rt

RTL/2
Training manual

ST (i . 00 /72y
'\!IN'I“Qi:R * - 13B 18l

ik S51= 1811 002
I =7 1 008

B) BYTE
1 ;i IF 13 NC

et AE (=82 320
’ =\4;{E>'x§;’2 \DDA 001 \,
Y B84 [8820C
e 0200722
| Rgco;':'o" JDD 29300 ‘
| ot 01404leel
Ay SG
o inee - (85 E 2048
Ry JO7FZEee

RTL/2
Training manual

RTL/2 Reference : 3 © Imperial Chemical Industries Limited 1974
Version : 1

Contents

10.

11.

Introduction

Places and Objects

Concept of location and contents; real
constants; declaring real and ref-real
variables

Presentation

Text of program in ISO7; items; layout
characters and presentation; the
comment facility

Assignment Statement

Concept of a statement; assignment
statement; dereferencing (implicit and
explicit); multiple assignment

Monadic Operators

Concept of an expression; monadic
operators; +, —, ABS; combining
monadics; terms

Dyadic Operators

Combining terms; dyadic operators;
overflow; combining dyadics; brackets;
precedence; combining monadics and
dyadics

Function Calls

Concept of a function; function calls;
parameter and result; use in expressions;
more than one parameter

Procedure Bricks and Data Bricks

Defining a function; the procedure brick;

syntax; the return statement; parameter
mechanism; returning more than one
result; global variables; data bricks
syntax; more general concept and
syntax of procedure brick; procedure
statement; side effects; return statement
and exit through ENDPROC

The Run-Time Stack

Static and dynamic variables; the
run-time stack and procedure call
mechanisms

Application
A worked example

Conditional Statement

Flowcharts; comparators and conditions;
syntax and action of conditional
statement; the conditional expression

KEYWORDS
DEFINED

REAL
REF

VAL

ABS

PROC
ENDPROC
RETURN
DATA
ENDDATA

IF
THEN
ELSEIF
ELSE
END

USAGE OF
SYMBOLS
DEFINED

digits, letters

T

o=

layout chars.
%

-
+—*/
()

()

¥
<>

PAGE

13

14

19

21

25

27

34

37

41

12.

13.

14.

15.

16.

17.

18.

19,

20.

Labels; Transferring Control

Labels; labelling statements; explicit
transfer of control; the goto statement;
the dummy statement

Integers

The mode integer; integer constants;
similarities with reals; big integer and
intermediate modes; mode transfers
and mixing types; widening and
narrowing; INT as a monadic operator;
operator tables

Arrays

The array structure; declaring arrays;
naming element variables; concept of
bound checking; use of references for
parameters; the operator LENGTH; two
dimensional structures and extension to
multi-dimensional cases; order of
evaluation in assignment

LET
Textual replacement facility; syntax and
use; replacement within a LET-definition

Data Initialisation

Initialisation in a data brick; simple
initialisations; initialisation of arrays;
syntax and use of repetition factors

Blocks and Scopes

Initialisation in procedure bricks; its
dynamic nature; syntax and use of block
statement; sharing storage in the
run-time stack; the scope of a variable;
taking out of scope; the scope of bricks
and global variables; multiple definition
and use of names; recursion; re-entrancy

Loops | : While Statement
Iterative loops; syntax and action of
while statement; matching keywords

Loops Il : For and To Statements
Syntax and behaviour of for statement;
behaviour as a block: characteristics of
the control variable; shorthand forms;
the to-loop

Switch Statement

Selective action on index; syntax of
switch statement; action on out-of-range
index; advantages and disadvantages of
use

KEYWORDS
DEFINED

GOTO

INT
MOD

ARRAY
LENGTH

LET

BLOCK
ENDBLOCK

WHILE
DO
REP

FOR
BY
TO
DO
REP

SWITCH
OF

USAGE OF
SYMBOLS
DEFINED

i

—~
-~ N

PAGE

49

55

62

74

78

83

95

98

104

21.

22.

23.

24,

25.

26.

27.

28.

29.

Worked Example

Binary

Binary representation; conversions to
and from binary; 2’s complement form;
range of integers and machine
dependent wordlength; binary, octal and
hexadecimal forms of integer constant

Fractions

Concept of fraction in machine; fraction
constant; machine independence of
range and tuning; the mode fraction; fine
fraction; fraction operators

Arithmetic Shifts

Concept of a shift; fine integer; shifts on
normal and intermediate integer modes;
mode transfers; dynamic direction of
shift using SHA; fraction shifts; big
fraction; mode transfers for fractions
and reals

Mixed Mode Arithmetic : Combining
Integers and Fractions

Mixed numbers; extension of INT, FRAC;
extension of multiplication and division;
the monadic use of REAL; summary of
mode conversions and operators;

fraction example

Extension of Conditions

Truth tables for AND, OR; complex
conditions; precedence of AND, OR;
name comparisons

Logical Operations

Packing information; logical operators;
accessing fields; logical shifts;
exclusive-OR; reversing patterns;
machine independent considerations

Bytes

Machine indvpendent mode byte;
character constant; syntax of a string;
concatenation; literal strings; operators
for bytes; place in the mode structure

Records : User-Defined Structures
Concept; syntax of MODE definition;
declaration of records; selection of
components; dereferencing; advantages
of record use; permissible components;
initialisation of records; example

KEYWORDS
DEFINED

BIN
OCT
HEX

FRAC

SLA
SRA
SHA

FRAC
INT
REAL
MOD

AND
OR

LAND
LOR
NEV
NOT
SRL
SLL
SHL

BYTE

MODE

USAGE OF
SYMBOLS
DEFINED

/1

*

PAGE

107

111

115

120

125

133

137

142

149

30.

31.

32.

33.

Communication

Concept of a module; advantages of
modular structure; external procedures
and their specification; making
procedures available externally; 1/0O
standards; stream 1/0 procedures;
supervisor calls; similar considerations
for data bricks; SVC data bricks; allowed
redundancy; ordering within a module;
the title item; syntax and use of options;
compile-time options; let-items

Stacks and Systems

Concept of a task; definition of stack
bricks; stack check on procedure entry;
concept of control routines; systems and
applications forms of the language; the
code statement; denoting let-items
within code sequences

Non-plain Modes

Concept of a literal; the mode stack;
assignment and comparison; the
procedure mode and descriptor form;
indirect calls; use and place in stream |/O;
the mode label; level-address pair; the
generalised goto statement and checks;
scope considerations; run-time errors

and recovery.

Formal Definition of RTL/2

The specification manual; explanation
and use of Backus-Naur Form (BNF);
syntactic only; end-of-file characters;

some pitfalls

Appendix 1: RTL/2 Language Subset of 1SO7

Appendix 2 : Keywords

Appendix 3 : Answers to Examples

KEYWORDS
DEFINED

EXT
ENT
SVvC
TITLE
OPTION

STACK
CODE
RTL

STACK
PROC
LABEL

USAGE OF PAGE

SYMBOLS
DEFINED
156
164
trip characters
168
177

1. Introduction

The history of RTL/2, the criteria employed during its design and the benefits which can be
expected from its use are outlined in the manual “Introduction to RTL/2".

Programming a computer to perform any task is basically a process of translating from the
language of human thought and expression to one which is convenient to the machine. The 9th
century Arabian mathematician al-Kuwarizmi is credited with originating the method of symbol
manipulation which lies at the root of abstract mathematics and logic. His name is remembered
in ‘algorithm’, something which symbolically represents a sequence of decisions and calculations
to perform some well-defined process. RTL/2 is basically an algorithmic language in which we
can define symbolic procedures in a style similar to mathematics and English, without worrying
about the basic instructions or organisation of a particular computer. The translation of this into
a form suitable for execution by a machine is performed by a program - a compiler. For this to
be possible, the language must be defined in a precise, unambiguous manner. There are two
aspects to this. Firstly, there are the rules of grammatical structure (syntax) that must be obeyed
before a construction can be regarded as admissible; secondly, there are other (semantic) rules
that govern its use and interpretation in practice and attach a meaning to a construction in its
particular context. A formal presentation of these rules is given in the RTL/2 Specification
Manual, which is intended as a reference manual and not a source for learning RTL/2. This
Training Manual, however, is intended to provide a sequential text to teach RTL/2, not only its
rules, but also its philosophy, underlying structures and some of the ways in which it can be used.

The stages involved in writing and running programs from the formulation of the problem to the
existence of a dependable tool are well known. In this Manual we are concerned with the process of
formulating and writing the logical sequence which will solve the problem. This process leads to a
program which is presented to an RTL/2 compiler through-some suitable input medium. This
Manual is about the whole RTL/2 language and not just the bits which are simple to learn and

use; an overall understanding is essential if the maximum benefit of RTL/2 is to be gained in the
design and writing of programs. There are many things which this Manual is not about: it does

not concern itself with actual machines or operating systems; it does not describe what compilers
may do; above all, it is not a handbook to enable existing programs to be transliterated into

RTL/2.

Text books usually have prefaces and introductions which explain for whom the work is intended,
the level of knowledge assumed and how the book is organised; this Manual is no exception and
the following remarks will probably be ignored completely or dismissed as padding. Knowledge

of any other language is not assumed, and the average intelligent person who has brushed with
computers and has a reasonable level of mathematics should find little difficulty. The style is
designed to be readable without complex technical definitions and a mass of numbered
paragraphs bristling with decimal points. The automatonous reader is asked to excuse the
occasional glimpses of humanity which have crept into an otherwise turgid subject. The
experienced programmer will proceed rapidly. No sections are starred as being ““of less importance”
or “can be omitted at a first reading’’; the aim is to present the whole language in a fairly logical
order; if you find difficulty, follow the French mathematician’s advice to the conscientious not
to linger too long over the hard parts but ‘go on, and faith will come to you’ — it will all fall into
place. Finally, the usual exhortation to try all the examples; they (and the worked examples) are
essential — the test of understanding is usage. Answers are provided in Appendix 3 but these do
not purport to be ‘best’ solutions; they merely solve the problems with the constructions available
at that point.

