APPENDIX D UTILITIES

COMASG Copy the MAS segments file COMASG

Purpose

MAS is an operating system, which is partly core resident and partly disc
resident. While the core resident part can be created by using the Linkage

Editor, some special actions must be performed to create or copy the segment
file.

Two kinds of segment files exist:
- D:MASG is a DFM file of type UF residing in the directory of the System
user. Although the file may have consecutive or non consecutive
attributes, there may be no gap between the sectors.
- D:MSEG is a DAD with a sectorlength of 4082 bytes and a length that
varies with the release that is used. It is created by the System
Generation procedure 7%ZDCICDC.
The D:MASG file is used for non CDC~-SMD systems. When MAS needs a segment to
read in it calculates the sector number in the D:MASG file where the segment
starts and reads the segment into memory at address /300. For one segment, up
to 10 sectors need to be read in.
The D:MSEG DAD is used for a system with CDC-SMD discs. These discs have
variable sectorlengths and so it is possile to read a segment with one access
to the disc.
To copy the D:MASG file from the starter pack to the user pack, the utility
COMASG has been developed. This utility is the only way to fill the D:MSEG DAD
and can also be used to copy a D:MASG file to another D:MASG file.

Calling sequence

The COMASG utility has to be called as follows:

ASG FCOD=/40,FNAM=D:MASG[,USID=usid[,DAD=/Fx]]
RUN PROG=COMASG

Filecode /40 has to be assigned to the D:MASG file that has to be copied.
The DAD filecode /F2 must be assigned to the first DAD on the pack whereon the
D:MASG file or the D:MSEG DAD to be filled resides.

Warning

COMASG does not give any error messages. The only way to know whether it
performed successfully is the time it needs to run (2-3 minutes).

P800 MAS Manual October 1983

COPY Copy or certify a CDC-SMD disc COPY

Purpose

To make a fast copy (5-10 minutes) from one CDC-SMD disc to another CDC-SMD
disc or to certify such a disc. The COPY program is a stand alone program that
can be loaded by answering the MONITOR? question of IPL-DK program with COPY.

Use of the COPY program

When loaded, the COPY program starts a dialogue:
= STANDARD INITIALZATION? (Y OR N)=
Replying “?° or any other character different from "Y" or '"N" the standard
values are output, being:
- CP (control panel) INT LEVEL = /07
- CU (control unit) ADDRESS = /16
- CU INT LEVEL = /20
- EMITTER DRIVE O
- NOT A BIGD2 CU (so a BIGD)
- NO PRINT OF ALL STATUSES
— NO PRINT OUT OF THE MENU (the list of possible actions)
Replying "Y" will avoid to reply on the 7 initialization questions by using the
prefixed ones mentioned above. The question ‘WAITING FOR ACTION’ (see below) is
printed immediality.
Replying "N" permits to make ones own initialization by answering the following
questions:
— CONTROL PANEL INTERRUPT LEVEL (1 HEXA CHAR)=
Reply the level of the control panel interrupt (normally 7) in one
character. For all replies requiring a numeric input, the user should input
hexadecimal characters without preceeding "/".
— CU ADDRESS (2 HEXA CHARS.)=
Reply the address of the control unit (e.g. 16 or 17). The control unit
address in the lowest device address of the discs connected to it.
- INT LEVEL (2 HEXA CHARS.)=
Reply the interrupt level of the control unit (normally 10 or 20).
- EMITTER DRIVE NUMBER (0 OR 1)=)
A drive number must be entered here. The drive number identifies the pack to
be handled, for the COPY function, it is the pack that must be copied to
another pack. The disc with the lowest device address is always connected to
drive number 0 and the disc with the highest device address is always
connected to drive number 1.
- IS IT A BIGD2 CU? (Y OR N)=
Reply "Y" (BIGD2 control unit) or "N" (BIGD control unit). The difference
between the two control units is that a BIGD can address directly up to 128KW
and a BIGD2 control unit up to 512KW.
- DO YOU WANT A PRINT OF ALL STATUS ERROR (FOR SERVICE PEOPLE ONLY) (Y OR N)=
Reply "Y" or "N", depending on your profession.
- DO YOU WANT A LIST OF POSSIBLE ACTIONS? (Y OR N)=
If "N" is replied, the message ‘WAITING FOR ACTION’ is output, if "Y", the
following list appears:
POSSIBLE ACTIONS
= COPY PACK TO PACK
= BAD TRACKS LIST
= DATA FAULT DETECTION
= RESTART INITIALIZATION
= NOT YET AVAILABLE
= FLAG A BAD TRACK
= PACK CERTIFICATION
= PRINT VTOC
TO SELECT ACTION GIVE A CP. INT.

D¢002
P800 MAS Manual October 1983

This list is followed by:

- WAITING FOR ACTION

which ends the initialization phase. On an erroneous reply of a question in
the initialization, the question is re-output. On a valid (for the program) but
incorrect (for the user) answer, the initialization can be restarted by action
3 or by a re-IPL.

Waiting for action, the program goes into an idle loop, waiting for a control
panel interrupt. When this interrupt is given, the program outputs:
- ACTION=

and the user replies a number from O to 7, except 4 because that is not yet
available, each starting an action. These actions are described below. Any
action can be stopped by a CP interrupt, which causes the ACTION= to re-—appear.

ACTION 0: COPY PACK TO PACK

This action permits to copy one disc to another one. Both discs must be CDC-SMD
discs and connected to the same Control Unit. The copy takes 5-10 minutes (the
Librarian SDD command 1-2 hours). The copy is only possible, when the emitter
pack has a MAS structure. Packs to and from can be copied are:

- from 40MB to 40MB

- from 40MB to 80MB

- from 80MB to 80MB

~ from 80MB to 40MB if the used space on the 80MB is not greater than 40MB.
To initiate the copy action, the following questions are output:
- RECEIVER DRIVE NUMBER (1 CHAR)=

Reply O or 1. It is the number of the unit to which the copy is to be
made. If the Emitter drive is 0, the Receiver drive is 1 and vice versa. It is
advised to copy from drive 0 to drive 1.
- RECEIVER DRIVE TYPE (40M=1 80M=2) =

Reply 1 or 2.
- IS YOUR PACK ALREADY CERTIFIED? (Y OR N)=

Reply "Y" implies that a certification (action 6) has been made in the
past. In this case the copy process starts immediatily. When a bad track is
detected on the Receiver pack, the program outputs its coordinates in the
message: ‘
= BAD TRACK DETECTED ON CYLINDER = xxx HEAD yy

This message is only an information to check, whether the bad tracks found
now are the same as the ones found in a previous certification.

When the Receiver pack was not certified, so the previous question was
answered with "N", the following message is output:
- DO YOU TAKE THE RISK? (Y OR N)=

Reply "Y" means that the user takes the risk to work with an uncertified
pack. The copy process makes a quick premark before starting the actual
copying. The reply '"N" stops immediatily the action and the program goes into
the "WAITING FOR ACTION’ state.

