF and LTO.
- By the UPD commands ! lOU or ! !KF.
- By giving KPF or K01"1 commands to LIB for filecodes assigned, by Standard

Processors or user programs earlier in the sarne :JOB Èo disc temporary files,
for background users and earlier in the session for foreground users.

Note that, users nay replace a catalogued disc file:
- By specifying Ëhe catalogued file on the CSF or CDF conmands to LIB.
- By specifying the catalogued file on the ! lOU cournand to UPD.

Catalogued disc files are idenËified by:
DAD FTLECODE (File code /FO-/FF).
USERID (Up to B ASCII characters);
FILENAME (Up to 6 ASCII characters).
TYPE (A 2-character code).
VERSION (A digit fron 0 to the value specified on the SMV command to LIB

for this Userid, wit,h a maximum of 7 and a default 0).

The attributes of a file are described by 4 flags:
- SysÈero flag
- Invisible flag
- I,IriÈe Protect flag
- Shared flag.

These are maintained by the LIB Standard Processor, and an explanation of the
meaning of these flags is given in the sections for the LIB co'nands SSH, RSH
etc. LKIvIs 32 artd 40 also set these flags.
The fornat of a file (record length, record organisation etc.) is not

described in the Direct.ory, but in the records t,hemselves.

P800 MAS l"lanual
3.0.6

October 1983.

File Granules

Granule Allocation
Files are always allocated on disc in granules and the user specifies, whether

Èhese are to be consecutive or not. A granule cannot be allocaËed to more than
one file. If a granule is erroneously allocated twice, the systen halts on
dectection with a fatal error (/tn;. Unused secÈors in allocated granules are
noÈ usable by other files.

The granules of a DAD are described in the BitËab (sector 0) of the DAD. Each
bit in the Bittab describes a granule, set E6lôîE means the granule is not
used, set Èo zero means that the granule is allocated to a file..

For non-consecutive files, the largest number of granules, that can be
allocated to a file is: (DAD sectorlength-I})/2. So for the most used sector
length of 410 bytes, the maximr:m number of granules in a file is 200.

For consecutive files, the largest number of granules that can be allocated to
a file is dependent of the lengËh of the DAD where it resides. The maxi-mtrm
length of a DAD is 32K sectors. So the maximum length of a consecutive file is:
number of granules in the DAD minus 2 (I granule for DAD information and one
granule for userid infornation).

The first two sectors of each file are not available for the user. So, when the
user addresses sector 0 of the file he gets the 3rd secLor of the first
granule.
File Header Sector

This is always logical sector 0 of file logical granule 0,
present by MAS.

GRANTB Sector

and is unused at

This is always logical sector I of file logical granule 0. It only contains
information for files with non-consecutive granules. Otherwise it is an empty
sector. The lay-out for a GRANTB in a DAD with a 410 bytes sectorlength is:

WORD

0
I
2-20t

202-204

CONTENTS
cylinder number (only used for XLZL5/Xl2L6).
length used (in characters) excluding words 0-1.
DAD physical granule nr:mber of file logical granule 0-199. A
\4rord containing zero means that there is no granule address in
this word of the GRANTB.
For OB files, file logical sectprs 0-n and n-1599 are usedl
Ehe file logical granules between n and m are unused, and
will have zero entries in the GRANTB sector.
0

P800 MAS Manual
3 .0.7

October 1983.

Record Sectors

A record is a sÈring of data which will be input to, or ouÈput by, a program
with one (nornally) LIOI I f/O Monitor Request.

Records of a file are contained in logical sectors 2 onwards of file logical
granule 0, and the remaining secËors in any other granules allocated to the
file, Ihe granules of a file may be consecutive or non-eonsecutlve, specified by
the user when he creates the file by assigning a filecode to a disc temporary
file. The four methods of doing this are by FCL ASG comnand, by BCL ASG conmand,
and by LKM 23 or 33; whichever meÈhod is used, when asslgning a filecode to a
disc tenporary file there is a parameter to specify whether the granules are to
be consecutive or not..
Note that, if a f ile is to be creaËed by DirecÈ l,lriLe LKM 1, the nunber of
granules required must be specified when the filecode is assigned, and no
dynamic allocation of non-consecutive granules will be made by MAS.

Choosi-ng the Granule Organisation l"lethod

- with consecut,ive granules:

A1l granules must be allocated when the file is defined by assigning a
filecode to a disc t.emporary fi-le. The user must know how many granules are
required. If too many granules are requesLed, unused granules are not freed
when the EOF (End of File) mark is written by the user. If too few granules
are requested, MAS will not, allow extra granules to be dynamically allocated,
but will return EOl,l (End of Media) status when the user tries to
write beyond the last granule alloeated.

If the DAD has suffieient granules to satisfy the requesÈed allocation
number, but they are not consecutive, the assignment is rejected.

Reading the granules sequentially will involve little disc head movement (if
no other task is sharing the disc) and therefore be faster.

- with non-consecutive granules:

The file may contain as nany granules as can be accomodated in the GRANTB
sector.

The user does not need Ëo know how many granules to request (unless the flLe
is to be created by Direct l.lrite LKM 1).

When a filecode is assigned to a disc temporary file and non-consecutive
granules are specified, l,lAS will allocate at least one granule and lniÈial-ise
logical sector 0 as the file header and logical sector I as GMNTB.
Subsequent logical sectors are fil-led by the user via LKM l. Whenever a
granule is fulI, anot,her granule is dynanically allocated (using the BITTAB
sector of the DAD, which is kept in memory) and the GRAI.ITB sector (on disc)
is updated. If a Keep File (LKI'I 40) is given, the BITTAB is
updated on disc.

An assignment is reJecÈed, when Èhe number of required granules is not. avail-
able on the DAD. However, it is also possible that a subsequent LKl,l I output
operation could fail because a nelr granule cannot be dynanically allocated.

Loading the file, and subsequently reading the granules in the order they
\A/ere created, may involve considerable disc access arm movement, especially
if the granules are spliÈ between cylinders.

P800 I'IAS Manual
3.0.8

October 1983.

Disc File Access

Disc files can be read by assigning a filecode to them (i.e. Asslgn a Filecode
to a CaÈalogued Disc File) and then using LIGI l. They may be de]-eted by LKM 41,
by the LIB Standard Processor or by the SCL DLF Connand. Ihe recommended
procedure to create a nen version of a cat,alogued file is as follows:

Assign filecode A to a disc catalogued file
Assign filecode B- to a disc temporary file
Read filecode A wittr LKt'l t
Modify records-as necessary
Write f ilecode B with LKI'I t (catalogue it wit,h LKM 40 or KPF).

If the filename and filetype specified in the last Keep File already exj.st in
the Directory for Ëhe DAD and Userid, then the file whose version number equals
the value specified on the SMV command to LIB for this Userid is deleted and
its granules are freed in the DAD BITTAS. Other versions have their version
numbers incremented by I, and the kept file becomes version 0.

To replace a version of a catalogued file, the following rnethods are available:
- Assign a filecode to it and use LKM I trtput operations to this filecode.
- Specify the caLalogued file on ! lOU or ! lKF command to UPD.
- Specify the catalogued file on the CSF or CDF command to LIB.

LKI'I I is Ëhus used for all input and output, A7 containing the type of I/0 to
be perforned. Depending on the type in A7, MAS start,s one of two Access
l"lethods. MAS does not pass user disc I/O requests direct to the disc drivers.
It is the Access Methods which conmunicate with the I/O drivers.

The two Access Methods are:
- Direct Access
- Sequential Access.

Direct Access

The Direct Access method only deals with sect.ors. It, can read a sector or write
a sector. In either case the user must specify (in the ECB pointed at by A8
when the LKM 1 is given) the file relative sector number. For Read, the numbers
are independent of each other. A program can thus request to Read the 74Èh file
relative sector, and then request to Read the 5th file relative sector. For
!ùrite, the user can write sectors in a non-sequential order, providing the
fllecode defines:
- either a disc catalogued file
- or a disc tenporary file, and the number of granules hras reserved when the

filecode was assigned.

Note that if the file has non-consecutive granules, a new granule is not
dynanically allocated if a DirecL l,Irite is given to a sector beyond the last
granule.

The Direct Access method does not. examine or convert secËors, but merely passes
Èhem between the disc and the user program. Direct access sectors thus have Èhe
format:
I^IORD CONTENTS
0 cylinder number (only for X1215/XLZL6, for other discs not used).
l-end user data
It is the user's responsibility to identify what is a record and which
sector(s) contain it.