One aim of any high-level language is to bring the potential of computers within reach of a wider
group of users, including those who regard such machines as mere tools and who are not
interested particularly in the hardware structure involved. It is intended that RTL/2 can be used
to program processes independent of the actual computer used. This makes precise definition
impossible in some areas; other vague areas may arise where the interface between RTL/2
programs and the particular operating system is involved. We recognise these limitations and
indicate them by the phrases “machine dependent”, “implementation dependent’’ and “’system
dependent’’; whenever possible a minimum interpretation expected or the spirit intended is given,
but the reader is advised to consult the documents relevant to the particular computer or system
when he finds himself in such areas: it is clearly good programming practice, when designing

transportabie software, to collect any ‘fuzzy’ areas into one place and pay particular attention to
documenting the assumptions made.

Regardless of high-level languages, computers will only do what they have been told to do.
Whatever the claims for computers, it is true that they will faithfully reproduce in their output all
the errors of the input, and this applies equally to the logical structure of the program as well as
to any numerical data. RTL/2 and its compilers cannot check your logic though they may help
you — you have been warned.

2. Places and Objects

Executing a program in a computer consists of the manipulation of numerically coded instructions
and items of numerical data, held in the store of the machine. We can picture this store as a
collection of cells. Since there is a large number of different cells where information and
instructions can be located, some means must be provided to identify each one uniquely, so that

a particular instruction can be specified or a particular item of data accessed. This is solved by
giving each cell an identification number called its address; thus each cell can be thought of as
having a nameplate bearing a unique reference number. It is important to note that this

nameplate contains no information about the nature of what is in the cell (i.e. instruction or
datum) nor about the contents itself.

In a high-level language we are not interested in which particular cells of the machine we use. We
do wish to manipulate information in the cells and to be able to refer uniquely to a cell (or a
group of cells) wherever it is physically situated in the store.

We shall see how we do this in RTL/2 and distinguish between the nameplate and the contents of
the cell in a simple case.

The most primitive objects that we wish to manipulate in RTL/2 are numbers; some of the
numbers involved are real numbers. Inside a machine they are represented in some floating-point
form. As far as the program writer is concerned, he can think of them in a form similar to the
common scientific notation, in which a real number is regarded as a fraction between 0.1 and 1.0
times a power of ten. For example 276.23 can be written 0.27623 x 103. In any given machine
numbers can only be held with a certain finite number of significant figures. The majority of
numbers will therefore be approximated to some degree of precision. Since the number of
significant figures held varies from machine to machine, the language does not define the accuracy
with which real numbers will be held: that is the accuracy is implementation dependent.
Similarly, because machines are finite, there will be a limit to the magnitude of real numbers
which can be held within the machine. It will not be possible to hold very large nor very small
numbers. The range of numbers which can be held is again implementation dependent. A typical
implementation on a small computer might allow a range of 1072° to 10*2° with 6 figure accuracy.

How do we write a real number in RTL/2? We use a combination of the decimal digits O to 9,
the letter E and the decimal point (.). RTL/2 allows three forms for a real number and leaves the
compiler to construct the form required internally:

i) A simple decimal number which contains a decimal point and at least one digit both before
and after the point;

ii) A simple decimal number as in (i) with a power of ten (exponent) appended in the form E
followed by a signed or unsigned number (without any point);

iii) A decimal number without a point with an exponent as described in (ii).

You may wonder how negative numbers can be dealt with if we do not prefix a sign to the
number. Any leading sign is not regarded as a part of the number, but as an operator acting on
the number; this will be dealt with in Section 5. Note too that such a number is an RTL/2 item
(see Section 3) which is terminated as soon as a character is found which cannot be interpreted as
part of it; thus we cannot have any spaces in the number particularly between the decimal and
exponent parts.

The fallowing are examples of legal real numbers written in the different permissible forms:

i) 263.27 0.5 13.0

i) 2.6327E+2 5.0E-1 1.3E1

iii) 26327E-2 5E—1 13E0

The following examples show illegal attempts to write real numbers:
16. no digit following decimal point

.02 no digit preceding decimal point

E6 no number for the exponent to apply to
1.2E1.0 decimal point in exponent

1632.7 E—1 space precedes exponent

The compiler may also fail a syntactically valid real number if its size exceeds the range for the

machine. This is an example of a semantic error — the machine will not be able to attach a
sensible meaning to the RTL/2 item.

A number appearing in a program in one of the above forms is called a real constant.

We will wish to manipulate such real numbers in our program, and will thus require to store them
in the cells of our machine. Just as in the machine we identified each cell uniquely by an address,
we wish to identify uniquely, within the RTL/2 program, the quantities we are going to
manipulate. During the execution of a program (i.e. at run time) a quantity will take on many
different numerical values, but, as in algebra, such a variable quantity has only one value at a
particular instant. In our machine this is reflected by one cell which contains different real
numbers as the program progresses. We wish to identify this particular cell. This is done using an
identifier. |dentifiers play a vital role in RTL/2; we use them to name various things, including
variables. To cope with identifiers we introduce the RTL/2 item name. A name is a sequence of
the letters A to Z and the digits 0—9 (these characters are known as alphanumerics) with the
proviso that the first character must be a letter. Thus the following are valid RTL/2 names:

A

XY27

FRED

INCOME
WHATALONGNAMEIAMWRITING

Whilst the following sequences are illegal as names:

A*B contains a non-alphanumeric
3PQ does not start with a letter
FRED BLOGGS contains a non-alphanumeric (space)

The language RTL/2 does not place any limit on the number of characters that may appear in a
name. However, for practical reasons, there will be a finite limit. There is in any case a limit
imposed by the number of characters you can get on a line! It is unwise to use names which are
too long since writing them becomes tedious, the machine independence is possibly reduced (see
Section 30), and the chance of making spelling mistakes increases!

So to identify our variables in a program we have a free choice of names; well, almost a free
choice! The character set of RTL/2 does not provide enough distinct symbols for the use of the
language and so some names are reserved and have a pre-defined meaning. There are 57 such
keywords which are listed in Appendix 2; we shall explain their use as we introduce them
individually through this manual.

We can now name the variable quantities we wish to use in our program. The selection of a
particular name for a variable does not in any way affect the meaning of our program, in the
sense that the meaning will net be changed if throughout our program we consistently replace it
by another name (different from all the other names used in the program). In short programs,
brief, uninspired names, like A, X27, FRED are all right, but in longer, more complicated cases,
involving several hundred variables perhaps, it becomes important to use mnemonic names so that
a variable’s name suggests what it stands for. The use of such names (e.g. TEMP, PRESS, ERROR)
simplifies the writing of a program, reduces the number of errors made, and makes it far more
comprehensible to another reader (and to yourself some months after you first wrote it!)

We can now link together in RTL/2 the ideas of the contents of a machine cell and the nameplate
attached to it. The name of a real variable is simply the nameplate of some cell which contains
real numbers during the course of a program. We shall see that real numbers are not the only
quantities we wish to manipulate. During compilation of an RTL/2 program a suitable cell (or set
of cells) has to be reserved for every variable appearing in the program. In order that the compiler
can allocate the appropriate storage the programmer must convey some information about the
objects which will be contained in the cells named by the identifiers used in the program. This is
achieved by a declaration. 1f we wish to use TEMP, PRESS, ERROR to name cells containing real
quantities we write:

REAL TEMP,PRESS,ERROR

10

The exact position in the program where we put this will be discussed later. The form is the same
for all declarations. We have a description of the type (i.e. the nature) of the contents (in this case
the reserved word REAL) followed by a list of the names of the variables required, separated by
commas. So we have our first keyword, REAL, and our first piece of RTL/2; the function of this
declaration is simply to announce that the identifiers TEMP, PRESS, ERROR will be used in the
subsequent text of the program to identify places which can contain real numbers. The
importance of this seemingly pedantic insistence on the name ““identifying a place which can
contain” something rather than saying ‘‘the variable /s a real number’’ will become apparent.

One of the objects we shall wish to manipulate is the name of a variable, or in general, an
identifier. That is we wish the contents of some cell to be the ““name’’ of some other place. We
shall wish to name this cell too in our program, and, like all variable names in RTL/2, we must
inform the compiler as to how it will be used by means of a declaration. The type this time is a
reference to a real cell which is reflected in the declaration:

REF REAL WHICH

REF is another keyword and in this case we are only declaring one name. What have we done?
We have announced that the name WHICH will be used to identify a place which can contain the
name of a real variable, that is which can contain a name which in its turn identifies a place which
can contain a real number. Thus the contents of a ref-real variable is a po/inter to another cell. In
practice the contents will probably be the address of the cell of that name; reference variables
can thus be used for indirect addressing.

If at some stage of our program the values in cells TEMP, PRESS, ERROR are 10.7, 1.62, 0.1E-5
and WHICH happens to be pointing to PRESS, we can picture the machine cells in the following
way:

Te]
R4
.\8'.'-“-Lu
S|l-|°|&
Q.
2 /& /0/F
G/&/E/E
KjC/w /S

Note that a declaration, as well as informing the compiler of the usage intended for a name also
reminds us of the range of values which a variable can contain. Real variables, once declared can
contain real numbers, the form of which we have already examined; we do not need to declare
real constants since no cells are involved and both we and the compiler can recognise them as
such by the presence of a decimal point or the exponent symbol E (or of course both). In other
words the constant is unambiguously real. For variables this is not true: the language supplies the
structure, but the programmer provides the vocabulary, and the compiler must be informed how
names are to be used.

The concentration on real numbers and floating point arithmetic in the early part of this Manual
does not mean that they are regarded as most important; they are merely the simplest to deal
with and enable the basic concepts of RTL/2 to be introduced without involving other
unnecessary considerations at this stage.