After these questions, the program prints the volume label of the Emitter pack,
asks whether it is the right volume to copy and continues with asking for a
volume name, a pack number and the date to construct the volume label of the
Receiver pack. Then the copying starts with for each DAD the message:

= COPY OF DAD: XXXXXX

At the end of the copy process, the volume label of the Receiver pack is
printed.

ACTION 1: PRINT OF BAD TRACK LIST

For this action, one additional question is output:
— EMITTER DRIVE TYPE (40M=1 80M=2)=
Reply 1 or 2, identifying the capacity of the disc.

D.0.3
P800 MAS Manual October 1983

Then the action starts. For each Bad Track, the message:

- BAD TRACK DETECTED ON CYLINDER = xxx HEAD NUMBER = yy

is printed. When all Bad Tracks have been printed, or when no Bad Tracks are
present, the program turns into the idle state by printing:

= WAITING FOR ACTION

ACTION 2: DATA FAULT DETECTION
This action checks a disc on occurences of Data Faults. The tracks on which a
Data fault is found are checked against the Bad Track list whether they are
recorded. If not, an error message is printed and the disc must be re-certified.
One additional question is output:
- DRIVE NUMBER (0 OR 1)=
Reply O or 1. This process performs the same actions as the copy process

(action 0), without writing on an output pack. Per DAD the message:
- DATA FAULT DETECTION ON DAD XXXXXX
is printed.

ACTION 3: RESTART INITIALIZATION

This action allows to start the complete initialization of the COPY program,
without re-loading.

ACTION 4

This action is not yet available. When called, an error message is output to
inform the user about that.

ACTION 5: FLAG BAD TRACK BY OPERATOR

This action flags a track as bad and assigns an alternate track.
Two additional questions are asked: '
- CYLINDER POSITION? (3 HEXA CHAR.)=
- HEAD NUMBER (2 HEXA CHAR.)=
With the replies to these two questions, the bad track is fully identified
and flagged by the program. The track is read ‘again to check the successfull
completion of the operation. If no error is found, the messsage:
- BAD TRACK CORRECTLY FLAGGED
is output, if not the message:
- IMPOSSIBLE TO FLAG THE TRACK, SORRY, BUT THE PACK IS NO LONGER USABLE
is output, followed by the ‘WALTING FOR ACTION’ message.

ACTION 6: CERTIFY A PACK

For certification the dialogue is:
= IS YOUR PACK ALREADY CERTIFIED? (Y OR N)=

In case of a new pack, the reply must be "N". In case of an already
certified pack, the reply must be "Y". When "Y", tracks flagged by a previous
certification are kept and recalled as their recovery proceeds. The flagged
bad tracks are printed as if they were found during this certification.
- FULL SURFACE MUST BE CHECKED? (Y OR NO)=

If "Y", all tracks of the disc are checked one by one (411 cylinders for
40M and 823 cylinders for 80M discs). If the reply is "N", the certification is
restricted to the part of the disc specified in the answers on two questions,
asking for the starting and ending cylinder to be certified (smallest part is
one cylinder).

D.0.4
P800 MAS Manual October 1983

— LOOPING MODE? (Y OR N)=

This function permits to check the disc only once (reply "N") or more than
once (reply "Y"). The experience proves, that two or three loops may be
necessary. That is why it is advised to answer "Y" and to certify packs during
night if possible. The certification process can be stopped by pressing the
control panel interrupt button. A run indicator is printed at the end of each
pass.
After the ‘LOOPING MODE’ question, the certification starts.
A loop consists of writing, re-reading and comparing each track:

- with pattern /0000 : 4 sectors of 2KW per track

- with pattern /FFFF : 32 sectors of 256 words per track

- with pattern /BFBF : 39 sectors of 205 words per track

- with random pattern : 64 secotrs of 105 words per track.
After certification, the disc is not yet usable. It should first be premarked

(by a normal operator PK command). The premark asks whether the pack has been
certified or not.

ACTION 7: PRINT VTOC

This action prints the VTOC (volume table of contents) of the disc.
Example:

DAD NAME NB OF INT NB OF SECT/GRAN NB OF SECT/TRACK SEC.LENGTH
SUPERV 0010 0008 0027 019A
D:CI 0003 0001 0004 1000

All values are output in hexadecimal format.

D.0.5
P800 MAS Manual October 1983

ERLOG Error logging ERLOG

Purpose

Accessing a device, the hardware can return an error status, like parity error,
data fault, etc. MAS retries such errors up to 5 times and, if it is a
persistent error, /8000 is added to the status and it is stored in the calling
ECB.

If the error is not persistent, no status is put in the calling ECB and the
program continues as if nothing has happened. However, it might be very useful
to know which device or (for disc) which track gives an error now and then. It
might be the cause of a disaster in the future. Therefore, error logging has
been developed. It logs the error, which was retried successully, on a file.
The information in this file can be printed, and according to the obtained data
actions can be taken to prevent real errors in the future.

Error logging in the system

Error logging is only active in the system, when the file D:ERLG, type UF is
assigned in the system machine to filecode 33, thus:

ASG 33,DDFx,UF,D:ERLG
When during processing a hardware status is received, MAS records the error-
information in a block in the System Dynamic Area, if filecode 33 is assigned.
Every minute, the clock interrupt routine checks whether there are error
logging blocks in the System Dynamic Area and, if so, it activates a MAS disc
resident segment to write the block(s) onto the D:ERLG file. As this process is
driven by the clock, the RTC must be switched on.
The D:ERLG is cyclic. When it is full, it starts from the beginning. A warning
message is output, when the file is nearly full.

ERLOG utility

On the starter pack, a utility called ERLOG is delivered. With this utility one
can create the D:ERLG file (which has a special format) and retrieve
information from it. ,

The calling sequence of the utility is:

ERLOG
OPT FUNC=func[,DAD=dadfc][,USID=usid][,NBGR=n]
where:
func is the function that should be performed:

FUNC=CRE: create the D:ERLG file,

FUNC=LIST print the information recorded in the D:ERLG file.
dadfc is the filecode of the DAD (/FO-/FF), where the D:ERLG file

must be created (FUNC=CRE) or where it resides (FUNC=LISY.

Default filecodeis /FO.

usid is the userid where the D:ERLG file must be created or where it
resides. Default userid is MASUP.
n is the number of granules to be assigned to the D:ERLG file, when

FUNC=CRE. Default is 1 granule.

Error messages:

INVALID OPTION STATEMENT (does not start with “OPT *)

INVALID PARAMETER xxXxxX

NO FUNC PARAMETER

VALUE: xxxx OF PARAM: yyyy 1S ILLEGAL

PARAM: xxxx IS REDUNDANT

ERROR DURING LKM: xx, STATUS= /yyyy
(the utility uses several LKM’s and LKM xx returned a status. For the
meaning of the status, see Appendix C)

D.0.6
P800 MAS Manual October 1983

Output of ERLOG

For FUNC=CRE, the output of the utility (when it acted successfully) is:
ERLOG FILE CREATED
For FUNC=LIST the following items are printed:
- total number of recorded errors
- total number of recorded errors per device address
- information per error
The information per error consists of:
—~ device name and address
machine name and name of the program that issued the error—causing access
— date and time when the error occurred
- hardware status
- for disc: cylinder, head and sector number
- number of retries
- control word given to the CIO start command.