P800 MAS Manual
3.0.9

October 1983.

For consecutive granules, to read a specifled sector, the Direct Access nethod
converts the file relaÈive sector number to a disc physical sector by
extracËing:
- The disc physical sector number of the file header sector for the file, frou

the Directory.
- The interlace number for the DAD, from the DAD BIÎTAB sect.or.

For non-consecutive granules, to read a specifi-ed file relative secÈor, it is
converted to a file logical granule number. This granule's DAD physlcal granule
number is found fron the GRANTB sector for the file, and the disc physical
sector can be calculated fron it. For example, the user requests Èo Read the
lOth record sector on the file (file relatlve sector nr:mber 9). Suppose the
VTOC for the disc says Èhat the relevant DAD has 8 sectors per granule. The
Directory for the relevant Userid is then located from the DAD catalogue
pointed to by the VTOC. The file is found in the Directory and its GRANTB

sector j-s read. The address of the second file logical granule is found from
the GMNTB. The required sector is the fourth logical sector in this granule.

Sequential access

The Sequential Access neÈhod is used if the user:
- will always $rant to read records ln Èhe same order Ëhey were created,

starËing with t.he first record. -Requires the system to identify Èhe
sector(s) containing the next record. For a Read, the systen will extract the
next user record from the sector in the blocking buffer (and, if the next
user record is not entirely in the current sector, it will read as many
subsequent sectors as required) and place it in a user record area. For a
write, the system will take the next record from a user record area and
format it, into as many sectors or parts of sect,ors as
necessary.

The sequential access nethod requires every user record to be written to
cont,ai-n a header field which describes the length of the record. Other header
and trailer lnformation will be added by the SequenÈial Access nethod itself,
and stored on the disc.

If consecutive granules are used, they are read and written sequenËially,
sector by sector.

If non-consecutive granules are used, they are allocated and written
dynamlcally. Ihey are read in Ehe order they were hrritten by using the GRANTB
sector.

The recording areas of sectors contain:
- Records. A record can be contained in several sectors, or a sector may con-

tain several records. A record tnay even be contained in more than I granule.
The maximum record length is 4095 charact,ers, since this is the size of the
buffer.

- An EOS enÈry. This is output by ASM at the end of each object module (since
object modules must always st,art ln a new sector). IÈ causes the Sequent,ial
access nethod to htrite the next user record at t,he start of the next sector,
even if the current sector is not fdf. The facility is also available for
users

- An EOF entry. llritt,en at the end of the file by LKM 1. It is always written
at the start of a new sector.

P800 MAS ManuaL
3.0. r0

October 1983.

The secÈor header (in word I of each sector) contai.ns:
BITS CONTENTS
0 I if the sector has been deleted
I I if the secÈor contains an EOS
2 L if the sector contains an EOF
3-15 the length in characÈers used in this sector (excludlng the 4

characters of word 0 and word 1).
All entries in the recording area (i.e. Records, EOS and EOF) have the format:

I^IORD CONTENTS
0 bit 0 is not used. Bit I is 1 if the record is an EOS.

Bit 2 is I if Èhe record is an EOF. Bits 3-15 contain the entry
length in characters, excluding this word and the next one.

I orlginal record length, Ln characters. (The system will have
removed trailing blanks from the user record, and added I
character if it then had an odd nrmber of characters.)

2 - (n-2) record data.
(n-i) file relative sector number of the sector containing the first

word of the record (usually designated 'S').
n displacenent of the first character of the record, wiÈhin the

sector defined by the previous word. It is 4 if the record is at
the,start of the sector recording area (usually deslgnated 'D').

EOS enÈry is /4004 followed by /0000 S O.
EOF entry Ls /2004 followed by /0000 S D.

A bLank card would be loaded to disc as 4 words containing:
4
80
S

D

For a detalled informat,ion about Èhe structure of DFI'I files, see volume V :

Trouble Shooting Guide.

P800 MAS Manual
3.0. 1 I

October 1983.

OPERATION

INTRODUCTION

This Chapter contains a brief descript,ion of the operation of the machine from
the initial load to the point at which the monitor is activated. Procedures for
running diagnostic routines, and de-bugging programs, are dealt with in the
P800 Trouble Shooting Guide. The Stand-Alone Dump, however, is also described
here.

THE CONTROL PANEL

The Control Panel of the PB57lP858 displays the contents and addresses of
locaÈions up to 12BK of main memory. I'Ihile the computer is running the
instrucÈions and their addresses are conÈinuously displayed, so ÈhaL when a
machine HALT occurs the address and value of the next instruction to be
executed can be read off.

The Control panel of Ehe P859/P854/P876 consists of two displays, When the
uachi.ne is running, one display contains'run'and the second contains an
event,ually set preset address. When the machine halts, one display cont,ains the
address of the next instruction to be execuÈed and the other display contains
that instruction itself .
Operator push butËons are provided for normal manual operaÈions, including load
and read facilities, for both registers and main meoory. In addition, a

bootstrap, held within a R01"1 located on the CPU board, is automatically loaded
inËo memory when the IPL button is pressed, and allows the loading of any
initial program load routine.

LOADING TI{E BOOTSTRAP

The bootst,rap is a basic program used Èo load more sophisticat,ed loader
programs, such as the IPL (Initial Pçogram Loader). In the PB00 systemsrthe
bootstrap is automatically loaded and started, when the IPL button is pressed.

When the conErol panel IPL buEEon is pressed, a bootstrap is eopied fron a 64-
(P857) or 256-(other machines) word ROM into memory, and this loads the IPL
from t,he device and channel specified by the seÈtings of the data swit,ches
(P857lP858) or by rhe pushings of rhe applicable burrons (P859/P854/P876).

For the various devices, the contents of the IPL data should be as follows:

Magnetic Tape: 0000 0010 10xx xxxx (e.g. /0284)
Cassette Tape: 0000 0111 10xx xxxx (e.g. /0785) IOP connected.
XL2I5/XL2I6 : 0110 yyyy llxx xxxx (e.g. /6582)
CDC-SMD BIGD : 0000 0001 00xx xxxx (e.g. /0116)
CDC-SMD BIGD2: 0010 0000 00xx xxxx (e.g. /2016)
DDC FI{D : 0100 0000 00xx xxxx (e.g. /400F)
CDC-CMD : 0010 0000 01xx xxxx (e.g. /2056) fixed part.
cDc cMD : 0010 0000 O0xx xxxx (e.9. /2016) cardridge.
Flex 0.251"1 : 0f00 0000 10xx xxxx (e.g. /4083) IOP connected.
Flex lM : 0f10 0000 00xx xxxx (e.g. /6083)

Where xxxxxx is the Device Address and yyyy is the interlace factor
(xl215/x1216).

P800 l'lAS l"lanual
4.0.1

October 1983.

The operation of the automatie loading facillty consisËs of 4 main steps:
Step I The bootstrap is copied from Èhe ROM into the first words of

memory
Step 2 The value set on the data swltches or input vla the buttons ls

copied into register A15
Step 3 The CPU is put into INHIBIT INTERRUPT stat,e
Step 4 The P register is loaded with zero and the CPU is started.

RUNNING THE IPL

I^lith IPL, from disc a progran is loaded, which determines whaÈ monitor is
wanted and where it is to be loaded.
The program outputs the following questions:
MONITOR? reply the name of a load module containing a nonitor, residing ln Ehe

first userid of the first DAD of the disc, or a questlon nark (?).
A question mark resulÈs in a print out of all load modules residing
in the first userid of the first DAD.

LOAD ADDRESS? reply the address where the monitor is to be loaded. Default
address (so (CD) is /0000.