11

Section 2 examples

1 Which of the following real constants are illegal and why?

a) 726 b) 0.3 ¢) 673.0E+1
d 0001.34 e) 3B.7 f) 27.

g) 32,767 h) 0.00015) 100.001
) .3 k) 27E010) 2.3E-2
m) 16E—9 n) 16 E9 o) 1.2*E-3
p) 0.9E+1.0 g 0.06E10 r) 11.74E0
) .125 EO 1) 27E2

2 Rewrite the legal real constants in example 1 in the form of a fraction in the range
[0.1, 1.0) (i.e. a fraction f 0.1<f<<1.0) and an exponent

3 Which of the following identifier names are illegal and why?

a) FREQUENCY b) A c) RATE-OF-FLOW
d) FRED'S e) 6H20 f) A7E2

a) #27 h) MESSAGE i) REF

i} FEET/SEC k) MUCHTOOLONG) NAME

m) 77E2 n) FISH&CHIPS o) N204

p) REALDATA a) A29461 . TAX

s) ACCURACY t) VALVE SETTING

4 Write suitable declarations for variables to be used in the evaluation of tax liability

12

3. Presentation

Ultimately a piece of program text must move from the planning and manuscript stage to a form
which is suitable for input to a machine, and in particular for presentation to an RTL/2 compiler.
This process can be performed on any data preparation equipment which produces a suitable
input medium (e.g. punched cards, punched tape) for the particular machine on which the
compiler is run. This input will be a sequence of RTL/2 characters, each one drawn from the
“language subset” of ISO 7 — a character code proposed by the International Standards
Organisation. On some machines, text may be presented in some other code (e.g. EBCDIC) and
there will be a translation into SO 7 before entering the compiler; at this stage only the
characters concern us; their internal representation will become critical in later sections. We
have already encountered some of the valid characters: the letters A—Z, the digits 0—9, the
comma (,), and the signs +, —. Others will be seen in later sections and full details of the set are
given in Appendix 1. It is perhaps worth pointing out that care is needed in distinguishing
between the letters |, O and the digits 1, 0.

We mentioned in Section 2 that characters are grouped together to form items. So far we have
seen two RTL/2 items, the real constant and the name. The former was characterised by the fact
that it contained a decimal point or an exponent symbol E (or both), the latter by the fact that
it started with a letter. Within the character sequence of the text, an item is terminated as soon
as a character is reached which cannot be interpreted as part of the item; for example if a name
item is started by the letter W, say, this item will be terminated as soon as a non-alphanumeric
character is found. Often this will be a space character, an ISO 7 character not mentioned
specifically before. The space in RTL/2 is a /layout character. There are two other layout
characters, the tab character (for horizontal tabulation: no settings are defined in the language)
and the newline character (corresponding to an explicit line-feed, possibly with a carriage return,
on paper tape and implicitly present as the end of a card). In general, any item will be terminated
by a layout character. Apart from that, layout characters may be inserted freely into the program
text. RTL/2 is a free format language within this item structure, and the judicious use of layout
characters aids considerably the clarity and legibility of a piece of program. In particular the
indentation of lines is a simple but effective way of indicating the structure of a program.

RTL/2 programs are meant to be to a large extent self documenting. A program may be
annotated by the insertion of a comment. A comment is an item and can appear wherever an
item can appear — this is virtually everywhere but note that you cannot have a comment in the
middle of a name nor in the middle of a real constant! It consists of a per-cent symbol (%)
followed by almost any sequence of characters forming the explanatory material and terminated
by a further per-cent symbol. Since the per-cent symbol terminates the comment, it is obvious
that the sequence cannot contain a per-cent symbol! The only other restriction is that the
sequence may not contain a newline character. The reason for this is that if inadvertently the
closing per-cent sign were omitted, the compiler would otherwise treat all the program text as a
comment until it reached another per-cent sign, and this might lead to the (possibly disastrous)
creation of a program with a large chunk missing. An example of a comment is:

% EXAMPLE OF COMMENT %

Such comments are completely ignored by the compiler, do not affect the meaning of the
program, but are intended to help the reader of the program. As with mnemonic names, free
use of the facility (with no penalty) is encouraged to make programs more comprehensible to
others and to yourself some months after originally writing them. Much (possibly excessive!)
use will be made of them in this Manual.

As an example, we will see how we might annotate a solution to examples 2 number 4:

REAL INCOME, % TOTAL EARNED INCOME IN PQUNDS %
NETTAXPAY, % TAXABLE PAY AFTER PENSION DEDUCTIONS %
ALLOWANCES, % ALL PERSCONAL ALLOWANCES BUT NOT EARNED %

% INCOME RELIEF %
TAXCODE, % CORE NUMBER IN TAX TABLES %
TAX % TAX PAYABLE %
NOTE THE FREE USE OF LAYOUT CHARACTERS, ANC THE COMMENTS %
(LIKE THIS ONE) SPREAD ACROSS TWO LINES Z

E

13

4. Assignment

We have seen how to declare the name of a place to contain a real number, and how to write
real constants in RTL/2. During our program we will obviously wish to change the contents of
various locations (cells) or, at least, to put some numbers in them! How do we do this? At
execution time, a program tells the machine what operations to perform, that is, it specifies a
series of actions to be taken. In an RTL/2 program, the actions to be performed are defined
by statements. Note that the program which we write is not composed solely of actions; we
have already seen the declaration, which supplies information to the computer and the human
reader, and the comment, providing annotation.

Various declarations and statements are usually separated from one another by semi-colons. We
regard the examples as being parts of some larger program and so append ;" to the last
statement. This point will be discussed fully in a later section.

The statement in RTL/2 which changes the contents of locations is called the assignment
statement. Suppose we have a variable named RATIO (declared as a real) and we wish to
place the real number 0.7 in the place named RATIO. Then our declaration and statement
appear as:

REAL RATIO;
RATIO :=0.7;

The assignment statement consists of three parts, the left hand side (the name RATIO), the
symbols :=, and the right hand side (the real constant 0.7). Let us examine these constituents
in turn.

The left hand side specifies the destination, that is it states the name of the place whose
contents are to be changed. Clearly, the only sensible thing that can be allowed here /s the
name of a place. This change of contents is a replacement of the old contents by the new,

and in the process, the old object is destroyed. The destination supplies us with another piece
of information. As the name of a place, it must have been declared, and that declaration tells
us the nature of the contents of that place: such an object must be delivered by the right hand
side.

The sequence := (‘colon equals’ or ‘becomes’) is an item formed by the concatenation of the
two characters “:’ and '="; as an item, of course, it cannot have any layout characters in it. It
behaves as a single entity, separates the left and right hand sides of the statement, and specifies
the action of assignment. As such, it may be thought of as a replacement operator. Note that
‘=" alone is not used, since equality is not involved; the combination “:=" is used to emphasize
the asymmetry of the action and to stress that an operation and not a relation is involved.

The right hand side supplies the object which is to be the new contents of the destination. In
our example, the destination requires a real number, and the real constant 0.7 is clearly a
valid object to be placed in RATIO. As we shall see later, the right hand side will often be a
much more complex expression, but the principle will remain: the right hand side must
deliver an object which can be stored in the destination specified by the left hand side.

So much for getting numbers into locations. At some stage we shall wish to use the contents
of our various named locations (i.e. use our variables). Suppose we have another real variable
in which we wish to remember the contents of RATIO prior to assigning a new value to the
placé RATIO (which action would of course destoy the old value). What do we mean by:

REAL RATIO, OLDRATIO;
RATIO:=0.7;
OLDRATIO:=RATIO;

The first two lines are identical to the last example except that we have now declared a
second real variable OLDRATIO. What does the second assignment mean? The left hand side
is the name of a place which is therefore a valid destination. Further it is the name of a place
which contains a real number, so the right hand side must deliver a real number. On the right
hand side, however, we have the name of a place again, namely RATIO. The only sensible
interpretation which can result in a real object is that the contents of RATIO is required, and
this is indeed the meaning. The act of extracting the contents of a named location is called

14

dereferencing. Dereferencing on the right hand side of an assignment statement is automatic,
and we do not need to insert any explicit notation in our program to perform this. Note

that there is no change to the contents of the place named RATIO; we are merely ‘reading’ its
contents. To be meaningful some sensible number must previously have been assigned to the
place, as in our example.

It is very tedious to talk about ‘‘the contents of the place named’’ but this distinction between
the name of a place and the object in that cell is vital. We shall talk about “the value of a
variable”” meaning ‘““the object currently in the place named’” and this naturally refers tc the
object most recently assigned to that location.

In Section 2 we introduced the idea of a ref-real variable, the contents of which is the name
of a real variable, providing at any time, a pointer to a real variable. How will such variables
fit into assignment statements?

REAL RATIO, OLDRATIO;

REF REAL WHICH;
RATIO :=0.7;

OLDRATIO := RATIO;
WHICH := OLDRATIO;

The left hand side of the third assignment statement is the name of a place and is therefore a
valid destination. It is a place that can contain the name of a real variable, and so the right
hand side must deliver such an object. The right hand side, OLDRATIO, is the name of a real
variable. The action then is to place the name OLDRATIO in the cell named WHICH. What
happens if we now add the statement:

RATIO := WHICH; ?

We go through a similar process of reasoning: the left hand side is the name of a place which
can contain a real number. The right hand side is the name of a place which contains the name
of a real variable. This is not a suitable object, so we invoke dereferencing which yields the
contents of WHICH which is the name of a real variable (in this case OLDRATIO). This is still
not a suitable object, so we invoke dereferencing again, that is we take the contents of the
contents of WHICH: the contents of WHICH is a real variable and the contents of that must
be a real number (in this case the contents of OLDRATIO which happens to be 0.7). This real
number is a suitable object and is assigned to the place RATIO. The dereferencing is performed
automatically, and again there is no effect on the contents of WHICH nor on the contents of
its contents (!) (that is the value of OLDRATIO in this case is not affected, it is merely “‘read”).
This provides a facility of /indirect access to the values of variables.