D'0.7
P800 MAS Manual October 1983

FILEXC File exchange FILEXC

Purpose

With FILEXC one can write/read load modules to/from a sequential file or
device. FILEXC also handles files with other types (except EF), but these can
also be handled by the Librarian.

Calling sequence

FILEXC
OPT FUNC=func,FCOD=fc,SYST=MAS,FNAM=fnam,FTYP=ft[,FDES=des][,KEEP=YES]
where:
func is the function that should be performed:
FUNC=IN reads the file from the sequential device to disc,
FUNC=OUT writes the file onto the sequential device.

fe is a filecode assigned to a sequential device.

fnam is the name of a file.

ft is the file type (UF, SC, OB or LM).

EEE is a description to be put into the identification block. The

maximum length is 16 characters, only consisting of alphanumeric
characters and blanks.

- FILEXC assumes the file to be accessed in the current JOB Usid and DAD.
- KEEP=YES is only applicable when FUNC=IN. If specified, the file just read is
kept in the directory of the current JOB Usid and DAD- SYST=MAS indicates
that the utility is executed under the MAS operating
system. The alternative is SYST=DOS.
- FILEXC only works in the Batch machine.

When FUNC=0UT, FILEXC first writes an identification block onto the sequential
device (MT or TK). In this block, all parameters specified in the option
statement are recorded. These parameters are checked against the option
statement specified when the file is to be read in. After the identification
block, the file is written.

FILEXC starts with printing a heading containing information about the file to
be handled.

Error messages

OPTION STATEMENT MISSING
INVALID OPTION STATEMENT
INVALID KEY-WORD

TWICE THE SAME KEY-WORD

= NOT FOLLOWING THE KEY-WORD
KEY-WORD VALUE MISSING

SYST KEY-WORD MISSING

INVALID SYST KEY-WORD VALUE
FCOD KEY-WORD MISSING

INVALID FCOD KEY-WORD VALUE
FCOD FILE CODE NOT ASSIGNED
FUNC KEY-WORD MISSING

INVALID FUNC KEY-WORD VALUE
FDES NOT ALLOWED WHEN FUNC=IN
KEEP NOT ALLOWED WHEN FUNC=OUT
KEEP NOT ALLOWED WHEN SYST=DOS
INVALID KEEP KEY-WORD VALUE
FNAM KEY-WORD MISSING

D.O.S
P800 MAS Manual October 1983

INVALID FNAM KEY-WORD VALUE

FTYP KEY-WORD MISSING

INVALID FTYP KEY-WORD VALUE

KEEP NOT ALLOWED WHEN FTYP=0B

INVALID ASSIGNMENT TO A PERMANENT FILE
IMPOSSIBLE ASSIGNMENT TO A TEMPORARY FILE
MAS CONTROL IS NOT BATCH-MACHINE

I/0 ERROR WHEN DELETING FILECODE

KEFEP FILE OPERATION NOT SUCCESSFULL
EMPTY INPUT FILE

INVALID INPUT RECORD

INCONSISTENT INPUT FILE NAME
INCONSISTENT INPUT FILE TYPE
INCONSISTENT INPUT SECTOR LENGTH
INCONSISTENT INPUT GRANULE SIZE

TOO MANY INPUT SECTORS

INVALID INPUT SECTOR NUMBER SEQUENCE
TOO MANY/FEW INPUT RECORDS PER SECTOR

D.0.9

P800 MAS Manual October 1983

IPL-DK Disc IPL IPL-DK

Purpose

IPL-DK is a utility that must reside in the 3rd granule of the disc from which
is IPL-ed. It is a stand alone program which is loaded at IPL and gives the
possibility to have more than one monitor on the same disc.

Behaviour

After IPL, the utility is loaded and started. It outputs the following
questions:

- DAD:
Whether or not this question is output depends on the version of IPL-DK. The
reply must be the name of a DAD residing on the IPL-ed disc, (default is the
first DAD) or a question mark (?), which results in a print out of all the DAD
names residing on the disc and re-outputting of the DAD question.

— MONITOR:
The reply on this question must be the name of a load module residing in the
first Userid of the DAD indicated in the DAD question (e.g. SUP, LDMASR, COPY)
When MAS8 (so LDMASR) is intended to be loaded, the DAD question must be
replied with the first DAD of the disc, the same applies for a DOS monitor.
A question mark (?) results in a print out of all load modules residing in the
first Userid of the DAD and re-outputting of the MONITOR question. A <CR>
letsthe DAD question re-appear.

- LOAD ADDRESS:
Reply the address where the monitor is to be loaded. Default (and normal input)
is a carriage return <CR>, being address /0000.

D.0.10
P800 MAS Manual October 1983

LDMASR Load the MAS8 monitor LDMASR

Purpose

LDMASR is a utility to load a MAS8 (extended mode) monitor, because such a
monitor cannot be loaded by the normal IPL.
Behaviour

After loading LDMASR asks for the name of the MAS8 monitor to be loaded:
- MONITOR:

The reply must be the name of a load module containing a MAS8 monitor, which

resides in the first Userid of the first DAD of the disc from which is IPL-ed.
The default (KCR>) is MASR.

D0 L
P800 MAS Manual October 1983

OVLGEN MAS segment to D:MASG file OVLGEN

Purpose

With OVLGEN, one can move a load module, from filecode /D6 (/L) to the D:MASG
file. The D:MASG file must be assigned to filecode /40.

A full description of this utility is given in Appendix C with LKM 47.

The OVLGEN utility only runs in the Batch machine.

D.0.12
P800 MAS Manual

October 1983

APPENDIX E FLEXIBLE DISC DRIVERS

0.25M Flexible (Floppy) Disc Driver

0.25M Flexible discs connected to a 0.25M flexible disc Control Unit are
accessed as a physical device with direct access at sector level. Every sector
is available for data storage.

The logical and physical characteristies of the flexible discs are as follows:
= Physical sector length is 128 characters.
- Logical record length using 1 LKM instruction (4 sectors):
a) connected to a programmed channel: up to 512 characters
b) connected to the I/0 Processor: the user may read or write to a
maximum of 1 track (3328 chars).
If a record comprises more than one physical sector, it is defined by the
physical address of the first sector in the record.
- A track is 26 sectors, or 3328 characters (not interlaced).
- A floppy disc has 77 tracks (2002 sectors, 256256 characters).
- A sector is defined by a sector number from 0-2001 (the sector number given
in word 5 of the ECB used for I/0 operations with LKM 1).
- Bad Track conditions are handled by the driver.
- The Floppy Disc Driver package is included during system generation, in the
same way as other physical devices, using the mnemonic ‘FL’.