I{ith the IPL prograro, it is impossible to load a MAS 8 monitor with Ext,ended
I"lode. Therefore, first a program has t,o be run to load the I"IAS 8 moniÈor. The
name of thaÊ program is LDMASR , so for an Extended Mode monitor Èhe first
question of the IPL program should be answered with: LDMASR.
The LDMASR program on its turn asks for the name of Èhe I,IAS 8 monitor to be
loaded by asking the _I"IONITOR? question again. The reply must be the name of a
load module containing an Extended l"lode monitor. The default (so (CR)) is: I,IASR

STARTING THE SYSTEM

When the IPL program has finished loading MAS, iÈ branches to an initialisation
routine, which performs a number of checks:

it checks the filecode of Èhe disc from which the IPL was made. If this
disc was not declared with filecode /C0 at system generation time, but with
filecode /Cx, iÈ exchanges the filecodes /Cx and /C0

- it discovers the total memory size of Èhe bare machine, and places Èhis
information in one of the tr{AS tables.
it eonpletes the set,t,ing-up of the system machine tables
it asks for the DATE (reply: yy,mm,dd) and the TIME (reply hh,mm[,ss] or
<CR)). Thls is only done in ExËended l"lode systems..
finally, it simulat,es the operator comrnand:

sl,I sYsTEl't
and exits. The system machine is start,ed and the system manager may now
enter SCL co mands t.o define and start the foreground machines to be used
in this session, plus the background machine if required.

CHANGING A DISC PACK

A removable disc pack may, unless it is on Èhe drive frorn whlch the IPL was
done - which is autouatically assigned Eo system machine filecode /CO - Ue
removed at, any tine during a session, and replaced by another removable disc
pack.

P800 MAS Manual
4.O.2

October 1983.

When this happens, MAS checks the volume nunber of the mounted pack against
the one of the dismounted paek. ff equal" l,lAS assumes that the same disc is
mounËed again and no action is taken. When the volume numbers differ, the
following actions are performed:

The device tables are updated.
All filecodes assigned to the disnounted disc are deleted.
The voh:me label of the mounted disc is printed on filecode /nf of the
system maehine.

Although a disc can be changed at any time, care should be t,aken, with
dismounting. It can abort programs, which accessed t,he dismounted pack.

There is no need for the operator to inform MAS (by an operator corrrmand or by
an SCL comrnand) that a disc pack is to be changed. The system will know this
automatically as soon as the drive becomes ready.
All messages are outpuÈ to the filecode /Ef' of the systen machine. If an

error occurs, one of the following messages is output:
DISC UNIT xx: VOLAB R-EAD ERROR,

The Volune label could not be read.
DISC UNIT xx: VTOC READ ERROR.

The Volume Table 0f Contents could not be read.
DISC UNIT xx: BAD TRACK READ ERROR.

The Bad Track sector of the mounted disc could not be read.
DISK UNIT xx: AN EXTENDED FILE USES THE OLD DISK.

0n the dismounted disc, an Extended File was assigned. As this file was not yeÈ
closed, still tables belonging to that file reside in core. Ihese tables have
to be written onto the dismounted disc, because else the Extended File will be
inconsist,ent. So remount the dismounted disc, close the Ext,ended File and then
change discs.

DISK UNIT xx: INVALID DISC TYPE.
In the Volume label, a Disc Type has been recorded, which is not known to the
system. Legal Disc lypes are:

l2I5 - Xl2t5 2.5M disc
I2L6 - XL2L6 5l,l disc
40M CDC SMD 40M disc
80I"1 CDC SMD 80M disc
FHD DDC Fixed Head disc
6875 - X1215 disc created by FTS
6876 - XL2L6 disc created by FTS
6877 - CDC SMD 80M disc created by FTS

Xl X1215 disc created by DOS P800
XZ - X1216 disc created by DOS P800
16M4 - CDC CMD 16I"1 disc removable part
16M2 - CDC CMD l6M disc fixed part
48MZ - CDC CMD 48M disc fixed part
80M2 - CDC CMD 80M disc fixed part
8I'1 BASF 6171 8M disc
24Nl - BASF 6172 24rI di.sc
FLD2 - Floppy disc type F3
FLDI - Floppy disc type Fl

If the disc has not been prernarked, the followlng error message is output:
DISC UNIT xx: VOLIJME SERIAL NTMBER ERROR.

In all messages, xx means the device address of the disc.

If the message giving the volume label is not printed, it means there was not
enough space in the System Dynamic Area to allocate memory to read the volume
label. MAS has not in this case updated its tables, and the operator should re-
ready the drive to ensure Ehat this is done. NoL prinÈing the volume label can
also mean Èhat a pack with the same volume number was mounted.

P800 MAS Manual
4.0.3

October 1983.

To
1)
2)

3)

4)

Warning

If the installation has two replacable discs with the same volume serial
number, and one is dismounted and the other is mounted in its place, MAS does
not re-initialise its tables. Using the disc may then cause considerable danage
t,o the data on the second disc, especially if Èhe two discs have different DAD,
Userid or file layouts. It is therefore strongly recounended that volume serial
numbers should be unique wiÈhin an installation.The s€rme can occur, dismounÈing
a disc, changing its 1ay-out on another installation and mounting it again on
the sâme unit, while no other disc was mounted on that unit. Also in this case
the disc can be damaged.

STAND ALONE DIJMP

The Stand-Alone Dunp is incorporated into I"IAS, but uses none of its facilities;
thus it may be used as a diagnostic tool when MAS itself has aborted wit,h gross
errors. It has thto ent,ry points, one to dunp the entire memory sPace plus all
reglsters (including the MMU registers), the other Èo durrp selected portions of
memory only, plus all registers.

run the dunp program, proceed as follows:
Press the INST button to stop the machine.
Read the contents of registers A0 (P register) and note it
down for later use in debugging the durop ouÈput..
For a full dunp, load A0 with /I2F0 and press RUN. The durnp is now output
to Èhe line printer.
For a partial dump, load A0 with /12FC; then press RUN. The systen will
halt again and now put in Al and A2 the starÈ address of the area Ëo be
dunped and in A3 and A4 the end address and press RUN again. Now the
partial durnp is output on the lineprinter. After any partial or full dump,
another dump can be made.

Notes:

a) If the line prinÈer is off-Line qr faulty, the dump routine loops.
Rectify the faultr put the printer on-line and t,he dunp proceeds.

b) When entering addresses in Step 4, the least significant bits of Al (or A3)
contain the most significant bits of the absolute address; A2 (or A4)
contains always Ëhe 16 least significant bits of the address.

P800 MAS Manual
4.0.4

OcËober 1983.

OPEMTOR COMMANDS

METIIOD OF ENTRY

Operator conmands are given on filecode /EF of the System machine. This
filecode should be assi-gned to an lnt,eractive device (such as a console), since
it is also used by MAS to send messages to Èhe operator (such as to reload
paper inÈo the printer).

LMK 25 (Read Operator Key-In) may be issued by user programs if it is required
t,o receive messages from t,he operator.

Operator commands are entered by the following procedure:

1. Press Ëhe cont,rol panel interrupt button.
2. Enter the command on filecode /EF after the'1"1:'which is output

immediatily on that filecode.

The left arrow or the Backspace (BS) key is used to delete the last input,
character currently in the buffer. It may be pressed several times
consecutively. If pressed n t,imes, a logical backspace of n characters is
performed. If there are no inpuË characters currently in the buffer, iË is
ignored.

The CAI{ key or the CNTL(D) is used to delete all input characters currently in
the buffer. Also all characters are ignored until a terminaËion character (CR)
is detected.

OPERATOR COM},IAND SYNTÆ(

Each operator eomtrand must obey the following syntax rules:

It must be terminated by a CR (carriage reÈurn);
It must be no more than I .physical line (for a keyboard, for example, a
maximum of 74 keys may be pressed consecutively, excludLng Backspace and
Can keys and the characters which these remove fron the input buffer).

Each command has the format,:
A two character mnemonic code.
One blank.
Zeto ot more positlonal- parameters.

Each positional parameter consists of:
Zero ot more non-blank ASCII characters (zero ls only allowed for optional
positional parameters). Hexadecimal- values, when required, are not preceded
by a / symbol.
A comma, if it is not the 1asË posi.tional parameter for this operator
command. Othernise the CR key.

P800 I'IAS Manual
5.0.1

October 1983.

COMMAND DESCRIPTION

All operator coruûands are actloned by routlnes loaded lnto the transienË area
of the system machine. Iherefore, other servlces whlch require the transient
area cannot be perforned simultaneously. So care must be taken Ëhat one operaËor
command does not give rise to an operator meaaage (such as the PU message).
If this happens, the operator command is ignored. An exarnple of this is the case
where a 'DM' eommand Ls given, but the device attached to fil-ecode /OZ of the
system machLne (the device on which the dump would appear) has not been made
ready. The usual 'PU' message requesting the operator to ready the device
cannoÈ be output, because the transienÈ area is already ln use.

If Èhe operaÈor command is reJected, an error message will be printed on the
devlce assigned to the system machLne fllecode /nr.