The reverse process must also be considered. Can we (and, if so, how) assign indirectly?
Consider the statement

WHICH := 0.4;

The left hand side indicates that the name of a real variable is required; the right hand side is
a real number which can in no way deliver the name of a real variable. The right hand side is
incompatible and the statement is therefore illegal. If our intention was to place the number
0.4 in the location whose name was contained in WHICH (i.e. to assign indirectly, in this case
to OLDRATIO), then we must arrange for the name of a real to be the left hand side. To do
this, we use the keyword VAL which forces dereferencing on the left hand side.

VAL WHICH := 0.4;

This says that the destination is the contents of WHICH. Since WHICH is a ref-real variable its
contents is the name of a real variable which is the destination; being a real variable, a real
number is required, and the right hand side delivers such an object. VAL can only be used on
the left hand side of an assignment statement, and this is the only situation in which
dereferencing needs to be forced and hence mentioned explicitly in our program.

We have now seen real numbers, real variablés, ref-real variables and (on the left hand side
only) ref-real variables preceded by VAL, in assignment statements. Let us enumerate the 12
possibilities, indicate which are legal, and the interpretations to be put upon them.

15

REAL X, Y3
REF REAL P,Q;
X:=Y:=0.,0; P:=0:=X; % ENSURE SENSIBLE CONTENTS %

% IN THESE STATEMENTS THE LEFT HAND SIDES ARE NOT NAMES OF PLACES <%
1e6:324b3 %“ TLLEGAL %

1ab:=X3 2 ILLEGAL %
1.6:1=Dny % TLLEGAL X%
» REAL OBJECTS ARE SUPPLIED TO A REAL VARIABLE IN : %
Y 1=2.47
Y 1=X; Z X DEREFERENCED %
Y 1=P; % P DEREFERENCED TWICE %
© IS A REF=REAL VARIABLE AND REQUIRES THE NAWME QF A REAL VARIABLE
@ 1=2.4: % ILLEGAL %
Q =X
G 1=P; % P DEREFERENCED %

THE FOLLOWING ARE SIMILAR TO THE ASSIGNMENTS TO Y EXCEPT THAT %
THE DESTINATION IS OBTAINED BRY DEREFERENCING G %

VAL Q:=2.6:

VAL Qe=X3 » X DEREFERENCED ¥

VAL Q=P % P DEREFERENCED TWICE %

32

a2

It is extremely important to distinguish

Q:=X:
VAL Q:=X;

which specify quite different actions.

In the above, we have placed each statement on a separate line. This is not essential bearing in
mind the free-format nature of RTL/2. As noted in Section 3 the presentation should be
designed to be as clear as possible for the reader.

If we wish to assign the same object to more than one location, we can do this in one
statement, a multiple assignment. Since we are assigning one object, all-the destinations must
be places which require that kind of object. We merely add the name and a “:="" item for each
variable to the left hand side thus:

X=Yi=2Z2:=13; % X,Y,Z REAL VARIABLES %

Note that RATIO := WHICH := 0.1; is illegal since RATIO demands a real whilst WHICH
demands the name of a real variable; dereferencing of WHICH is not automatic, since it is here
part of a left hand side. Indirect assignment would require:

RATIO := VAL WHICH := 0.1;

The action of this statement is to set up the real object 0.1, find the contents of WHICH and
overwrite the contents of that real variable with the object 0.1, and replace the value of RATIO
with 0.1. Note the order of performing the actions from right to left; this will be mentioned
again later.

16

%

Let us trace the actions of a set of assignment statements:

REAL A,B,C:

REF REAL P.Q.,
A:=1.0E=63
P:=B;

Qi=Cs

R3:

B:;=62,8%

R:=A;

C:=3E7:;

% ALL VARIABLES NOW CONTAIN SENSIBLE VALUES %
VAL Qu=zAs=(C;
VAL P:=1.63

Bi=R3
C:=0a73
Ri1=B;

VAL R:=C3s
Ag=Bs

If we number the statements as shown we can draw up a table showing t

%
%

1

~N O W

variables after each assignment:

%
%

NN N NN

he values of the

VARIABLE
STAT

A B Cc P Q R

initial 1.0E-6 62.8 3E7 B C A
1 3E7 62.8 3E7 B C A
2 3E7 1.6 3E7 B C A
3 3EL 3E7 3E7 B C A
4 3E7 3E7 0.7 B C A
5 3E7 3E7 0.7 B C B
6 3E7 0.7 0.7 B C B
d 0.7 0.7 0.7 B C B

You are invited to check this: any step can be verified by considering the nature of the

destination.

17

Section 4 examples

1 Draw up a table to show the result of performing the following assignment statements:

REAL WeX,Y 22
REF REAL A,B,C,0;
:1=X1=0,071

2:=C;
VAL D;=3,2;

]
=
»a

ON O D
O 8 e wa W

< E X < o
%s we oo ve sa we
en (A

— W H N M

o~
o
-

One assignment statement is meaningless; which one and why?

18

5. Monadic operators

The assignment statement enables us to move values around the machine, but hardly gives us any
scope to manipulate those values. As mentioned in the last section, the right hand side will
normally consist of a more complex expression. An expression is simply a rule or formula for
computing an object; as before, the destination determines the nature of this object; and hence
dereferencing may be needed during the evaluation of an expression.

We introduced the statement to express a required action to be carried out in our RTL/2 program.
The actions required in the evaluation of an expression are specified by operators. In this section
we are concerned with monadic operators; such operators act on one object to produce another
object. In the RTL/2 text, a monadic operator precedes the object it is acting on. We need to
know four pieces of information about such operators:

i) the symbol used for the operator

ii) the nature of the object on which it is acting — the type or mode of the operand
iii) the nature of the object produced — the mode of the result

iv) what action will actually be performed.

Let us consider three simple monadic operators in RTL/2:

OPERATOR OPERAND RESULT INTERPRETATION
+ Real 4 Real No change : identity
— Real Real Negate the operand
ABS Real Real Negate the operand if
it is negative,

otherwise no change

ABS is a reserved word, and must be terminated by a non-alphanumeric (see Section3); thus we write ABS X and
not ABSX which would be interpreted as a name

Thus these three operators all act on real objects to produce new real objects, and perform the
simple algebraic functions of identity, negation and absolute value.

Example:
REAL X,Y;
REF REAL WHICH;
WHICH :=Y; % 1%
Y :=+0.3; % 2%
X :=—26.2E2; % 3 %
VAL WHICH := ABS X; % 4 %

The four assignment statements will be interpreted as follows:

1 the familiar assignment of the name Y to the location WHICH

2 the value 0.3 is assigned to the location Y, the plus sign merely emphasizes the positivity.

3 the negative value —26.2E2 is assigned to the location X.

4 the left hand side is the name of a real, so a real object is required; ABS acts on a real, so
the contents of X are accessed (i.e. X is dereferenced), the absolute value taken, and this
real value stored. With the current values, this will result in 26.2E2 being assigned to Y.
There is no effect on the contents of X.

Note that the signs preceding the constants are regarded as operators and not part of the constant
(mentioned in Section 2).

There is no reason why the left hand and right hand sides of an assignment statement should not
contain the same name. Thus:

REAL X;
Xi=i3.2
X:i=—=X;

19

has the effect of storing 3.2 in X and then negating the contents of X. Note carefully the
distinction between the left hand side where X is the name of a destination and the right hand
side where the contents of X are accessed since a real object is required. The reason for the use
of “:="is now seen more strongly; X=—X would be algebraically misleading! We can prefix more
than one operator if we wish, but we must then be sure in what order the actions will be
performed. What do we mean if we write

REAL X, Y;
Y ;= 1.65;
X:=—ABSY; ?

The first assignment statement should be clear by now. The second has X as destination which
therefore demands a real object. The minus sign also requires a real object; ABS cannot be
interpreted as a real quantity but ABS Y can. So we take the name Y, dereference it to yield a
real value, perform the operation ABS which yields a new real value, which becomes the operand
for —. Thus —1.65 will be stored in X. Another way of expressing this rule is to say that monadic
operators are applied from right to left, i.e. the “‘innermost’’ operations are performed first.

An expression consisting of some monadic operators (or none!) and an object is called a term in
RTL/2. We shall see how to combine terms together in later sections, and also meet new monadic
operators as we progress through this Manual.

Section 5 examples

1 Write down the values of the variables X and Y after each of the following assignment
statements.

REAL X,Y:
X:122643;
Yi==0,273

t=ABS~X;
Y:=+ABS=Y;
Xs=+=Y;
Yizm4X])
Y;==ABS=2.33
£x1=+0,01
X:==ABS+Y;

2 Rewrite Example 1 with new declarations and first assignment

REAL X P13
REF REAL Y3
Yi=P3s

Simplify the monadic operators to remove redundant operations, and remove redundant
assignment statements, but do not use the name P nor replace names by current constant
values!

20

6. Dyadic operators

In order to construct more complex expressions, we need to combine terms together. Operators

will again be required to define precisely what action is to be performed. Such operators defining
how two terms are to be combined are called dyadic operators. As with monadic operators, there
are items of information we need to know, namely the symbol used for the operator, the modes

of the two operands, the mode of the result, the interpretation, and a further item which will be

explained below.

In this section we introduce four dyadic operators which provide simple addition, subtraction,
multiplication and division of real numbers. We will present these and subsequent operators in
tabular form:

OPERATOR o ihol ohonD RESULT INTERPRETATION
+ Real Real Real Form the sum of the operands
— Real Real Real Subtract the second operand from the
first
* Real Real Real Form the product of the operands
/ Real Real Real Divide the first operand by the second

The operators are written in the RTL/2 text between the operands just as in mathematics, with
the left operand naturally being regarded as the first. Thus we write

REAL A;
A= A*2.54;

to scale the contents of A from inches into centimetres. There are a number of important
observations to be made.