Floppy Disc Operations

The order loaded into A7 before issuing an LKM 1 determines which of the
various possible functions is carried out by the control unit. These can be
summarised thus:

Order Operation

/00 Get extended information about a filecode
/11 Read Sector

/15 Write Sector

/3A Compound Read

/3B Compound Write

/3F Write Sector and Verify

/2F Write Deleted Data Address Mark

/3D Write Deleted Data Address Mark and Verify
/3E Search Key

/3C Search Key Masked

/2D Door Lock

/2E Door Unlock

/30 Return Information about a Filecode.

The ECB Layout

The ECB address is loaded into A8 before issuing the LKM 1 requests. The layout
of the ECB is as follows:

0 7 8 15
Word 0 Event Byte | Filecode
Buffer Address
Requested Length
Effective Length
Returned Status
Sector Number

U WwWN -

E.O0.1
P800 MAS Manual October 1983

where:

- ‘Filecode’ is the filecode assigned to the floppy disc unit.

- The ‘event byte’; bit 0 is set to 1 by MAS, to indicate completion of the
operation.

= Buffer Address is the user’s buffer address, which can contain or receive
data as normal, but can also contain control information (e.g. Search Key
or Write Deleted Data Address Mark).

- Requested length is expressed in characters, and should be even (except for
search key operations); MAS will round down odd-numbered values.

- Return Status codes are summarised later.

= Effective length is the actual message length, in characters, read or
written.

= Sector Number is a relative sector number or sector address, in the range
0-2001.

Read/Write Operations

/11 - Read Sector

From 1 - 4 sectors (each of 128 words) may be read in one operation; thus the
maximum record length is 512 characters. The sector number of the first sector

in the record determines the start address or sector number specified in word 5
of the ECB.

/15 - Write Sector

From 1 - 4 sectors can be written directly. The requested length should be even
and not greater than 512 characters.

/3F - Write Sector and Verify

This order is performed as for /15, but with the additional feature that the

disc revolution following the write operation is used to read and verify the
record. |

/3A - Compound Read

This order allows the user to read up to 3328 characters (i.e. 1 track or 26
sectors) in one disc revolution. The starting sector address quoted in ECB word
5 is the logical start of the track.

The operation is performed correctly with the disc control unit attached to the
Input/Output Processor (IOP). If the disc control unit is attached to the
Programmed Channel the command is accepted, but more than one disc revolution
is required to complete it. The ECB values are as for function /11 (Read),
except that the allowed requested length is in the range 2 - 3328.

/3B - Compound Write

This order allows a complete track (26 sectors) to be written in one revolution
of the disc, as long as the disc control unit is connected to the IOP. If it is
connected to the Programmed Channel, it will require more than one revolution.
The requested length is in the range 1 to 3328 characters.

/2F - Write Deleted Data Address Mark (DDAM)

This order allows the user to write a special pattern on the disc. This pattern

should be placed in the user’s buffer before the LKM 1 is issued. The sector
number to which the mark is to be written is entered in word 5 of the ECB,

while word 2 of the ECB contains the requested length expressed in characters.

E.0.2
P800 MAS Manual October 1983

If more than one sector is to contain the DDAM, the requested length is in the
range 128 - 512.

/3D — Write Deleted Data Address Mark and Verify

This is carried out as for order /2F, but a further revolution of the disc is
used to read back the pattern and verify that it has been written correctly.

Search Key Orders

/3E - Search Key

This order allows the user to search for a pattern of characters which begin at
the start of a sector. The search is carried out within and including a start
sector number and end sector number, specified by the user.

Either an even or an odd number of characters may be specified as the search

pattern. This pattern is placed in the user’s buffer, and is immediately
followed by the start and end sector number.

The length of the pattern is specified in word 2 of the ECB.

After a successful search, the sector number of the sector containing the
pattern is entered by MAS in word 5 of the ECB.

The following diagrams illustrate how the user sets out his buffer before
issuing the LKM 1:

a) For an even number of characters:

1 2 length of search pattern
3 4 character string = 6

5 6

Start sector number search limits

End sector number

b) For an odd number of characters:

1 2 length of search pattern
3 4 character string = 5

5 ignored

Start sector number search limits

End sector number
/3C - Masked Key Search

This is conducted in the same way as the Search Pattern order /3E, except that
the user is able to blank or mask certain characters within the pattern string
which will be ignored during the search operation. The character positions to

be masked are filled with the space character (/20).

The following example shows how the user should lay out his buffer before
issuing the LKM 1 request.

E.0.3
P800 MAS Manual October 1983

Suppose the pattern to search for starts at character 3 of the sector, is 7
characters long and consists of the characters A and B at character positions 3
and 4 and the character C at position 6:

/20 /20

/20 A search pattern
B /20

c ignored

Start sector number search limits

End sector number

Other Orders

/2E - Door Lock

This command locks the loading door of the floppy disc unit, preventing manual
opening of the door until the Door Unlock command (/2D) is received. The ECB
should be initialised as follows:

Filecode
Buffer Address (dummy value)
Requested length (dummy value)
Returned Length (unchanged)
Returned Status (updated by the system)
Sector number (dummy value).

b= O

/2D - Door Unlock

This order unlocks the door of the floppy disc drive unit, allowing the
operator to open the manual door latch in order to extract the disc. The ECB
layout is exactly the same as that of the /2E (Door Lock) command.

/30 - Return Information About a Filecode

This command causes the unit to return a value for Best Length to word 3 of the
ECB. The other locations are as described in Appendix C under LKM 1.

Error Messages

If an I/0 operation is attempted on a drive which is inoperable (e.g. the door
is open), the following message is printed on the console:

PU Flxx,yyyy,RY

where:
xx is the Floppy Disk Address
yyyy is the status
RY means Retry or Release Device.

For the retry the operator must remove the cause of the error, when the I/O
operation should proceed automatically.’

E.0.4
P800 MAS Manual October 1983

Returned Status for Flexible Disc

If bit O is O but bit 1 is 1 a hardware error has occurred, and the following
bits have significance:

Bit Meaning

2 Key not found

4 Deleted data mark read

5 Record not found

6 Write protected

10 The request was completed after one or more retries.
11 Program error

12 Incorrect length

13 Data error.

If bit 0 = 1 and bit 1 = 1, an error occurred in the calling sequence. If bit
11 is also set, the request code is invalid or the sector number is incorrect.

E.0.5
P800 MAS Manual October 1983

IM Flexible Disc Driver

IM (1 megabyte) flexible discs are supported by the FLIMZ and the FLIMB control

units. These control units are always connected to the IOP and they can handle
IM flexible discs as well as 0.25M flexible discs.