P800 MAS Manual
5.0.2

october 1983.

Abort a User Program

FORMAT 1

AB Abort the background progrem.

The program in the baekground machine is aborted (unless it is the BCP).

If the background program issued an LKI"I 7 (Keep Control on Abort), control is
given to the user abort label specified, and an abort code of 06 isplaced in
the Abort Control B1ock. It is then the user's responsibil-ity whether to abort
or not by issuing LI(M 3 with an exit code and postmortem dump flag in 47.

Otherwise, the posËmorten dunp flag is set on by MAS, and a dump will be
performed according to Èhe DIIMP paraneÈer on the BCL RUN or Processor CalI
command which activaÈed this program.

(Note that for systems wiËhout ExÈended mode postmortem dumps are a SYSGEN

option, and if this option is not selected, a postmortem dump is never
performed.)

If Èhere was a previous BCL : STP comrnand in this JOB and the ABCD parameter was
specified on it, MAS will set the severity code to thE-specified value.
other$rise the severity eode is set to /7F.

The BCP is then reloaded, and processes the next BCL command fron the filecode
/n0 (unless a catalogued procedure is in use) of the background machine. It will
be processed or flushed according to whether it is a step terminator (:STP, :JOB

:EOJ, :EOB); if not, whether the severity code exceeds the :STP value allowed.

One of the following error messages will be output if the AB command for t,he
background machine is rejected:

MACIIINE UNKNOWN (no Batch machine declared)
PROGR INACTIVE (no SB operat,or command given or BCL :EOB has been read).
BCP PROCESSOR! (the BCP processor Lras acÈive)
PROG ALPJY ABORTED

AB AB

P800 MAS }danual
5 .0.3

October f983.

FORMAT 2

AB machineid, prograrnid Abort a foreground program.

machineid a foreground nachine name on a previous SCL DCF command
(i.e. SYSTEM or BATCH not allowed).

progranid a program naûe on a previous FCL coumand (LOD, REP, RON or
SWP) for the same foreground machine, or a Mlddleground
Program.

The foreground program is abort,ed. A message is senÈ Ëo filecode /01 of that
foreground machine, to allow the user Ëo request a dump for core resident
programs or Lo print out the registers. The program is placed tn an abort
state, which means:

- The current, task can never exit. (For a re-entranE program, all Èasks are
placed i-n the abort state.)

The tasks in its activation queues wLll never be sËarted.

No new activation queue entries can be created by FCL CNT commands, or by
LKM 10 (connecË a program to a timer) or 12 (activate).

New activations by previous LKI"I 10 will not be made.

LKM t2 will return stat,us code -6.

Disc resident programs are swapped out.
The user may reactivat,e Lhe progran by an FCL RUN or FCL ACT, but not by an FCL
CNT conmand.

An FCL ACT comrnand resets the abort flag in the PCT for the program. Future
FCL CNT or LKM activatlons will then be accepÈed. The FCL RAB command can also
be used to reset Ëhe abort f14g in a PCT.

One of the following error messages will- be output if an AB operator command
for a foreground progran is rejected:

PROG NAl"lE MISSING (only one parameter rùas given)
I^lIlAT IS THE 3RD PARAI'{ETER (after the 2nd parameter a corma was detected)
MACHINE UNKNOWN

PROGR UNKN0I^IN

PROGR INACTIVE
SYSTEM PROGT

. PROG ALREADY ABORTED

Note: Ihe aborÈ of a program in the wait staÈe can only be conpleted when the
event waited for has occurred.

P800 MAS Manual
5.0.4

October 1983.

AS

FORMAT

Asslgn System Filecode AS

AS fc,dndd

fc a filecode of one or two hexadecimal digits, without a preceding
/ character.

dn a non-dlsc device name of two charact,ers; see Chapter 3.
aii device address; Èrùo hexadecimal digits.

The AS operator command is used to assign a sysËen machine fi-lecode Èo a non-
disc device. When the device name is 'N0', the dd parameter must be onitted and
the filecode will be assigned to a dr:mrny device.

One of the following error messages will be output on system machine filecode
/EF if an AS operator cornmand is rejected:

PARA},T TOO LONG
The fc parameter contains more than 2 or the dndd parameter rnore than 4
characters.

INVALID FILECODE
The fc parameter contains non-hexadecimal charact,ers.

INVALID DEVICE ADDRXSS
The dd parameEer contains a device address thaÈ has not been generated in the
system.

SYST. DYN. AREA OVEPJLO}J
There is no place in the System Dynanic Area to create the File Code Table.

DEVICE UNKNOWN

The dn parameter cont,ains a device name that does not exist or has noÈ been
generated in the syst,em.

P800 MAS Manual
5.0.5

October 1983.

CR PaËch Menory

FORMAT

CR fc

fc a system machtne filecode. It must already be assigned (by IPL or
by an SCL ASG comnand), and the device must, be reaày. If not,
nothing will happen.

The memory will be updated fron a set of sequenÈLal- records (read from fc).
Each record except the last has the syntÉrx:

arvOIrvl]...

where a, v0, vl, etc. have the same meaoings as for the WI'I operator conmand.
lhe last record is an EOF record (the format varLes accordLng to the device)
for the sequential access nethod. The transient area is blocked untiL this ls
read.

One of the following error messages will be output if a CR operator conmand is
rejected:

I/O ERROR
F.C. ERROR

One of the error messages shown for WM wiLl be output if a record is rejected.

CR

P800 MAS Manual
5.0.6

October 1983.

DB

FORMAT

Dunp t.he Background l"lachl-ne

DB Ifrom[,to]l

from a relative address (up to 4 characters) defining the first word
of the back-ground machine to be duroped. Default is the first
word of the first page allocated to Èhe background machine
(relative address /0000).

to a relative address, greaÈer thanttfrom" and up to 4 characters,
defining the last word of the background nachine to be durnped. Is
ignored if "from" was omitted (so, when the conrma is given). The
default is calculated so that only one line of dump will be
print,ed, but if rrfromrr is also onitted, the entire background
machine will be dumped.

Note:

For a disc-resident background machine, Èhe maximum penûitted relative address
varies during t,he session, as the pages are dynamically allocated from the
cormlon dynamic loading area whenever a program starts. The maxirnum posslble
allocation is 16 pages. For a memory-resident background machine, i.n addition
to the rules above, boEhttfromtt and ttÈo" must not exceed the maximum relative
address iroplied by the first parameter of the SCL DCB command.
The specified (or defaulted) nenory locations will be dtrnped to filecode /O2 of.
Èhe batch machine. DB does not block the system machine transient area, slnce
it uses the core resident dump routine.

The output generated by the DB command starts with:
DB FR0l,1 xxxx T0 yyyy

followed by the dump.
One of the following error messages will be output if a DB operat,or conrmand is
rej eeted :

MACHINE UNKNOhIN

The Batch machine was not declared.
INV. ADDR

The second paraneter was not greater than the first, one.
ADDR. FORBIDDEN

Both or one of the specifled addresses were out,side the area of the Batch
machine.

DYNAMIC AREA OVFL
There was no place in the Systen Dynanic Area to allocate a buffer for
generating a dunp line.

PARA},I ERROR
The first or second parameter did not contain up to 4 hexadecimal eharacters.

DB

P800 I'IAS l,lanual
5.0.7

October 1983.

DM Dump l"lenory

FORMAT

DM alra2

al a number up to 5 hexadecinal digits O-FFFFF giving the absolute
address of the first byte t,o be dumped.

aZ a number up to 5 hexadecinal digits, not less than al and not
more than FFFFF, giving the absolute address of the-lasÈ byte to
be dumped.

The DM operator cornmand can be used when the system manager wants to give an
SCL DllI'I command but unfortunately has already given the SCL BYE command, or it
may be used when a foreground user wishes to give Ëhe FCL DlJluî command but has
already given the FCL BYE command. Alternatively, it may be used Èo durnp a
memory area whlch is noL wholly allocated to one machine.

To dump memory in the background machine Èhe DB operaÈor command should be
used, as this does noÈ use a Èransient routine.

The Dlvl command ls an emergency facility (perforrned by a transient routine with
software level 3) which will dunp the specified memory to filecode /02 of the
System machine. The translent area is blocked while this is done.

If nothing happens, it means the following:

Filecode /OZ of the syst,em machine defines a device which requires operator
intervention at this moment. The system does not bother about that, and sends
the dunp to a dummy device, until the dump has been output or the device has
been readied.