1 The result of any of the above operations may lie outside the range of real numbers which
can be held on the particular machine on which the program is running. This condition is
termed overflow. For example, if the range of real numbers is 1072° to 10*2° and we
attempt any of the following operations (between valid real numbers), overflow will occur:

8.9E10 +9.7E19
1.2E9* 1.8E11
1.001E17 / 0.001

The action taken on encountering overflow is machine dependent; strictly speaking the
behaviour of the program will be undefined when such a condition arises, but the intention
is that any implementation will supply some means (not necessarily automatic) of detecting
overflow.

2 The multiplication sign must always be supplied explicitly; the mere juxtaposition of two
variables as in mathematical notation does not imply multiplication. Nor may the point ‘.’
be used as a ‘times’ operator.

3 Division is an operation performed as accurately as possible (i.e. the same degree of precision
as that mentioned in Section 2) and there is no question of a remainder.

The result of applying one of the above dyadic operators is a further real object which may itself
be used as an operand. A new problem arises when we have more than one dyadic operator in an
expression. Let A, B, C be declared as real variables. Then if we write A+B+C we clearly mean to
add together the three real numbers in the locations A, B, C. However, if we write A+B*C what
do we mean? We could mean add together the contents of A and B and then multiply by the
contents of C or, alternatively, we might require the contents of A to be added to the product of
the contents of B and C. In algebra, this problem is quite familiar and is resolved by requiring
multiplications to be performed first; if a product is to be distributed over a sum, brackets are
inserted to indicate this. Thus a+bc is our latter interpretation; whilst for the former we would
write (atb)c. The same approach is followed in RTL/2. If we write

21

REAL A,B,C,D;
A:=23

B :=1.6;
Cus=0ils

D := A+B*C;

D := (A+B)*C;

the result of the fourth assignment is to place 2.46 into the location D whilst the fifth results in

0.39 becoming the value of D. A number of simple rules govern the way in which an expression
will be evaiuated in RTL/2.

Firstly, any expressions in round brackets are evaluated first. It is permissible to have bracketed
expressions within brackets thus (A+(B+C)+D)*C (known as nested brackets) but note that there
is only one sort of bracket. In such cases the rule is to evaluate innermost brackets first.

Secondly, every dyadic operator has a number associated with it (this is the extra piece of
information referred to earlier) known as its precedence. This is a measure of its priority of
performance in an expression and reduces the number of brackets needed to ensure that an
expression is evaluated in the way intended. The rule we shall give is applicable to all dyadic
operators in RTL/2 and not just to the four introduced between real quantities in this section.
Suppose we have three terms <, 3, v, two operators © and © and we write the expression «ogoy.
If the precedence of o is greater or equal to the precedence of o then the expression will be
evaluated as (ccog)oy (i.e. will proceed simply from left to right); otherwise it will be «<o(goy).
Note that in particular, when o and © are the same, they will have the same precedence and so the
expression 0.6—0.1—0.5 will result in 0.0.

These rules do not state that «og will be evaluated from left to right; this point will be discussed
in Sections 8 and 14,

The fact that bracketed expressions are evaluated first means that their presence overrides the
precedence considerations which would otherwise be invoked. Brackets can be safely used, when
the precedence of two operators has been forgotten, to ensure the correct interpretation, and it is
sometimes useful to insert redundant brackets to aid legibility and to reinforce the precedence in
the reader’s mind. The general moral is not to hesitate to insert brackets at all points where one is
unsure of the priorities or where they increase legibility. Any pair of redundant brackets will not
affect the meaning of the expression. The function of brackets (no matter how complex the
enclosed expression may be) is to shield the contents from the rest of the expression; from
outside, the bracketed expression can be regarded as a simple term.

We now re-present our four dyadic operators, showing their precedences:

FIRST SECOND

OPERAND OPERAND RESULT INTERPRETATION

OPERATOR PRECEDENCE

Form the sum of the

+ 1 Real Real Real R
-1 Rel Rl Re b
* 5 Real Real Real fh‘;rrgptetgnpggd““ of

/ 5 Rial Real Real Divide the first operand

by the second

From this we can see that addition and subtraction have equal precedence as have
multiplication and division and that multiplication and division have the higher precedence
as in algebra. This last fact is sometimes expressed in the form that multiplication and
division are ““more tightly binding”’.

22

Example:
% VALUE OF EXPRESSION SHOWN IN COMMENT %

REAL AB,C;

A :=27.0/9.0; %3.0%

B i=13.2*1.1+6.7; %21.22%

C :=1.0-1.0/2.5; %0.6%

B :=B*B—A*C; %448.4884%
C :=B/(2.0*A); %74.748067%

Of course, in the last two assignments, implicit dereferencing has occurred. Note that there is no
‘power’ operator so B? must be written out as a multiplication; precedence demands that the
products B*B and A*C be performed before the subtraction. In the last assignment, the brackets
are essential for the evaluation of B/2A; B/2*A would mean (B/2)*A since / and * have equal
precedence.

Dyadic operators may also be combined with monadic operators in expressions. The rule for
precedence here is embodied in the fact that the operands of a dyadic operator are terms and
any monadic operators are part of a term. Thus all monadic operators have a higher precedence
than the dyadic operators. This precedence again can be overridden by the use of brackets.

Thus —(A—B) is equivalent to —A+B
whereas —A—B is equivalent to —A+—B

Note that A—B is the same as A+—B; it is an algebraic fact that +,— can be used either as
monadic or dyadic operators (they are the only such ones).

It is unnecessary to labour further the algebraic interpretation of such operators; the important
lessons from this section are the concepts of bracketing and precedence which will apply to less
familiar operators which we will encounter.

Example:
Write a sequence of assignment statements to store in A,B,C the values of
8.3+1.7y—0.9y?+3.0y>+1.0/x
for the values of x stored in P,Q,R aty = 12.4

REAL A/BeCsPeQ,R,Y ,AUX;

Yi=12e0:

AUX:28,3 + Y* (147 + Y+ (=0.9 + 3,0%Y));
% NOTE THE USE OF AN AUXILIARY VARIABLE TO CALCULATE PART OF
% THE EXPRESSION ONLY ONCE, AND THE USE OF FACTORISATION AND
% BRACKETS TO REDUCE THE NUMBER OF MULTIPLICATIONS

At=AUX + 1,0/P;

BersAUX + 1,0/Q;

C:=AUX + 1.0/R;

NN e

23

Section 6 examples

24

Declaring suitably chosen identifier names, write simple assignment statements to:

i)
ii)
iii)
iv)

calculate the percentage error between two readings of an instrument
convert temperatures expressed in the Fahrenheit scale to centigrade
calculate simple interest

evaluate (1+x)°

Construct a table showing the values of the variables between each of the following
assignment statements:

REAL X,YsX1,X2,Y1,Y2,YMEAN,SQUARES?

X1:=1,0; X2:=2.0;

Y1:i8X1%3,0 ¢ 4,03

Y2:2X2*3,0 4+ 440;

X:1=14.61:

Yi=Y1 + (Y2mY1) / (X2=X1) * (X=X1);
YMEAN:=(Y + Y1 + Y2) / 3,03

Y :=ABS(YMEAN = Y)

Y1:=ABS(YMEAN = Y1)

Y2:=ABSC(YMEAN ~ Y2);

SQUARES:=Y*Y + Y1xY1 + Y2%Y23

7. Function calls

In Section 6 we saw the same calculation repeated for a number of different variables, and in
example 2 we had

o := ABS(YMEAN—«)

for cc=Y,Y1and Y2. It often happens in a program that a relatively simple (or complex!) piece
of calculation recurs. In elementary mathematics, when we wish to use a trigonometrical ratio,
we do not have to draw a triangle each time and measure this ratio, we use a set of tables where
this information has been recorded. For similar values in our program, to store sets of tables in
our computer would take up valuable space. There are ways of calculating such values, but we do
not wish to have to write out some complex algorithm every time we want to use it. In RTL/2 we
define a function name to represent the sequence of operations which must be performed to give
us the desired value. At each point at which we require to perform the calculation, we simply
write this function name as a shorthand. This use of functions not only saves programming time,
but also conserves computer storage space and results in considerable advantages in the
organisation of a program, at a slight cost in execution time.

Some languages provide certain functions (such as trigopnometric functions, square root) as part of
the definition of the language. RTL/2 has no such built-in functions, but a particular RTL/2
system may offer standard facilities, or a more general mathematical package. We shall restrict
our attention for the moment to functions which, given a real number, supply a real result — the
trigonometric functions, square root, logarithm all fall into this class. We are considering the ca//
of the function here, that is, its use and not its definition — we are concerned with putting money
into a slot machine and getting some goods in return, and not with the mechanical workings of
the machine.

In giving us one real value from another, such a function behaves exactly as a monadic operator;

a function call is just a complicated primary constituent of an expression which, with any monadic
operators which may be applied to it, behaves as a term (and can thus be the operand of a dyadic
operator). The real object we give to the function is a parameter or argument; the real object

used in our expression is the resu/t. To insert a function call at the appropriate point we write

the function name and the real object which we wish to be the parameter within brackets. Thus

if a function SQRT is defined which finds the positive square root of the given parameter, then

X :=8ART(81.0);

will result in 9.0 being stored in the location X. The brackets here enclose the parameter and are
obligatory; they have no connection with the grouping of terms or precedence.

We have said that the parameter should be a real object; this does not mean that it has to be a
real constant. Any expression can be written as the parameter as long as it delivers a real object;
the parameter behaves as if it were the right-hand side of an assignment statement whose
destination is a real variable. Thus:

REAL X,Y;

REF REAL REFX;
Y :=8QRT(X);

Y :=SQRT(REFX]);

are possible; in the first assignment, X will be dereferenced once to yield a real, in the second,
REFX will be dereferenced twice. In particular the expression may itself contain a function call:

X :=SQRT(SQRT(81.0));

The parameter of SQRT is a real namely SQRT(81.0); i.e. the result (9.0) returned from the inner
SQRT is used as the parameter and hence 3.0 will be stored in location X.