Disc types

This flexible disc driver supports the following flexible disc types:

- Fl
- F2

- F4

- F5 :

: 0.25M flexible system disc

: 0.25M flexible data disc (MAS relase 8: type F6)
- F3 :

IM flexible system disc
IM flexible data disc
1M flexible data disc

Hardware formats

There are three hardware formats for flexible discs.
The characteristics for each format are:

| Hardware characteristics Format 0 | Format 1 Format 2
number of surfaces 1 2 2
number of cylinders 77 77 77
sect/track cyl 0, head O 26 26 26
sect/track cyl 0, head 1 - 26 26
sect/track other cyls 26 26 8
sectorlength (char)

cyl 0, head 0 128 128 128
secl cyl O, head 1 - 256 256
secl other cyls 128 256 1024
number of useful cyls 74 74 74

The translation of the hardware format into the flexible disc types Fl, F2, F3,
F4 or F5 is done at IPL time, if there is a flexible disc in the drive, or when
a ready interrupt is received.

P800 MAS Manual

E.0.6
October 1983

The assignment of the types is done according to the following scheme:

| read cyl 0 |
|head 1 sect 0O

program error | hardware |
received? Y | format 0 |
| |
E |
read cyl 1		try to read
head 0 sect 9		the VOLAB
	sector	
program error ‘fé};gﬁ;w_ does it contain Typé_T		
received? Y l} (hw) "LABEL’ ? Y I Fl I		
N N		
I N		
hardware	Type	

| format 1 _F4 F2
|

| read sector |

| that should |

| contain VTOC|
|

does is contain pe.—__
‘VTOC"? Y
I
| N
I R
| Type

F5
A prog%zﬁng¥;5; is returned by the control unit, if an access is made to a non-
existing track or to a non-existing sector (i.e a too high sector number). So
the first check on program error determines whether there are one or two tracks
(surfaces) available on a cylinder and the second check whether there are 8 or

more (so 26) sectors available on the track. These two checks identify fully
the hardware format.

Orders

For this driver, the following orders are allowed:

1

/01 or /11: read; allowed for all types of flexible discs.
- /05 or /15: write; allowed for all types.

- /13 : verify; allowed for all types.
- /21 : read VTOC; allowed for type F3, simulated for type Fl.
- /25 : write VTOC; allowed for type F3, simulated for type Fl.
- /2D : door lock; allowed for all types.
- /2E : door lock; allowed for all types.

E.0.7

P800 MAS Manual October 1983

/2F : write deleted data; allowed for types F2, F4, and F5.
/3A : compound read; allowed for all types.

/3B : compound write; allowed for all types.

/00 or /30: get filecode/device information; allowed for all types.

- For read/write on DAD or disc level, with type Fl and F3 the requested
length must be the length of one logical sector. For Data flexible disc, any
length is accepted and there is an automatic chaining on next tracks.

- For read/write VTOC, the ECB must be filled as follows: ECBSC must
contain 0 and the word ECBHD must contain the physical sector address of the
VIOC (this address can be found on displacement /52 of the VOLAB).

- With verify, the command of the buffer in memory is compared with the
contents of one or more sectors on the disc. It can be used after a write, to
check the written data. The buffer must remain the same between the two
commands. If the comparison is incorrect, the status Data Fault is returned.

- Door orders are only executed when the addressed drive is operable and
when the ‘door lock’ option is present. In other cases, the command has no
effect.

- Write deleted Data, writes the sectors with deleted data address marks.
The ECB must be filled as in the write command.

Bad track handling

The FLIMZ and FLIMB controllers use cylinders 75 and 76 to assign bad tracks.
These cylinders cannot be accessed by an application. This is a constraint in
the transportability from MAS to other systems (like IBM). Others systems may
use cylinders 75 and 76 to put data on, which cannot be retrieved by MAS. This
data can even be overwritten, when a bad track is detected by the controller.

The driver itself does not contain bad track handling, so if an error
occurs, the flexible disc should be exchanged.

Flexible disc type Fl

The type Fl is a 0.25M flexible disc, with an X1215 disc simulated lay-out. No
DAD’s can be declared on it. The whole disc is seen as containing one DAD,
called DADFFl. No VTOC resides on the disc, it is simulated by the flexible
disc driver.

The disc type, stored in the VOLAB of the type Fl1 flexible disc is “FLDL’.

One logical sector, being 410 bytes, is stored physically in 4 sectors on the
flexible disc. An interlace table is maintained in memory (not on disc, because
it has no VTOC). The interlace factor is 2.

Interlacing is not performed on logical setors O, 1 and 2. For logical sector
0, the sectors starting at physical sector O are accessed. For logical sector 1

sectors from physical sector 4 are accessed and for logical sector 2, accessing
starts at physical sector 12.

System commands like ASG and DUF, on a type Fl flexible disc are possible.
However some commands concerning DAD’s like DCD and DLD (declare and delete
DAD) are not possible, because of the DADFFl VTOC simulation.

The type Fl is considered by MAS as a disc and so a filecode should be
assigned to it during System generation. Thus:

FCD: /Cx,MFyy

/Cx is the filecode assigned to the type Fl disc in the System machine.
MFyy is the device mnemonic for the disc (IMF) and its device address.
Note that MF is only the device mnemonic during System generation. In the
monitor the device is considered to be a disc, with the device mnemonic “DK’.

E.0.8
P800 MAS lManual October 1983

A declaration of the disc in a machine declaration is done as follows:
FCD /Cx
FCD /Fy,/Cx,DADFF1
/Cx being the filecode assigned during System generation and /Fy the filecode
to be assigned to the (only) DAD on the disc.
Receiving a ready interrupt of a type Fl disc the message:
FLOPPY DATA Fl1
is output by the system.

A type Fl disc must be premarked. The premark asks for the type of flexible
disc: FLOPPY TYPE Fl OR F3

For this type, the reply must be Fl. Premark does not ask question about the
DAD to be created.

Flexible disc type F2

A type F2 flexible disc is a Data disc with hardware format O. It can only be
accessed on physical level. So no ASG a logical file, DUF and other system
commands are allowed for this type of disc. Although the disc is recorded as
‘DK’ in the system, one may assign any filecode to the disc, e.g. ASG /10,DKxx.

Receiving a ready interupt, of a type F2 disc the message:
FLOPPY DATA F2

is output by the system.

Flexible disc type F3

The type F3 flexible disc contains a DAD structure. The first DAD starts at
cylinder 1 and the lay-out of the disc is as follows:
- Cylinder 0: Physical sectors 0, 1, 2 and 3 are IPL sectors.
- Cylinder 1: Logical sector 0 contains the volume label.
: Logical sectors 2-5 contain the catalog of the first DAD.
Logical sector 6 is the not used Bad track sector.
Logical sector 7 contain the VTOC.
The type F3 is a hardware format 1 disc with a X1215 simulated structure. DAD’s
can be declared, files assigned etc. DAD’s have interlace factors, which must
not have a common divisor with the number of sectors per track (i.e. 26).
Interlace factor 1 is allowed.

The disc type stored in the VOLAB for the type F3 disc is ‘FLD2’.

Logical sectors contain 410 bytes. The first cylinder of the disc cannot be
accessed. For each access to the disc, the calculated cylinder number is
incremented with 1, so logical sector O is translated into an access to the
first sector on cylinder 1.