One of the following error messages will be output if a DM operator conmand is
rej ected :

PARAI'{ MISSING (not 2 pararleters in the comnand)
PAMM ADDRESS T0O LONG (a1 or a2 have more than 5 hexadecirnal digits)
ADDRESS VALUE NOT IIEXA (al or aZ do not contain hexadecinal digits)

DM

PB00 MAS Manual
5 .0.8

Ocrober 1983.

KI Key-In Unsolicited Message

FORMAT I Background Machine

KI BATCH, s ,rn

FORMAT 2 Foreground Machines

KI urprsrB

u a foreground machine name specified on an SCL DCF comtand.
p a foreground program name. This should not be a re-entrant

program.
s two characËers, identifying for which request the

message applies as definied in the previously given LKM 25.
m the message Èo be transmitted, to Lhe task's LKl"l 25 buffer. The

message is terminated by the firsÈ blank, comma or CR, providing
this occurs before the requested length is reached.

The KI operaÈor command is used to enter a message to a t,ask which has issued
an LKI"I 25 request,

One of the following error messages will be ouÈput on system machine filecode
/EF if a KI operator command is rejected:

PARAI,I MISSINGThe command does not contain the predefined number of
paramet,ers.

MAC UNKNOWN
The specified nachine name does not exist or contains more than 6 characÈers.

PROG UNKNOWN

the specified program name does noE exist in the machine or contains more than
6 characters.

SP CH UNKNOWN

Although the program is expected some KI command, the specified special
characters do noÈ belong to any LKI'I 25 given. The message can also mean that
more than two special characLe.rs have been given..

I"IESS TOO LONG

The message given in the KI cornmand contains more characters than expected in
the program.

KEY IN NOT EXPECÏED
The progam is not expecting any KI conmand.

Notes:

- Two special characters that need not to be equal have to be specified. Blank
special characters are accepted, but in that case a blank is not a separator
character, so that another blank has be be given as separator.

- I,Ihen the mnemonic for an operator command is unknown, the system assr:rnes the
typed characters are special charact.ers for a çf g6mmand. It searches all
programs in all machines to check if there is a progran expecting a KI command
with special characters equal to the Ëyped mnemonic. So defining special char-
acÈers unequal to any operator conmand and unique in the system, the layout
of the KI command can be:

s m (s: special characters, m: message)

If no program has an outstanding KI for this special character, the error
message: UNKNOWN COMMAND

Meaning, that the mnemonic is not equal Èo any operator comrnandr nor is any
program in any machine expecting a KI with the typed special characters.

KI

P800 MAS Manual
5.0.9

October 1983.

-f

OF

FORMAT

Device Off

0F da

da two hexadecimal digits without a preceding / character,
representing the 6-bit device address of a non-disc device.

OF is used t.o inform Ëhe system that a non-disc device may not be allocated to
user or system programs.

If, for example, a program issues an LKI'I 23 type 0 (Assign a Filecode to a
Physical Device) where there are several devices of the required device type
available, but t,he program does not specify which device is to be assigned,
then an inoperable device will not be chosen for the assignment. Sinilarly, a
BCL REQ conmand or LKM 54 will not result in an 0F device being alloeated.

One of the following error messages will be output to system machine filecode
/EF if an OF operator command is rejeeted:

PARA}4 },lISSING
PARAM TOO LONG

INVALID DEVICE ADDRESS

UNKNOWN DEVICE ADDRESS
DISK DEVICE CANNOT BE PUT ON/OFF

Not,e:--OFt for a device which is already 'OF' ls ignored.

OF

P800 MAS Manual
5 .0 .10

October 1983.

ON

FOR},IAT

Devlce On

0N da

da two hexadecimal diglts without a preceding / character,
representing the 6-bit device address of a non-disc device which
has been. specified on an OF operaÈor coûlmand glven previously in
this session.

ON is used to inform the systen that a non-disc devlce, previously declared
unusabler mây now be used by MAS.

One of Èhe following error messages will be output to system nachine filecode
/EF if an ON operator command is rejected:

PAM},I I'IISSING
PARÆ{ TOO LONG
INVALID DEVICE ADDRESS

UNKNOWN DEVICE ADDPGSS
DrsK DEVTCE CANNOT BE PUT ON/OFF

Note:

'ON' for a device which is already 'ON' is ignored.

ON

P800 MAS Manual
5.0.11

0ctober 1983.

PK

FORMAT

Disc Premark

PK cn[,{V I lli]

cn the disc file code of the physical disc drive containing the disc pack
to b-prenarked (CI-CF).

V the disc has already been premarked. Only Ehe VTOC is to be
reinitialised.

W all home addresses and identifiers are Èo be wriÈten, but are not to
be checked.

If neither V nor I^I is supplied, all hone addresses and identifiers are
written and checked.

1) xr2r5/ 16/FHD

Premark performs the following operations:
I,Irites and reads all sectors of all cylinders of Lhe whole physical dise.On
bad spot detection it declares the corresponding track bad and records Èhat
track in the bad track sector in the first granule of the first DAD
(seetor 6).
Formats each track t.o contain 16 (for XI2L5/I6) or 43 (for FHD) physical
sectors of 205 words, and inl-tialises Èhe first word of each sector to be
its logical cylinder nuuber.
Allocat,es cylinders to the first DAD on the physical disc, according to
operator speeificati.ons. As well as specifying the number of cylinders Èo
be assigned to the DAD, t,he operator specifies how the cylinders are to be
forrnatted into granules (i.e. the number of sectors per granule, and the
interlace factor).
Initialises the first 2 granules of the physical disc to contain
infornation about the disc pack and the firsÈ DAD, namely:

Granule 0:
BITTAB sector (sector 0);
IPL sector (1);
Catalogue secÈors for Èhe first OeO (2-5);
Bad Track sector (6);
VTOC sector (7).

Granule 1:
Directory sectors for the first DAD.

Premark is perforned in the transient area of the system machine. Premark is
started by the Operator Coumand PK entered on the system machine operator
console.

Premark out.puts a series of messages on the Operator console, to which the
operator must reply. If a reply to a question is invalid, the question is
repeated. The operator can terminate a PK operat,ion by replying AB to any
questj-on. Each reply musÈ be termlnated by CR.

DK TYPE (1215, 1216, FHDI, 2, , ,g):
4 ASCII characters defining the disc type. For FHD 8 disc types,
FHDI, FIID2, -- FHDS can be specified depending on the disc
capacity.

LABEL: I to 16 ASCII characters for Èhe disc volume label (not begin-
ning with 'AB').

PK

P800 MAS Manual
5 .0. l2

October f983.

PACK NBR: I to 4 hexadecinal characters without a preceding I for the disc
pack number. This must be unique for each disc pack.

DAD NAME: I to 6 ASCII characters for the name of the first DAD (not
beginning with 'AB').

i/ OF CYL oF XX&GX :

A number from 1, specifying how many cylinders are Èo be reserved
for the first DAD (whose nâme is XXXXXX). Cylinders will be
allocated eonsecutively fron cylinder 0 onwards.

/I oF INT OF XXXXXX :

An odd number frorn 3 to 15, defining the interlace factor of the
sectors for the first DAD (whose name is X)OffiXX).

iI OF SEC./ cnAN oF XXXX}tx :

A number (ninimum 8), specifying the number of sectors per
granule f or the f irst DAD (whose nâme is)()()(XXX). It musÈ not
exceed the nr:mber of secÈors per cylinder (321.

SYST. USERID:
I to I ASCII characters, giving the name of the first Userid for
the first DAD. A DirecÈory for this Userid will be created.

PASSIIORD: 0 to 4 ASCII characters. Ihis is the password associated with the
first User of Èhe first DAD. It is used only by User Accounting
rouÈines.

ACCOUNT#: 0 Ëo 4 decinal eharacters, representing a positive value fron 0
to 9999. This is the account number associated with the first
Userid of the firsÈ DAD. It is used only by User Accounting
routines.

Premarks ends successfully with the following message:

i/ OF DEF. TRACKS : nnnn

Prenark ends unsuccessfully with one or more of the following messages:

NR OF INT NOT COMPATIBLE I,IITH NR OF SECT/TR
The interlace factor and the number of secÈors per track have a conuon
divisor, not equal to l.

NR OF INT NOT LESS THAN NR OF SECT/TRACK
The int,erlace factor is greater than 16 (for X1215/16) or greater than
43 (for FIID).