Assuming that the trigonometric functions SIN, COS for sine and cosine of a parameter expressed
in radians, and LOG for the natural logarithm of a positive real have been defined in addition to
SQRT, we now show some examples of function calls used in general expressions:

SIN2X := 2.0*SIN(X)*COS(X);
QUADROOT := (—B+SQRT (B*B—4.0*A*C))/(2.0*A);
D := LOG(ABS((1+SIN(X))/COS(X)));

25

We have been discussing the call of a function: clearly a definition must exist somewhere, and, for
each call, the computer must obey a set of instructions to find the result. It would defeat the
object of saving space if the code for this were inserted at each calling point! Hence, the coding
for the evaluation of the function is elsewhere and there is a change of sequence at the point of
call. This is our first example of the execution of a program not being strictly sequential as
defined by the text. A function call is quite complex; at the point of call, there is a (temporary)
change of sequence (albeit an implicit one beyond the control of the writer). The point of call
must be remembered, the function evaluated elsewhere, and the result returned to the calling
point so that the complete expression can be calculated. The form of the definition will be dealt
with in the next section and the question ‘where is the code?’ answered at a later stage.

Up to now we have restricted our thoughts to functions which have a real parameter and a real
result and our examples have all been taken from elementary mathematics. These will normally
be supplied by someone else and the functions we will write will be specifically for the particular
problem we are trying to solve. Sometimes we will wish to work with more than one parameter.
For example, a program may wish to calculate compound interest at various points; we could
define a function with name COMPOUND which would require three parameters, namely the
principal, the rate of interest and the time and a typical call would appear as:

INTEREST := COMPOUND(11250.0,RATE,25.0);

The three parameters are supplied as a list between the brackets, separated by commas; the order
of presentation of the parameters must correspond to that of the definition, otherwise there will
be some unexpected results!

Methods of obtaining more than one result, and the use of parameters requiring other than real
objects will be discussed later.

Section 7 examples

1 Devise some useful functions, and illustrate their use in assignment statements.

2 The functions SERIES and PARA each have two real parameters and return as a real result
the effective resistance of two resistances joined respectively in series and in parallel, all the
quantities being expressed in ohms. Write assignment statements to evaluate the effective
resistance of the following network:

0.6 R 25.0
AV AW ANV
MWW AW
1.3 R2

26

8. Procedure bricks and data bricks

We saw in the last section how to use a function call in an expression. At the time of writing a
system or in our individual programs we wish to write, in RTL/2, the coding that produces the
result from the parameters supplied in our function calls; that is, we wish to be able to define a
function and specify exactly how it works. Such a definition in RTL/2 is known as a procedure
brick. A procedure is an object (like a real!) which happens to be a process rather than a
numerical constant. Moreover, it is an executable process, that is, it is a piece of program, a set of
instructions associated with a name which will be obeyed every time that name is used as a
function call.

Let us write a function to evaluate y = 3x*—7 for a given value of x, and then explain the various
parts of the definition.

PROC Y(REAL X) REAL;
RETURN(X*X*3.0-7.0);
ENDPROC

i) PROC introduces the definition and is a natural abbreviation for procedure; it is a keyword
and the abbreviation is compulsory — PROCEDURE will be taken as an ordinary name!

ii) Thisis followed (after suitable spacing to terminate the keyword PROC) by the name of the
function; this associates that name with the following coding. The name is formed in the
usual way.

iii) An obligatory left bracket opens a parameter specification list.

iv) In this case we have one parameter. The ‘REAL X’ looks very much like the form we have
used previously in declarations; this is indeed a declaration. This is our first example of
where a declaration can actually occur. It says that X is to be a location which can contain
a real object. It has two other properties: it is /ocal to this procedure briek, that is it only
exists when this procedure’s coding is being obeyed (this will be dealt with in Section 9) and
it is a parameter which will contain a definite value specified in each call of the function.
Declaring parameters enables us to manipulate the particular arguments supplied at the
function call; a parameter can be thought of as an open space in the procedure which is
filled in by the procedure call. This will be investigated more fully later.

v) The right bracket terminates the parameter list.

vi) REAL then specifies that this function will deliver a real object as its result; this tells us that
whenever the function is called, it behaves similarly to a real variable being dereferenced to
yield a real value.

vii) The semi-colon is obligatory, and terminates the procedure heading which defines fully the
nature and specification of the procedure brick.

viii) There follows the body of the procedure; in this case it is a simple statement (which will be
analysed below), but in general it will be a sequence of statements which process the
parameters to evaluate the required result.

ix) Finally, the brick is terminated by ENDPROC, another keyword which matches PROC and
informs us that the definition is complete. If definitions of further procedures follow, then
a semi-colon is used as a separator between these bricks.

The body of the procedure is the guts of the structure, the actual code which does the work. In
this case it consists of a single statement. This introduces a new statement type, the return
statement. |t performs two distinct actions. Firstly it sets up the result which is to be delivered
by the function call and secondly it causes an explicit change of sequence by returning to the
point of the function call (strictly, the point immediately following the function call.) The
syntax is straightforward; a return statement consists of the keyword RETURN followed by an
expression enclosed in brackets. Note, once again, that these brackets are required by the syntax
and have no connection whatsoever with any brackets that may occur in the expression.
Naturally, if the specification says that a real object will be returned as the result, the expression
must yield such a result, and dereferencing will be applied as if the expression were to be assigned
to a real variable.'In our example, the statement merely calculates the expression 3x*—7 from
the value supplied in the parameter X. As a further point, the specification of a result implies the
rule that there must be a RETURN somewhere in the body of the procedure to yield a result.

The concept of matching the object with the specification also applies to the parameters. The
parameter mechanism is that of assignment and each call must present as parameters a correctly

27

ordered list of expressions which deliver objects suitable for assignment to the parameter
locations specified in the procedure heading.

Finally, not only must the expression in the return statement be of the correct type to match
the specification, this result must also be valid in the context of the function call.

We can picture the coding of a procedure brick and a function call, the checks made at compile
time and the actions taken at run time for our procedure Y as follows:

CALLING SEQUENCE PROCEDURE CODING
= REAL P;
|
|
3)
check mode 2)
required by

check expression of

assignment with P et e X | T o T [

| v
result mode at | at compile time PROC Y(REAL X)REAL; &€ - —)
compile time | |
i : |
_________ . 1
1
P = Y(27.6); r _— chieck
. s at execution time: expression
! remember point of off correc
| call; obey coding mode at

of y after assigning compile time

27.6to X ;
|
I
5) !
deliver result and return RETURN(X*X*3.0-7.0); |- - -
to point immediately ENDPROC;
following call

Consider the following definition of a procedure:

PROC FOURTHPOWER (REAL X) REAL;
Xi=X*X} % REDUCE MULTIPLICATIONS %
RETURN(X*X)

ENDPROC?

This first squares the parameter and then squares the result to deliver a fourth power. Suppose
we have the calling sequence:

REAL P, P4

% DOTS INDICATE FURTHER STATEMENTS %

P4:=FOURTHPOWER(P);

At the call of the function, a real object is required for X and so P is dereferenced and 0.3
assigned to X; the body of the procedure is then obeyed which immediately means that the value
of X is replaced by its square 0.09. There is no effect on P. The assignment to X only involves a
dereferencing of X, a multiplication and the actual assignment; where the original 0.3 came from
is irrelevant and unknown to FOURTHPOWER.

Our next example shows how to write a function definition having more than one parameter, and
also introduces a non-real parameter.

28

PROC CIRCLE (REAL DIAM, REF REAL WHERE) REAL:
VAL WHERE:=3.14159 * DIAM;
% SETS UP CIRCUMFERENCE %
RETURN(O425 + 3,14159 % DIAM * DIAM);
% AND RETURNS THE AREA %
ENDPROC

Our parameter list consists of two declarations; note that they are separated in the parameter list
by a comma and not by a semi-colon as in our earlier examples. A call of CIRCLE will require
two expressions as actual parameters, the first of which must deliver a real object suitabie for
assignment to DIAM, the second the name of a real variable since this is the only valid object to
assign to the ref-real variable WHERE. What happens on our cali?

REAL AREA,CIRCUM;
AREA:;=CIRCLE(3,2,CIRCUM);

The parameter assignments and execution of the body will proceed as if:

DIAM:=3,.2; % PARAMETER ASSIGNMENT %

WHEREs=CIRCUM; %X DITTO %

CIRCUM:=3.14159 * 3,2
% THIS IS THE ACTION OF THE STATEMENT VAL WHERE!= .. %
% WHERE IS DEREFERENCED TO GIVE THE LOCATION CIRCUM %
% FOLLOWED BY AN ASSIGNMENT OF A REAL OBJECT : %
% THUS AN EFFECT IS MADE OUTSIDE THE BODY %

AREA:=0,25 * 3,14159 % 3,2 * 3.2;
% THIS IS THE EFFECT OF DEREFERENCING DIAM AND %
% RETURNING THE RESULT OF THE FUNCTION CIRCLE X

The use of ref-real parameters thus enables us to manipulate the contents of variables outside the
procedure, and secondly gives us a method of returning more than one result — we have here set
up both the area and circumference by one function call.

Note that we could make the body of the procedure more efficient by writing
RETURN(0.25*WHERE*DIAM) to reduce the number of multiplications: the use of WHERE

in a real expression will cause it to be dereferenced twice, yielding firstly the name of a real

location (CIRCUM) and then the real value in that location {in this case the value of 3.14159*DIAM
which therefore gives us the correct formula).