Generating the flexible disc, in System generation a /Cx file code must be
assigned to the device (see type Fl)

Receiving a ready interrupt, the system outputs:
FLOPPY DATA F3

when this type of disc was mounted.

A type F3 disc must be premarked and the question:
FLOPPY TYPE Fl1 OR F3

must be answered with ‘F3° for this type.

E.0.9
P800 MAS Manual October 1983

Flexible disc type F4

The type F4 flexible disc is a Data disc with hardware format 2. For this type,
the same rules apply as for the type F2 flexible disc. Note that the

sectorlengths for cylinder O head 0, cylinder O head 1 and the other cylinders
differ.

Receiving a ready interrupt, the system outputs:
FLOPPY DATA F4

when this type of disc was mounted.

Flexible disc type F5

This is a flexible disc with hardware format 1. The same rules apply as for the
other data disc types. And of course the message:
FLOPPY DATA F5

is printed when this type of disc gave a ready interrupt.

E.0.10

P800 MAS Manual October 1983

APPENDIX F USER DRIVERS

GENERAL

This Appendix describes how the user can incorporate his own user driver into
the MAS Monitor. No alterations to existing Monitor routines are required,

andthe driver package is then included during the system generation procedure.

PREPARATION OF THE DRIVER PACKAGE

After being coded, the driver is compiled and the object module is stored
within the userid MASGEN in the object library MASOB for non Extended Mode
systems and in the object library IOCSOB for Extended Mode system. This can be
achieved by using the Librarian processor.

A driver consists of two parts:

- the device dependent LKM 1 (I/0) handling, filling the device dependent
part of the DWT (device work table) and executing the WER instructions - for
devices connected to IOP - and the CIO start instruction.

- the interrupt routine, which handles the interrupts, executes the SST,
INR, OTR and CIO stop commands and branches upon end of I/0 to the general end
of I/0 handler of the system.

Normally, both parts are coded in the same module. This module contains two
entry points, one for the device dependent I/0 handler (called D:<name>) and
one for the interrupt routine (called S:<{named>).

The driver must be made known to the system by including its DWT in the DWT
chain and by filling the address of its interrupt routine in the appropriate

interrupt location in the LOCAT module.

The LOCAT module

The incorporation of the driver in LOCAT (so filling the interrupt location)
can be achieved by answering the "USER INT:" question in the System generation
CONGEN process with <lev),{name>. The System generation will then at interrupt
location <lev)> store the address of the external I:<{name>. An EXTRN for
I:<{name> is also generated.

The DWT chain

For each device, a DWT must be incorporated in the DWT chain. For disc devices,
also a DCT (dics control table) must be included in the DCT chain, but as the
writing of disc drivers needs special knowledge of the MAS system, it is not
discussed here.
A DWT can be put in the chain by replacing the module USDWT, which is present
in the MASOB resp. IOCSOB library by an own written USDWT module.
The standard USDWT module consists of one instruction:

USDWT EQU O
As the last chain address in the DWT chain points to USDWT it contains zero
(i.e. end of chain) when the standard module is used. Including a user written
DWT in USDWT, the last chain address value changes from zero to the address of
the DWT to be added, and that is exactly the intention.

F.0.1
P800 MAS Manual October 1983

EXAMPLE

The lay-out of USDWT, containing one user written DWT is:

IDENT USDWT
ENTRY USDWT
ENTRY I:<{name> address stored in the interrupt location in
LOCAT.
EXTRN D:<{name> device dependent I/0 handler.
EXTRN S:<{name> interrupt handler.
I:<{name> MSR 8,A15 save 8 registers in the system stack.
LDKL A6 ,USDWT+2 Fill A6 with the DWT address. Note that the
DWT starts at the <dev name> word!
ABL S:<name> branch to the interrupt handler
USDWT DATA NXTDWT address of the next DWT, if no DWT, O.
DATA “<dev name)>’ mnemonic of the device that is included.
DATA <dwtda> flags and device address.
DATA <best length>
DATA D:<name> driver address
s) For a description of the DWT, the user
i) should refer to Volume IV, the
-) Trouble Shooting Guide.
DATA —-— last word of the DWT
NXTDWT EQU 0 or the start of the next DWT.
END

Contents of the DWT

The DWT is described in the Trouble Shooting Guide. Here is indicated:
- the fields that must be filled during DWT definition
- the fields that are filled upon entering the driver

- the fields that must be filled by the driver, returning to the end of
I/0 handler

Defining the driver

The following
—-DWTDN
-DWTDA
-DWTBLG
—-DWTDRV
=DWTRY
-DWTC:N
-DWTSST
-DWTFLG

fields must be filled, defining the DWT:

device name

device address and flags

best length

driver address

last 6 bits: the device type

address of a word containing /8000 (not busy)

address of I:<name>+2

bit 4: transfer per word (1) or transfer per character (0)

bit 5: single device controller (1) or multiple device
controller (0)

bit 6: device connected to IOP (1) or programmed channel (0)

By the general LKM 1 handler (X:I0) are filled:

-DWTBUF
-DWTRLG
~DWTORD
=DWTAS

-DWTA6

=DWTATT
—-DWTDET
-DWTUEC
=DWTURO
=DWTNT

-DWTIME

buffer address in System Dynamic Area
requested length to be transferred
the last 6 bits of the order

PCT address of the calling program
scheduled label address in the calling program (0 if no Schlab)
used internally in X:IO

used internally in X:IO

user’s ECB address

user’s order

used internally in X:IO

used internally in X:IO

F'O.z

P800 MAS Manual October 1983

-DWTQUE used internally in X:IO

~DWTFCT address of the FCT entry in the System Dynamic Area
Fields, not used by the general MAS I/0 routines can be used freely by the
driver. The driver should, when input is received from a programmed channel
device, store the current number of received characters in the field DWTEFL.
The field DWTBUF must then always contain the address in the buffer where the
next character is to be stored. The minimum length of the DWT must be /46
characters (including the chain word). There is no maximum.

Inputs and outputs

On entering the driver from the general I/0 handler (X:I0), the DWT is filled
as indicated above. Furthermore:
- A6 contains the DWT address i.e. points to DWTDN.
- A4 contains the last 6 bits of the user order
- the MMU of the calling program is loaded.
On end of I/0, when the driver should return to the general end of I/O handler,
the following registers must be filled:
A6 with the DWT address
A8 with the address of DWTIOB
A2 with the status received from the SST instruction
A3 with the effective length.
After filling these registers, a branch must be made to the external R:TURIL:
ABL R:TURI

MAS routines

Some MAS routines can (or even must) be called from the driver.