T0O MANY DEF. TRACKS: n
(n is a number over 6). The disc pack is unusable.

BAD TRACK IN FIRST CYL.
Cylinder 0 is defective. The disc pack is unusable, since the
Defective Track Table sector must be written in Cylinder 0.

THRUPUT ERROR

SEEK ERROR

XPCTD: c1 RIAD: c2

where c.' and e, are the co-ordinates of the expected sector and
the secÊor acËùally read. The format is 12 hexadecimal digits:
cccchhhhrrrr (cylinder No./head No./sector No.). This Bessage
indicates Èhat an error was detected while checking identifiers.

For FIID two additional error messages can be outpuË:
SECTOR NOT FOUND

LOCKED OUT SECTOR ADDRESS

P800 MAS Manual
5.0.13

October 1983.

After the PK Operator Comand, there may occur one of the following messages:

FC MISSING
No filecode was specified on the PK command.

INVAD PARAM

The fllecode is invalid.
INV. FILECODE

The filecode is not assigned to a physical devj.ce.
FILE CODE NOT ASGN

The filecode is not in the system machine fllecode table
(initialised at SYSGEN).

INV. DEVICE
The filecode is assigned, but not to a disc unit.

UNKNOI^IN DEVICE
The reply on the DK TYPE quest,lon is not one of the given
possibiliÈies.

DVCE NOT OP

The dlsc Ëo be prenarked is not operable. l,lake it operable
and restart the premark process.

2) CDC Sr'rD DrSC

This is identical to that for the X1215, except that:
Ihe number of cyllnders for the first DAD is not restricted to the disc
capacity but to the Bittab length and the maxioum number of secÈors in a
DAD (32767)

- The nunber of interlaces is noÈ necessarily a nunber from 3 to 15.
Ihe number of sect,ors per track is noÈ restricted to 16.
The sector length is not restricted to 205 words.

Three extra quesÈions are sent to the console when a Premark is made of a CDC-
SMD disc:

PACK CERTIFIED? (Y OR N):
For CDC disc a utility exists Èo cerÈify it. This utility, named COPY

is described in Appendix E. The Copy utillty searches bad tracks on a
disc and builds a bad track sector. By answering this question with
'Y', premark takes the existing bad track sector into account.

DK TYPE (40, 80, 150, 3001"1):
0n1y 40M and 80M discs are known to Mas at present, so only 40I"1 or 80M
should be specified.

/I OF SEc./TRAcK OF XXXxl<x:
sEc. LENGTTI (rN CHAR) 0F XX)(XXX:

In the last Èwo questions, the operator should enÈer a positive non-zero
decimal number of I to 2 ot 4 characters.

If the sector length is too large or Èhe nunber of sectors per track is too
large, the following message is output:

SECT/TRACK OVERFLOI^I

If Èhe DAD declared is too large, one of the following error messages is output:

DAD MUST NOT EXCEED 32768 SECTORS
DAD TOO BIG BITTAB OVERFLOW

P800 I"IAS Manual
5.0.14

October 1983.

If an error occura that cannot be recovered by prenark, Èhe message:
CERTIFY TIIE PACK BEFORE PREMARK IT

is output.

CDC-CMD dlscs

the questionLng for CDC-CMD discs is sinilar to that of the CDC-SMD disc. 0n1y
the question about the disc type differs:

DISK TYPE:
CDM : 16M4 (REMOVABLE PART),
L6M2, 481'12, 80M2 (FIXED PARTS),
Æ.ISWER:

The answer must be one of the mentLoned dlsk types.

FLOPPY disc

The questioning of the floppy dlsc l.s slnilar the that of the XI2l5/16 discs.
Again, the disc type question differs:

FLOPPY TYPE Fl OR F3
The answer must be Fl (DOS conpatible floppy with one DAD) or F3 (floppy dlsc
wlËh the posslbility Ëo contain more than one DAD). Furthermore, for floppy
discs the SECTORLENGTII question is asked and the INTERLACE question may be
answered with l.For the layout of floppy disc, see Appendix E.

P800 MAS Manual
5 .0. 15

october 1983.

PS

FORMAÎ 1

Pause a User Program

Pause the background program.

PS

PS

The background machine (i.e. the program currently residing in it - Èhe BCP, a
Standard Processor, or a user prograrn) will be placed in the pause state. The
pause will be terminated by the RS operator coumand. The TIME parameter in the
RUN comrnand is not overrruled by this command.
When a swappable batch program ls put in pause, the program is swapped out.If
the background nachine has noÈ been defined the following error message is
outpuË:

},IACHINE UNKNOWN

If the current program in the background nachine is already in a pause state
(because the PS operator command has already been given, or the program has
issued LKI"I 6, or a BCL PSE conmand was the last BCL comrand processed) , the
following error message is output:

PROG ALRDY IN PAUSE

If the SB operaÈor command has not been given, or if the BCL :EOB comrnand was
the last BCL command processed, Èhe following error message is outpuÈ:

PROGR INACTIVE

FORMAT 2 Pause a foreground progran.

PS machineid, progranid

rnachinei.d a foreground machi-ne identifier specified on an SCL DCF

command (i.e. SYSTEM or BATCH noË allowed).
prograrnid the name of a program running in the foreground machine.

The program is swapped out if it is disc residenÈ.

A re-entrant, foreground program can be put in pause but, since MAS is searching
for the first program with the specified ûâm€r only the first activated task
can be put in pause.

The paused program can be restart,ed by the
following error messages will be output if
comrand is rejected:

RS operator eonmand. One of the
a PS foreground program operator

PROG NAI'{E I"IISSING (only one parameter \ras specified)
WHAT IS THE 3RD PARAI4. (nore than two parameters rrere specified)
SYSTEM PROGR! (the system machine rras specified)
MACI{INE UNKNOI^JN

PROGR INÀCTIVE
PROG ALRDY IN PAUSE

P800 MAS Manual
5.0. 16

0ctober 1983.

RS Restart a User Program

FORMAT 1 Restart the background program.

RS [a7l

a7 the value to be contained in A7 on return to the program. The
default is the value when the program was paused.

This command terminates the pause state of the background nachine. It may be
used, for example:

After a PS operator comnand specifying the background machine.
After an LKl"l 6 or LKM 54 issued by the current background program.
After a BCL PSE, REQ or ROI command has been processed.
After an SCL or FCL PSE comnand has been glven for the background machine.

One of the following error messages will be ouÈput if the command is rejected
(the first 3 messages apply only if a parameter is specified):

PARA},I TOO LONG

BATCH MACHID UNKNOWN

BAD A7 PARAI"I VALUE (value to be put in A7 was not hexadeciroal)
PRG NOT IN PAUSE

FORMAT 2 Restart a foreground program.

RS machineid rprogranid I ra7]

rnachineid a foreground machine name on a previous SCL DCF connand
(i.e. SYSTEI'{ or BATCH not allowed).

progranid a program name on a previous FCL conmand (LOD, RON or Sl{P)
for the sarne foreground machine.
the value Èo be contained in A7 on return to the program.
Ihe defaulc is the value when the program was paused.

A }tiddleground program may aLso be specified.

Thls command terninat,es the pause sÈate of a foreground program. IE rnay be
used, for example:

AfÈer a PS operator conmand for the same foreground rnachine and program.
After an LKM 6 issued by this foreground program.
After a FCL PSE comand for this foreground nachine and program nameo

One of the following error messages will be outpuÈ if the command is rejected:

PARAM TOO LONG
MACTIID UNKNOWN

PRG NAI"IE UNKNOI^IN

BAD A7 PAMM VALUE
PRG NOT IN PAUSE

Note:
E-on1y one parameter hras specified, MAS assunes that Lhe RS was given for t.he
Batch machj.ne with the parameter containj-ng the a7 value.

RS

a7

P800 MAS Manual
5 .0. 17

October 1983.

SB Start the Background I'lachine

FORMAT

SB

This can only be entered after the SCL DEN command has been glven, endlng the
definition of the background machine.

The BCP will be loaded from batch rnachine filecode /f0 into Ehe background
machine. If a memory-resident background machine was defined, the BCP ts loaded
into the pages reserved by the SCL DCB conmand. If a swappable background
machine was defined, the BCP is loaded into pages allocated fron the common
dynanic loading area shared by all nachines, and its core-inage is copied Èo
the swapping file (D:CI) defined by systen machine filecode /ft. ftre BCP will
start to read BCL commands from the device defined by Batch filecode /E0.