To labour the point, a call such as CIRCLE(3.2,1.6) would clearly be illegal; we are attempting to
assign a real object (1.6) to a ref-real variable.

Care must be taken over the use of ref-real variables to return multiple results; suppose we wish to
use CIRCLE to evaluate the surface area of a cylinder whose diameter and height are known, and
we write:

REAL SURFACE,CIRCUM,HEIGHT
HEIGHT:=2,7;

SURFACE ;=24 0*CIRCLE(3,2,CIRCUM)+CIRCUM*HEIGHT

We mentioned in Section 6 that the order of evaluation of the operands of a dyadic operator had
not been defined; no order is defined by the language; in this case, if the term CIRCUM*HEIGHT
were evaluated first, we would calculate the wrong answer, since CIRCUM would not yet have
been set by the call of CIRCLE and its contents would be indeterminate. The distinction between
the lexicographic order of presentation (i.e. the straightforward sequential order of the RTL/2
text) and the dynamic order used at execution time should not be forgotten, and the use of
side-effects (such as returning results through ref-real parameters) of function calls should be used
in an unambiguous manner. We can ensure thée correct answer in the above by splitting the
calculation of SURFACE into two separate calculations, using SURFACE itself to hold the
intermediate term:

29

SURFACE:;=2,0*CIRCLE(3,2,CIRCUM);
SURFACE:=SURFACE + CIRCUM*HEIGHT;

Since statements are performed sequentially, CIRCUM is guaranteed to have been set up in the
second assignment statement by the function call in the first.

How do we write the parameter list in the procedure heading when we have more than one
parameter of the same type? We can write a separate declaration for each, but normally we will
simply put a list of names (separated as usual by commas) after the type description. As an
example, here is the definition of a procedure which returns the average of three real numbers
supplied as parameters:

PROC AVERAGE (REAL A,B,C) REAL;
RETURN((A+B+C)/3,0)3
ENDPRQC;

Note that we may also have ref-real results. The heading in such a case will be
PROC SOMETHING (REAL A) REF REAL;

The result will be the name of a real (which can be dereferenced in an expression or assigned to a
ref-real variable) and hence the expression in the return-statement must deliver such an object. It
is not possible to give a sensible example at this stage.

We mentioned in Section 2 that all variable names in RTL/2 have to be declared, and we have
just seen where the declaration information is written in the case of parameters. The names of
parameters were described as being local to that particular procedure brick.

If local parameters only exist whilst the coding of their procedure is being obeyed, we must
clearly have some other kind (or kinds) of variable that can exist throughout the life of a
complete program and which contain the items of information in which we are interested. Ina
more complex situation, such variables may need to exist for use by a number of ““programs”’.
Such variables are global in nature, and the structure which contains their declaration is known as
a data brick; it consists merely of a named set of declarations and eventually corresponds with a
named area of the machine’s store. This area exists throughout the life of the program, and the
variables therein are static — that is, they are always available to the program and for each
variable there is a unique location in store.

The syntax of a data brick is the keyword DATA, followed by the name-of the data brick and a
semi-colon which is obligatory. This name identifies the whole structure and may be chosen freely
in the usual way. The ‘body’ of the brick consists solely of declarations as described in Section 2,
the names of a list being separated by commas and declarations by semi-colons. The brick is
terminated by the matching keyword ENDDATA and, as usual, is separated from any following
bricks by a semi-colon.

Example:

DATA ATTRIBUTES:

REAL TEMP,PRESSURE,DENSITY;
REF REAL WHERE,WHICHREAL?
ENDDATA;

Global variables declared in a data brick are available throughout the life of a program; this means
that they can occur in statements. We have seen that we can write statements in procedure bricks.
Where in general do our statements go?

We extend the concept of a procedure brick being the definition of a function to the more general
idea of a procedure brick being a process, that is, a series of statements which define a sequence
of actions to be performed, and require that all statements belong to some procedure brick. In
particular, procedure bricks will be used to manipulate data brick variables. Calling a procedure
brick is a way of temporarily breaking the sequential flow of control through the program to

30

execute some pre-determined actions and then resume. These actions may require information
from the main stream (i.e. parameters) and/or return information to it (i.e. results).

Calls of such procedure bricks are themselves statements and therefore belong to some

procedure brick; our ““program’’ then will consist of one basic procedure which has a sequence of
operations, including calls of subservient procedures. A moment'’s thought will result in the
problem that this basic procedure must itself be called if its instructions are to be obeyed which
implies a statement which implies . . . This difficulty of an “‘uncaused first cause” is in the area
of the interface between a program and the system.

The definition of a procedure brick is identical to that already described, except that now the
specification of parameters and the specification of the result may not be present. Thus the
following are all valid procedure bricks (the bodies have not been written out explicitly but
implied by <body>): :

PRGC ACTION ()3

% NO PARAMETERS BUT BRACKETS STILL REQUIRED %
% NO RESULT %

< BODY >

ENDPRCC;

PROC ROOQOTZ2 () REAL;
% NO PARAMETERS BUT A RESULT %
% ALWAYS RETURNS ROOT OF CONTENTS OF GLOBAL REAL, SAY %

< BORY >

ENDPROC;

PROC SETPOINTS (REAL X)3
% NO RESULT BUT A PARAMETER %
% SETS UP CERTAIN GLOBAL DATA PERHAPS %

< BOCY >

ENCPROC

PROC CIRCLE (REAL DIAM, REF REAL WHERE) REAL:
% PARAMETERS AND RESULT AS BEFQORE %

< BODY >

ENDPROC;

How do we call these and what is the mechanism? Our earlier function calls and definitions were
merely special cases of the more general procedures we have just described. The parameter
mechanism is exactly the same, and the syntax of the call is identical, the name of the procedure
followed by a parameter list enclosed in brackets. In the case of there being no parameters, the
brackets are still required. There are some differences of course; a procedure without any result
cannot be used in an expression. A call of a procedure which merely performs a sequence of
actions is a statement on its own called (of course!) a procedure statement.

Hence, to call the procedures ACTION and SETPOINTS above we would write (in some suitable
procedure) the statements:

31

SETPOINTS(0.0)
ACTIONC)

Note that our procedure ROOT2 has no parameters but does return a real result so that it can be
used in an expression:

AREA:=CIRCLE(ROOTZ2(), CIRCUM);
% ROOTZ2 DELIVERS A REAL = A VALID PARAMETER FOR CIRCLE 7%

% NOTE THE NULL PARAMETER LIST FOR ROCT2 %

Finally, since functions are procedures, we can invoke them by a procedure statement; this will
result in the action: defined by the procedure being performed, but in the absence of any
expression, the result is simply lost. This is not necessarily ludicrous; we may wish to call the
procedure because of its side-effects — in particular it may amend global data variables or return
other results through parameters.

In the above, if we merely wished to set up the circumference of our circle we would write the
statement:

CIRCLE(26.0,CIRCUM);
the area would be lost, but CIRCUM would be set up correctly.

Within the body of a procedure, if it has no result, there is clearly no obligation to provide a
return-statement; indeed we cannot provide one in the form described so far, since there is no
valid expression to insert within the brackets. How then, during the execution of the coding of
the procedure, do we know when to return to the calling sequence? There are two ways:

i) The sequence is completed by encountering the terminating ENDPROC

ii) The use of a return-statement which does not return any result; the syntax of this statement
is simply the keyword RETURN. No brackets are required, but as usual it must be separated
from any following statements by a semi-colon. Since at present we have no way of changing
the sequence of statements to be obeyed, this construction is unnecessary at this point; it
is included now for completeness.

Local variables in the form of parameters have been declared in procedure headings. We may also
wish to have other local variables, that is variables which are only used in a particular procedure
brick for instance to hold temporary or intermediate information. We can declare such variables
(using the normal syntax rules) between the procedure heading and the first statement of the
body. To illustrate this we show a procedure which swaps the values in two given real locations;
note the way ref-real variables are used to indicate which global variables are to be operated on
by the procedure.

DATA GLOBALREALS;
REAL A,B,C,D;
ENDDATA;

PROC SWAP (REF REAL X,Y):
REAL TEMPQORARY; % LOCAL DECLARATION %
TEMPORARY :=X3;
VAL X:i=Y3s
VAL Y:=TEMPORARY:
ENDPRGC:

PROC MAIN ()3
% CONTAINS MAIN SEQUENCE OF ACTIONS X%

®
SWAP(A,B):
SWAP(C,D) s % ILLUSTRATES CALLS OF SWAP %

L
ENDPRQC;
32

The reader is encouraged at this point to work carefully through the actions performed at the
calls and to test his understanding of the dereferencing involved.

RTL/2 is a procedure-orientated language and the concept is fundamental to its structure. It not
only provides a convenient and efficient method of programming (for instance, changes in logic
are concentrated in one definition and not repeated at each point of use) but also a mechanism
for effectively extending the language:

i) As we have already seen, standard mathematical functions do not need to be defined as part
of the language but can be implemented simply as procedures.

ii) Operations which are similar but whose details necessarily vary from machine to machine
can be implemented as procedures: the specifications can be standard (i.e. same number of
parameters, same result type and same name) with bodies differing from implementation to
implementation. Programs containing calls are independent of the machine on which we
wish to run them: this is one way of defining input/output and real-time operations.

iii) The body of a procedure may be written in a different language, particularly machine code,
because RTL/2 does not provide the required facilities. However, calls can still be made in
the normal way and the procedure can be documented in RTL/2 style, thus preserving
legibility.

Section 8 examples

All variables used should be declared in suitable bricks.

1 Write the procedures SERIES and PARA used in examples 7 no. 2. (The effective resistance,
r, of two resistances r, r, is given by: r=r, +r, when in series

1=1_+_1_ when in parallel).

S
Write a procedure to return the value of (1 + X) to the fourth power for a given value of X.
Write a procedure to return the maximum of two given real numbers.
Write a procedure to permute the values of the global real variables p, g, r to the order q, r, p.