- M:DISl: the dispatcher. This routine has to be called from the device
dependent I/0 part of the driver to return. M:DIS1 expects 8 registes in the
Al5 stack, which are already stored there upon entering the driver. The routine
has to be called with an absolute branch:

ABL M:DISI1

— M:LRTN: absolute return routine. When the interrupt part of the driver
decides not to return to the end of I/0 handler (because the I/0 has not
ended)this routine must be invoked. M:LRTN expects 8 registers in the Al5
stack, which are stored there by the I:<name> routine. M:LRTN is invoked by an
absolute branch:

ABL M:LRTN

- R:G062: go to hardware level 62 routine. When an interrupt is received
from any device, it enters the interrupt handler on a hardware level equal to
the interrupt level of the device. Only interrupts with a lower interrupt level
are serviced, as long as the interrupt routine runs at the level entered.
Therefore the routine should go as soon as possible to hardware level 62 to
allow other interrupts to come. R:G062 is called, using Al5:

CF Al5,R:G062
Note that, entering an interrupt routine, the system is in inhibit mode. The
driver must issue an ENB (enable) instruction as soon as possible to let the
system re-get the normal execution.

- Execute: hardware instruction routines. To perform hardware instructions,
the driver may use some general routines. The routines must be called with an
absolute branch, the return address must be loaded in A4. The instruction is
constructed in A3 and the driver can supply a control word in A2. Al is

destroyed. Calling sequence:
LDKL A4 ret

ABL routine
ret —--—-

F.0.3
P800 MAS Manual October 1983

The routine is S:TIO for a start I/0 instruction, S:SST for an SST, H:LTIO for
a halt I/0, T:TST for a TST, I:NRIO for an INR and 0:TRIO for an OTR

instruction. On return the condition register is the condition returned by the
hardware instruction.

- C:INPT: check input character. This routine executes the INR instruction
for a programmed channel device (input), it checks the received character on
special functions (backspace, delete line, end character) and performs a CIO
halt instruction if necessary. On input A6 must contain the DWT address, the

routine does not return to the driver. Calling sequence:
ABL C:INPT

F.0.4

P800 MAS Manual October 1983

APPENDIX G L INTERNAL STRUCTURE

A MAS manual is not complete without some words about the internal structure of
the monitor.

In the monitor there are a lot of LKM routines present. They are invoked by the
LKM interrupt handler (I:LKM) via the table T:LKM. This table is generated
during Sysgen and may be examined by the one (or two) who wants a somewhat
deeper knowledge about this subject. Other information can be retrieved from
the description of the LKM 47 (user written LKM) in Appendix C.

Furthermore, the monitor is more or less a Foreground machine called SYSTEM. In
a Foreground machine, programs are running and indeed, that is also the case
for the System machine. All programs have a PCT (program control table) and are
chained decently just like the PCT’s in a normal Foreground machine. In the
System machine also per Foreground machine a PCT is present to run the FCL task
of that Foreground machine.

Programs running in the System machine

A list of the so called system programs may be obtained by giving a MAP command
in the System machine. The system programs run on the lowest software level (=

highest priority) in the system, except X:IDLE which runs on the highest
available software level.

The system programs are:

————— X:I0 LKM 1 (I/0) handler —=——--=
X:I1I0 performs all device independent functions of the LKM 1. For the start of
an I/0 it is entered by I:LKM, for the end of I/O it is entered by the driver.
Functions performed by X:I0 are at start of I/O:
~ check the wvalidity of the ECB
- fi11l the DWT (see Appendix F)
- ask an intermediary buffer in the System Dynamic Area for non-disc devices
and (if output) move the user buffer to that area.
- set the device to busy. If the device is already busy, create a device
request queue. ‘
- open a spool file or transform a request to a spooled device into a request
to a file on the spool DAD.
- call the "device dependent" routine:
- for a request to a physical device: the driver
- for a request to a logical disc file: disc file management (M:DFM)
- for a request to TDFM: the TDFM package
- transform a request to a DAD into a request to a physical disc device.

Functions performed at end of I/0 are:

- fill the user’s ECB with the returned status and the effective length

~ set the device free or take the next entry from the device queue and start it
move the buffer to the user area (if input) and free the intermediary buffer,
if that was asked during start of I/0

- clear the DWT

- set the event on the user’s ECB

- start the scheduled label (if any).

————— X:MASG MAS segment handler =——=---
The disc resident segments of MAS are read in and executed under the X:MASG
program. At system initialization, is determined whether a D:MSEG DAD (system
filecode /FF) or a D:MASG file is to be read and according to this information,
an ECB is constructed, used by X:MASG to read the segments. Note that, if
D:MASG has to be read, the read is done at DAD level (/FO). The start sector

G.0.1
P800 MAS Manual October 1983

of D:MASG and the calculated start address of the segment to be read are added
and from that sector, the segment is read. This means that the D:MASG file must
consist of consecutive granules, although it needs not to have the
"CONS"attribute.

Upon activation of X:MASG, A3 contains in the first 6 bits an entry number in
the segment. The segmentnumber is stored in the last 10 bits of that register.

Functions performed by X:MASG are:

- check whether the segment to be called is already in core. If not, read it
from disc. The current loaded segment number is stored in the field T:SCUR,

which is an entry that can be found in the MAS Link list.

- check the result of the I/0 operation to read the segment, if error is
returned, abort the system with error /000B, except when the error was "disc
not operable". If not operable output the message:

SYSTEM DISC NOT OPERABLE, RESTART IT
on system filecode /EF and stop the system until the system disc gives a ready
interrupt.

- start the segment by an indirect branch to the entry (present in Link list)
T:0VLA+(2*entrynr) .

————— X:SWIO swap handler =—=—==—-

Swapping in MAS is done via this task.

Functions performed are:

- determine whether the swap DAD (system filecode /Fl) is a DAD with small (i.e
410 bytes) sectors or with large (4092 bytes) sectors. Construct an ECB
according to this information.

- For swap out, write the program to the D:CI DAD, to a file, starting at the
sectoraddress recorded in the program’s PCT in word PCTSWN. At least, when

the program has been declared swappable, for read only programs, writing is
not performed. Then free the pages, occupied by the swapped out program.

- For swap in, reserve pages in the Dynamic Loading Area. The number of pages
to be reserved is recorded in the program’s PCT, word PCTREG. Then read the
program into the reserved pages from the D:CI DAD. The address where the

program resides is for read-only- or not previously swapped out programs
PCTSW1 and for previously swapped out programs PCTSWN. Then start the actions
recorded in the program’s PCTMOV queue, which are delayed, because the
program was loaded.

————— X:ALGR allocate/free granules —--—-—
The (de)allocation of geanules has to be maintained by a separate task, to
prevent that two tasks request granules at the same moment. This could lead to
allocation of the same granule to more than one file. With a separate task,

each system program that requests granules, activates X:ALGR and, if busy, an
activation queue is created so that only one request is handled at the time.

On entrance of X:ALGR, A3 contains an entry number:
— 0: allocatate granules
- 2: free granules.

A4 contains the address of a control block. Lay-out:

bit 01 15
word 0 E| | NC

1 A4 '
2 DAD address

3 # of granules

4 status

5- granule address

n

G.0.2
P800 MAS Manual October 1983

where:

E is an event bit, set upon completion of X:ALGR

NC is an indication for consecutive (NC=0) or non-consecutive (NC=1)
granules.