One of the following error messages will be output if a SB operator eommand is
rejecÈed:

BATCH MACHINE UNKNOI.IN

No batch machine was declared
MACHINE RUNNING

An SB command was already received by the system
MACHINE IN GENERATION

The system received already a DCB, but not yet a DEN command
/EO ASGN TO NO DEVICE

The connand input filecode is assigned to a dunmy device
/eo nor Rscu

No conmand input filecode was deelared
BATCH MACHINE /FO NOT ASGN

The filecode, conLaining the BCP processor has not been declared
SYSTE}'I DYNAMIC AREA OVERFLOI.T

READ FILE I/O ERROR

Reading Èhe BCP processor into nemory, an I/O error occurred
BCP PROCESSOR NOT CATALOGUED

No BCP processor resided on filecode /F0
D:CI DAD F.C. /FI NOT ASGN

Filecode /Fl was not assigned in the system machine (only for swappable
background nachine)

D:CI DAD OVERFLOW
The D:CI DAD contained not enough sectors to contain Èhe BCP processor core
images (only for swappable background nachine)

BATCH }.,IACHINE MEMORY OVERT'LOIJ
The nr:mber of pages, specified in the DCB cornmand for a core resident
background machine were not enough to contain the BCP processor.

SB

P800 MAS Manual
5.0. 18

0ctober 1983.

sc

FORMAT

Set Clock

SC h,n[,s]

! one or two diglts from 0 to 23, representlng the hour.
m one or two dlglts from 0 to 59, represenÈing the minut,e.
s one or two digits from 0 to 59, representlng the second. DefaulÈ 00.

The SC operator comnand is used to initiaLise or reset the systern clock. After
a porrer failure, for exanple, the System manager may not have noticed it and
thus will be unaware of Èhe need to give an SCL CLK command.

One of the following error messages w111 be output to system machlne filecode
/EF if an SC operator conmand is reJected:

PAMM I'{ISSING (less Èhan two paraneters given)
PARAI'{ TOO LONG
SECONDS VALUE TOO BIG (>59)
MINUTES VALUE TOO BtrG (>59)
nouRs VALUE To0 Brc (>23)

SC

P800 MAS Manual
5.0. I9

October 1983.

SD

FOR}.,IAT

Set Date

SD d,mry

d one or two dlgits representing the day, Minimum l. llaxLnun 31 if
n ls 1, 3, 51 7r 8,10 or 12; 30 if n is 4, 6, 9 or 11;29 if m

is 2 and 1900+y Ls divlsible by 4; 28 oÈherwise.
m one or two diglÈs I to 12, representing the month.
y one or t!ùo diglts 0 to 99, representing a year frorn 1900 to 1999.

The SD operator connand is used Ëo set the date fteld in memory.

One of the fol-lowing error messages w111 be output to system machine filecode
/Sl it an SD operator command ls reJected:

PARA},I MISSING
PARAI'{ TOO LONG
I.IIIAT IS ÎIIAT YEAR?
I^IHAT IS THAT I'IONTH?

I.IHAT IS TTTAT DAY?
IT IS NOT A LEAP YEAR

SD

P800 MAS Manual
5.0.20

October 1983.

Sl"1

FOR},IAT

Start a Machine

SI"1 nachineid

machineid a) 'SYSTEM' , to start the SCL processor after iÈ has been
stopped with an SCL BYE command.

b) the machine name (l to 6 ASCII charaeters) specified on
a SCL DCF command, to start a foreground machine. The
SM must not be given until the SCL DEN command, ending
the definition of this foreground machine, has been
processed.

The SI'1 coûmand causes the SCL/FCL prograo to be activated for the specified
maehine. It will start Èo read commands fron the inÈeractive device defined by
the filecode /E0 for that machine. The message FCL: will be output to /E0
whenever it is ready for the nexL connand.

One of the following error messages wllL be output if an Sl"1 operator cornrnand is
rej ected :

MACIIID UNKNOWN

FCL RUNNING FOR THIS MACHINE (aLso output when SYSTEM nachine is running)
/no Ascll. To No DEv.
/EO NOT ASGN

I,IACHINE IN GENEMTION
INPUT/OUTPUT F.C. 01 NOT ASGN
INPUT/OUIPUT F.C. OI ASGN TO NO DEVICE
F.C. 01 NOT ASGN TO AN INPUT/OUTPUT DEVICE

Notes:
- lnre" a foreground machine is started, the filecodes /02 ana /01 have been

defined by SCL commands. The operator should ensure that these devices are not
being used by other tasks in the bare machine, or that, if they are being
used, sharing then with this FCL task will not, cause any problems.
- SI"1 BATCH is allowed and has the same effecE as the SB command.

SM

P800 MAS Manual
5.0.21

0etober 1983.

SP

FORMAT 1

Spooling

SP dnda

dn
aa

device name (CR, LP, PP or PL)
device address

The spooling process, input (when the device nâme is CR) or output (when
another device name is specified), is starÈed.

Input spooling

I,lith input spooling, the system fllecode /F2 is assigned to the DAD D:SPCR
(input spool DAD). Input spooling consists of submitting jobs to the background
machine. These jobs are recorded in the spool DAD and executed afterwards, one
by one on FIFO (flrst in first ouÈ) basis. If no jobs are recorded in the spool
DAD Èhe message:

JOB QUEUE EMPTY
is output on filecode /EF of the system machine and the spooling process waLts
for new jobs to be subroitted.
There are two kinds of input spooling: submlt jobs to the background machine
via the cardreader or via LKM 50. Both can be used in the same session.

When input spooling is done via the cardreader, on the SP CRda conmand
jobs are read from the cardreader and copied into a file on the spool DAD. If
no cards are present, the cardreader is in not operable state and outputs the
message:

PU CRda, 0001, RY
As soon as cards are available, they can be copied fron the cardreader to t,he
spool DAD by givlng the RY (retry device) connand (RY CRda). The cards must
contain jobs streams, so musÈ start with a :JOB conmand and end with a :EOJ (or
a :EOB) eomrnand. When all cards have been read, the cardreader goes into
inoperable state and the jobs read in are executed, at least if the background
machi-ne has been started. If not, the jobs are executed, when an SB command is
given. New job streams rnay always be delivered to the cardreader and will be
read in as soon as a retry device cornmand (RY) for it is given. If an :EOB (end
of batch) card is read, new job streams can be read in by the cardreader, but
Èhey are only executed when a new SB command is given.

Subroitting a job via LKI"I 50 can be done from any foreground machine. A
file containing a job stream musÈ be specified and will be execut,ed in the
background machine. For more information about this LKI"I see Appendix C of thls
manual. If only LKM 50 is used for input spooling, lt ls not necessary that the
cardreader is physically present and the PU message can be ignored.

Out,put spoollng

Output spooling applies on t.he lineprinter (SP LPda), the paperËapereader (SP
PPda) or the plotter (SP PI"da). I{hen spooling is starÈed, a DAD filecode is
assigned to a DAD in the sysEem machine. For LP, fllecode /f'3 is assigned to
the DAD D:SPLP, for PP filecode /F4 is asslgned to Ëhe DAD D:SPPP and for PL
filecode /F5 is assigned to the DAD D:SPPL. All writes to a filecode assigned
to a sPooled ouÈput devi-ce are translated by MAS into writes Èo a flle on the
applicable spool DAD. Ttris is done by wriÈing to an i-nternal filecode, that ls
/100 rnore than the original filecode (internally ln MAS filecodes of more than
8 bits can be used). A flle on an output spool DAD is assigned, when a write is
done to a filecode, for whlch not yet a filecode+/lOO exists. The spoolfile is
closed when, in foreground, an:EOF (end of file) is written to it or, in
background an :EOJ or :EOB is received.

SP

P800 I'IAS I'tanual
5.0.22

0crober 1983.

In foreground, the file can be closed ln the following way:
- by using the CLS conmand (see syst,en and foreground nachine deseription).
- by writing an EOF to the spooled filecode via LKM I order 122 (see

Appendix C).
- by writing an EOF via the Librarian conmand WEF.

- by reassigning the filecode that, was used.
- by using the BYE command (fron Mas release 8.50)
- by usinC LI(I'I 79 (frorn Mas release 8.50)

As soon as the flle is closed, it is ready Èo be outpuÈ to the spooled device.
Therefore it is put in a spool out queue. A separaÈe task takes files from that
queue, outputtlng Èhe files one by one on FIFO basis. The file is delelted fron
the spool DAD af terrrards.