A4 is the address of the control block

DAD is the address of the DAD control table in the System Dynamic Area.

In the DAD control table, a BITTAB is recorded, wherein X:ALGR puts
its alterations.

gran is the number of granules to be allocated or freed.

status is zero if the requested number of granules could be allocated and 1
if a DAD overflow (not enough free granules) occurrud.

granad is for consecutive granules a one word area containing the start
address of the granules to be allocated/freed.
For non-consecutive files, it is an n-word area (n is the number of
granules to be allocated/freed). Each word containing one granule

address.

————— X:TDFM segment handler for TDFM -—-—-
X:TDFM performs about the same actions as X:MASG for TDFM segments under
Extended Mode systems.
For TDFM, some segment buffers are reserved over 32Kw. X:TDFM checks whether
the requested segment has already been loaded in one of these buffers and, if
so, starts it. If not yet loaded, the least recently used segment is
overwritten by the required segment and started.
X:TDFM reads it segments from the monitor load module (}MASR) and not from the
D:MSEG/D:MASG segment files.

————— X:USVC user service calls ————-
X:USVC is used to start core resident 'segments'". It is activated with anentry
number in A3. This entry number is searched in the table T:RMAC (which is
generated during Sysgen) and it branches to the associated label. This task is
used to activated core resident LKM’s as specified in Sysgen.

————— X:LPxx spool out task =————-—
This task performs unspooling of files to the lineprinter (xx is the

lineprinter’s device address). It is activated by a segment that closes the
spool file via a write EOF.

————— X:CRxx spool in task =——=—-—-

This system task reads a file from the spooled cardreader (device address is
xx) and writes this file to a file on the spool DAD (D:SPCR).

————— X:DUMP dump memory =——=——-
This task is activated when a dump is required of (a part of) the memory. The
dump is made via a system task, because dump commands are handled in disc
resident segments (they are not often used). When the dump was made in a
segment, under X:MASG no other segments could be activated and because dumping
is a time consuming activity, it would block the system.

————— X:RTC real time clock handler ————-
This task is only activated, when programs are connected to a timer or clock.

It is done in a separate task, because this action is time-bounded and to free
the clock interrupt routine.

G.0.3
P800 MAS Manual October 1983

————— X:0COM operator command handler ———-—-
X:0COM is activated by the control panel interrupt routine (I:CTPN), when the
INT button is pushed. It outputs an "M:" on system filecode /EF and reads then
the operator command and activates the program that handles the given command.
Furthermore it is used by system task to print a message to the operator, so

that the calling task is not blocked during the time the message is being
printed.

————— X:IDLE idle task —=——-—
This task with the highest software level so the lowest priority is always
eligible to run, but because of its low priority. It is only running when no

other program wants to run, because it is not active, waiting or suspended (on
resources, LKM, etc)

This task consists only of two instructions:
X:IDLE DLC 31 dummy instruction
RB X:IDLE

MAS abortions

MAS sometimes aborts, due to hardware, software, or even user errors. Lt is
impossible to specify here, what the user should do when a system abort
occurs. However some hints can be given.

The stand alone dump

When MAS aborts, a stand alone dump (if generated) is output on the
lineprinter. The dump consists of a print out of the current registers, the
current MMU register and the whole memory. In such a dump, some area’a can be
indicated that may be of help for debugging.

== P:CUR ==

P:CUR is a one word area in the LOCAT module. It is an entry that can be found
in the MAS link list. It contains the address of the PCT of the program that is
currently being executed. At system abort it might contain the (system) program
that caused the abortion. However, as the current program can be interrupted

from a driver interrupt routine (which does not change P:CUR) it is not always
true.

-- T:SCUR --
This is the current (or last) segment, executed by X:MASG. It is not in the
scope of this manual to give a description of all segments (currently 107

arepresent), but a list of the segments with their functions performed can be
obtained from the SSS department.

-— The Al5 stack ==

The Al5 stack is (when generated normally) an area in the LOCAT module, ranging
from /100 to /300. It is filled from the high address (/2FE) to the low address
(/100). A stack overflow results in a system error /0007. The address of the

first free word in the stack (i.e. the free word with the highest address can
be found in AlS5).

—-— The System Dynamic Area =--

In the System Dynamic Area all buffers, control blocks etc used by the system
are put. The start address of the SDA can be found in the system’s link list,
entry SYSDYN. All blocks in the SDA are chained via the first word. When the

chain word is odd, the block following it is free, if even, it is occupied.

G.0.4
P800 MAS Manual October 1983

Error codes

Only abort codes, that occur relatively frequent are discussed here.
——— System error /0000 ——-—
This error code means: unknown interrupt. A hardware interrupt was received on
an interrupt level that was not generated into the system. This level may be
found by taking the word addressed by the contents of Al5 plus two. This word
contains in the first 6 bits the unknown interrupt level.
The same error can occur, when the system branched erroneously to an address in
the interrupt locations. In that case, the interrupt level will normally be 61,
62 or 63. No standard debugging for this cause of the error can be given.
—-—=- System error /0009 ---
This error code means: chain in the System Dynamic Area is corrupted. It is
only detected, freeing a block from the SDA, when the block to be freed is not
in the chain, or when it is already free.
The address of the block that was to be freed can be found as follows: take the
current stack address (Al5) and add 18. At this address, the address is put,
that was to be freed, but that could not be found in the SDA chain.
--- System error /000B -—-
The system aborts with error code /000B, when X:MASG has read a segment, but
the event returned a status. The status (which is returned by an LKM 1) can be
found via the register A8, which contains the address of the X:MASG ECB.
-—— System error /0015 —--—-
This error means: invalid instruction in the monitor. The address of the word,
containing the invalid instruction can be found via register Al5. The contents
of this register plus 24 gives the address of a word, containing the address of
the invalid instruction.
--— System error /00lB ——-
Error /001B means that there was an invalid attempt to free granules in a DAD.
The error is given when:

~ the address of the granule to be freed is not a multiple of the

number of sectors per granule

- the granule to be freed is already free

- the address of the granule to be freed is outside the DAD or zero.
The error is given by the X:ALGR task and the X:MASG task. When the X:ALGR task
is involved, information on the error can be obtained from the control block
given to X:ALGR (in A4).
No standard information can be given when the X:MASG task is the error causer.
Only that A8 will point to an ECB, reading the GRANTB (i.e. the granule
addresses to be freed) from the file to be freed.

For detailed descriptions about monitor control blocks, system error codes

etc.the user should refer to Volume IV of this series, the Trouble Shooting
Guide.

G.0.5

P800 MAS Manual October 1983

MANUAL COMMENT FORM

Concerns manual P800M Programmer’s Guide 3 —

.......................... Originator
12N 5122 991, 28375 val. | Name L
including update(s),.................... Address

Comment (if possible, add a copy of the page(s) affected by the comment, marked with the
proposed changes),

Please return this formto SSS Publications,
P.O. Box 245, 7300 AE Apeldoorn, The Netherlands.