FOR},IAT 2

SP LPda,N No page skipping

In the current file to be unspooled on the printer, all skips to lop 0f Forn
are removed. A skip to the next page ls only done by I,IAS, when a number of
lines has been printed, equal to Lhe value, specified at generation tine or via
the DLP command, for Èhe number of lines Per page for the prlnter.

FORMAT 3

SP dndarD Delete

The current file to be (un)spooled is deleted, output to the spooled device
stops. Input to the spool DAD ls flushed until an :EOJ or :EOB is found.

FORMAT 4

SP dnda,R Rewind

the currenÈ output file is rewound and re-output (only for output devices).

FORMAT 5

SP dndarl.I Warm start,

Ihe output files from a previous run, which have not yet been output, are
unspooled onto Èhe specified device.

FORMAT 6

SP LPdarB Backspace

Spooling is restarted from the beglnning of the current page (Lp only).

FORMAT 7

SP dndarC Correct

The spooling is resumed on the specified device, following an error. A1so, this
command undoes the effect of the SP LPdarN comnand.

P800 MAS l,lanual
5.0.23

October 1983.

Ihe following error messages may be output:

PARAM MISSING
0n1y SP was input wit,hout any parameter

PARAM MISTK
The first parametr (dnda) did not have four, or the seeond parameter had more
than one character.

INV DEV NAME
The specified device name (dn) was not LP, PP, PL or CR.

INV DEV ADDR
The device address (da) did not contain 2 hexadecimal characters or \^ras not
generated in the system.

DEVICE ATTACHED
The specified device \{as attached to another task t.han the spool task.

SPOOL TABLE I.IOT CREATED

The specified device exists in the system, but was noÈ declared as a spool one
at, sysgen.

INVALID CO}MAND

SP dndarll or B was given while Èhe device (dn) was not LP, or CR dnda with a
parameter unequal to D was given.

SPOOL NOT START
An SP comnand with a second paramter (//W) was given without a previous start or
hrarm start spooling eommand.

DEV ALREADY SPOOL

A second starË or lsarm start spooling was given.
UNKNOWN COMMAI'ID

Second parameËer was not equal to N, W, B, C, D or R.
A FC OTHER THAN 02 ASSIGNED TO LP

During an SP command for the lineprinter (except C and I^l) another fc than 02
was assigned to it.

ASSIG}J MISTK
SP CMarD given but the file that the spooling process was creating could not
be found.

I^IRITE DISK l'lISTK
llrlting to Èhe spool DAD an I/0 error occurred.

GET BUF ERROR

Not enough space in Systen Dynamic area to create tables for the spooling
process.

DAD D:SPCR NOT FOUND

On the system disk (filecode /C0) no DAD D:SPCR could be found.
ASSG ERROR

Impossible to assign a file on the spool-in DAD, or the filecode, assigned at
system generation t,ime to the cardreader has been scratched or has been
assigned to another device.

SPO: DAD NOT FOUND
The spool DAD belonging to the specified spool-out device (D:SPLP, D:SPPP or
D:SPPL) could not be found on any of the discs knovrn to the system.

SPO: ASSIGN ERROR (SPOOLED DEVICE)
The filecode assigned during system generation to the out.put device has been
scratched or has been assigned to another device.

SPO: I/O ERROR ON SPOOL DAD
I/0 error detected during initialisation of the output spool DAD during
execution of the SP dnda or the SP dndarW command'.

PB00 MAS Manual
5.0.24

Oct,ober 1983.

Wt"t WriÈe l"lemory

FORMAT

WM arv0[,vl].,.

a 5 hexadecinal digits, giving the absolute address of the first
word to be nnodified.

v0,vl the values to be written in the word(s) rvhose absolute addresses
are a*0, a*2, ... a*2n. Each value must be 4 hexadecimal digits.

The Wlt operator comnand perfontrs sirnilar functions to the SCL I,IRI"I command. It
is provided in order to keep the I,IRI"I facility, even though the SCL BYE command
has been given. The syst,em machi-ne transient, area is blocked temporarily.

One of the following error messages will be output if a I'lM operator command is
rej ected :

PARÆI MISSING
PARAM ERROR

I^IM

P800 MAS M,anual
5.0. 25

October 1983.

OPERATOR MESSAGES A}TD REPLIES

0verview

Messages fron IIAS to the operator are always sent to the fiLecode /nf of the
sysÈem machine. Ttrere are two operator messages, PU and DKER. onJ-y the PU

operator message requires an operator repl-y, which rnay be RY or RD.

Replies are also entered from the device deflned by filecode /EF of the system
machine. Replles are entered ln exactly the same way as operator conmands,
nameJ-y, press the control panel lnt,errupt butÈon, walt for the message M: to be
output, and then enter the reply. Backspace and cancel keys nay be used to
correct erroneous key depresslons. Replies must be temlnated by CR.Filecode
/nf of the system machine should be asslgned at SYSGEN t,o an lnteractive devlce
such as a console.

A^s well as operaËor messages and replies, thls fllecode is also used for:

EnÈering operator copmands.
Error messages for rejected operator conmands.
l4essages fron LKM 6 (Pause).
l"lessages fron BCL PSE, REQ, ROI, REL and MES conmands.
Idessages for LKM 25 (Read Unsollcited Key-in).

P800 MAS Manual
5 .0. 26

October 1983.

DI(ER

FORMAT I

Dlsc I/0 Error DKER

DKER darCYLcrRECrrs

da dLsc address (2 hexadeclmal digirs);
c cylinder number (4 hexadecinal digits);r :'"'o; isH:"['uïi::':'i:]"i'iffil;,

2 rightmost digits = sector nunber.
s hardware status (4 hexadeclnal digits); 8000 means the disc was

already not operable and slnce thàn, no read.y interrupt is
received.

The engineer should be cal-Led Èo service the disc (unless s = 8000 or 8001).
No operator reply is necessary. The system returns to the Eser program with a
status code. The user progrérn decides whether t,o exit or not.

FORMAT 2

DKER da , RDNxx , IFX I R],1] , CYLyyy ,HDzz, SCpp , (RSNqqqqqq) , rrrr
dlsk address
relative dlsk nuuber (00 - 03)
fixed part (FX) or removable part (RM)
cylinder nunber
head nr:mber
sector number
real sector number
status

The Format 2 DKER is output, whenever an error occurred on a CDC-CMD disk. For
oÈher disks, the Format I DKER is appl.icable.

da
xx
rxlrur
vyy_
zz
PP
qqqqqq
rrrr

P800 MAS ManuaL
5.0.27

October 1983.

PU Physical Unit Int,ervention Required

FORMAT

PU dnda,s[,RY]

dn devLce type code. See Chapter 3.

da device address.

s hardware status code.

RY If presenÈ, the problern can be solved by some operator
intervention (e.g. renoving a card jemrned in the card reader).
I{hen thls has been done, the operator should give an RY reply. An
RD repLy should be given if the operator cannot fix the devi-ce.

If RY is noÈ present, the englneer is required Èo servlce the
device. No reply is necessary, slnce MAS will return to the
progran which issued the LK}[, with a sÈatus code.

P800 I'{AS l.lanual
5 .0 .28

October 1983.

RD

FORMAT

Release an I/0 Operation RI)

RD da

da the device address specified on the prevlous PU operator
message. The PU message must have ended in Ry.

The system returns to the user program which issued Èhe I/O requesÈ, with a
sËaÈus code in A7 or ln the ECB. The user progran decldes whether to exlt or
not.

One of the following messages will be output to /EF if a RD reply is rejected:

BAD DEVICE ADDR
DEV. ADDR TOO LONG
DEV. ADDR IINKNOI^IN

DEV. NOT IN RY

P800 UAS Manual
5.0.29

OcÈober f983.

RY Retry an I/O Operarion

FOR},IAT

RY da

dl the device address specified on the previous PU operator
message. The PU message nust have ended with RY, otherwise a
ret.ry is not allowed. The operator should perform the required
manual intervention on the device before giving the RY reply.

One of the followi.ng messages will be output Èo /EF if a RY reply is rejected:

BAD DEVICE ADDR
DEV. ADDR TOO LONG
DEV. ADDR UNKNOI^]N

DEV. NOT IN RY.

RY

P800 MAS I'lanual
5.0. 30

October 1983.