Repeat No. 4 for three global variables supplied as parameters.

D oA W N

Write suitable data and procedure bricks to evaluate:

y =px* +qx? +r for

p,q,r=1.0,20,3.0at x=-0.5,-10.2, 673.7
andp,q,r=25,-3.5,1.0atx=0.1,7.2,12.6

7 Write procedures to set up the roots of a quadratic equation

i) with the coefficients passed as parameters;
ii) with the coefficients in a global data brick.

(Assume that a PROC SQRT(REAL X)REAL to return the root of a positive real has been
defined).

33

9. The run-time stack

The ‘local’ aspect of local variables is not simply a lexicographical one. Local variables only exist
during the execution of the body of the procedure as the result of a procedure call; thus they
are dynamic in nature — compare this with the static properties of data brick variables which

are always available. We now consider how this is achieved, where local variables are held in the
machine and how the parameter and procedure call mechanism works.

At execution time, each program has a run-time stack, an area of core which provides space for
dynamic variables and certain other housekeeping items. The area of this stack actually in use
expands and contracts with each procedure call and return. As each procedure is called, an
incarnation of its local variables is made. At any one time there may be several ‘levels of locals’
due to procedure A calling procedure B which in its turn calls procedure C and so on. However
we are only interested in the locals of the procedure which is currently being obeyed. For this
we have the concept of a /ocal variable pointer which effectively tells us where the current locals
are in the stack. On a procedure call, we must remember the current value of the local variable
pointer and also the point of the call in the current procedure (the return link); this information
is held in the stack in a/ink cell. The local variable pointer is then set to point at the new local
variables and the called procedure is obeyed (i.e. the required change in sequence is made). On
return, clearly we have to reset the local variable pointer, and return to the point remembered
in the link cell. In this way, local variables only exist during the execution of their procedure
brick and only one set of locals is accessible directly at any point in time.

In the example which follows, the layout of the stack is purely illustrative and the position of
the Ivp conceptual. The exact layout and use will vary between implementations, but the
underlying principles will not.

Consider the following piece of program:

PROC CIRCLE (REAL DIAM, REF REAL WHERE) REAL:
% AS BEFORE 7%
ENBPROCS

PROC P2 (REAL DIAM) REAL:
REAL CIRCUM,AREA;

AREA:=CIRCLE(DIAM,CIRCUM); % 3 %4
RETURNC(CAREA*(,5); % 4 %
ENDPRQC
PROC P1 ()
REAL RADIUS,RESULT:
RADIUS:=0,47s 1 %
RESULT:=P2(RADIUS*2,C)s 2 %
ENCPROC?
At point 1 the stack layout will be of the form:
P1 &
link S 2
&

A~ - y

0.7

calling point

in MAIN

=
s

old lvp

<
o

Here we have assumed that P1 was called from some procedure called MAIN.

Statement 2 will now invoke procedure P2; this involves the following (any housekeeping
checks/actions are excluded):

i) Creating a new link cell for P2

ii) Setting up the parameters in their correct locations

iii) Remembering the current value of the local variable pointer (lvp) in the new link cell — note
that this also enables us to remember the position in the stack of the current link cell.

iv)] Remember the position in P1 in the link cell.

v) Set lvp to point at the new local variables (those of P2).

vi) Execute the body of P2

As vi) is commenced the stack layout will be:

P1 &£ o 2 S
. oy D . S S N
link (%) S . link < & Q‘_o
/\/ cell & & cell S o < /\/
= =
8=z g
s |g5| 07 B2 |0
- == 5 |=Ee
°© S.c ° | Se&
"\ ; B 1 N

lvp

Statement 3 is now obeyed which invoives a call of CIRCLE, and the same process causes the
stack layout to become:

(2 A S &
P1 T & P2 5 CIRCLE &
link g Qc;? link § & Qgﬁv link § &
/\/ cell SIS cell g O < cell 9 /\/
E = £
&=z g g s
£ EZ| 07 S|g_| 14 B |Bwi 14| B
S |8k ?I: S < % 8 < S
/\/ T R 2T 1 i 0 j\/

vp

The body of CIRCLE will now be executed, during which CIRCUM in P2 will be set up — this
may seem to contradict the fact that only the current locals are accessible, but this is not so;
CIRCUM is set up indirectly as the result of dereferencing and the deliberate passing of its name
as a parameter, but not by an explicit assignment. Note here that the existence of the name
DIAM in both P2 and CIRCLE causes no ambiguity — only one of them is accessible at this
point dynamically (via the lvp to CIRCLE) and lexicographically since within CIRCLE we
cannot use the DIAM declared to be local to P2 (the multiple declaration of names will be
discussed later). CIRCLE will then return a result; this involves the reverse process:

i) Return to the previous link cell in the stack by resetting the local variable pointer.

ii) Return to the correct point in the calling procedure; in this case it is the assignment of the
result to AREA.

Thus statement 3 is completed and the stack appears as:

35

%) A Y
g S O
T & g & &
/\/ P1 link Q& & P2 link) S <« /\/
k= =
8z g
a 24 0.7 g D 1.4 14.396|1.539
5| E= T |E2
° Sc © 8t
|
/\/ 3 l I /\/
lvp

Note that all the locals of CIRCLE have disappeared — this is the reason why they cannot be
accessed elsewhere — they do not exist!

P2 now returns its result, the stack is unwound to the previous link cell and the assignment to
result is made:

\/ P1 link
. Y

8=z

S| =2g| 07077

ko] ==

S | S8k
/\/ A J\/

lvp

The link cells form one type of housekeeping item held in the run-time stack; other locations are
used to keep global information about the program and unnamed locations used to store partial
results necessary in a complex calculation (for instance in the evaluation of (a+b)*(c+d), a
temporary location may be required for (a+b) whilst calculating (c+d)) — this is generally termed
a work area.

You will notice that the parameters are always arranged in their order of declaration with a fixed
relation to their link cell. This makes the parameter mechanism extremely efficient: on a
procedure call there is no overhead in specifying where the parameters are to be found, they can
automatically be assigned to the correct locations in the stack.

We are now familiar with static variables declared in data bricks which name fixed locations in
core, and dynamic variables which have a transient life span; successive calls of a procedure lead to
new independent incarnations of the local variables which may not name the same location in the
stack on each call, because of differing orders of calls. Global variables can be thought of as ones
used to communicate information between procedures. The organisation of variables (involving the
decisions on which variables to make global and which local) is an important aspect of program
design and management.

No mention has been made of where the procedure body itself is; within the machine, all it
consists of is a sequence of machine instructions. These are kept independently of the data bricks
and the run-time stack (the linkage mechanism providing the necessary control information); the
bodies contain no slots for variables and the code is designed to be read-on/y: that is there can be
no modification of it at execution time. We shall come back to this point later. The bodies of
data bricks, on the other hand are named locations which can be manipulated as desired at
execution time, and can be used to communicate information between procedure bricks.

36

10. Application

Although we have not learned many constructions in RTL/2, we have, nevertheless, seen some of
the structure behind a program and are in a position to investigate in this section an application,
albeit a vastly simplified one; note that our method is just one of many possible approaches.

A typical process control situation is the use of a DDC (direct digital control) algorithm to
control some closed loop of action without human intervention. The aim is basically to maintain
a desired value for a quantity by measuring its current value and empioying the difference
between this and the desired value to initiate action to reduce the difference.

l CONTROL

change
valve

position
% ———> flow

Consider a simple system consisting of a valve and some means of measuring the flow-rate through
the system. The required rate is a known quantity which may vary with time, (for example it may
be set by the required conditions downstream), and the flow rate will vary according to the valve
position and conditions downstream. The box marked ‘control’ in the diagram must use the
measured flow-rate and the required rate (set-point) to calculate the necessary change in valve
position.

flowrate

Three different approximation terms are commonly used in making error corrections, and for
those unfamiliar with this subject, a brief summary of them will be given.

a) Proportional Control
The correction applied is a simple constant times the observed error. Thus

F:1ew = I?)Id + KE(xn)
where P is the controlled quantity
X, is the current flow-rate
X is the set point value
E(x,) =X — x, isthe current error
and K is the proportional constant, chosen to make an optimum

correction (no consideration will be given here to the theoretical or empirical means by
which K might be chosen); ctearly too small a value for K results in an excessive continuous
error whilst too large a value gives instability or repeated over-correction.

b) Integral Control
The correction applied is a constant times an integral over time of the error. Thus

F:ww = Pold + Lj; E(Xn)dt

Integral control is able to eliminate errors completely since corrections are added whilst
any error remains — there is no steady-state error. However, if the set point changes, the
accumulated correction must itself be integrated out before the desired correction is
complete. This type of control is sluggish in response and can easily lead to overcorrections
and oscillatory responses.

c) Derivative Control
In this case the correction is a constant times the derivative of the error with respect to time.
Thus

Pnew = Pold+ Mg_ E(Xn)

1
This method is often very useful since it can detect a change and apply a large correction
while the error is forming rather than waiting until the error itself has increased to a large
value. However, derivative control can never be used alone. By its mathematical structure it
can only detect a changing error and hence a large steady error would generate no correction.

37

Also, it is difficult to evaluate accurately such a derivative for a physical process and such a
term is particularly susceptible to noise (instrument variations are often of short duration

and hence have large time derivatives).

In practice, some combination of these terms is used in the controller — proportional,
proportional plus integral or proportional plus integral plus derivative. The third of these is the
most general, the other two being obtained by putting L=M=0 and M=0 respectively.

Hence our valve position can be expressed as
P =P, +KE(x,) + L [t E(x,)dt + I\/l% Ex,)

(We assume that all the quantities have appropriate units.)

Since our measurements are taken at discrete time intervals, we can rewrite this in the difference

form
AP = KAE + LEAt +%A{AE)

where At is the sampling interval and AE is the difference between the errors of the current
measurement and the previous one, and, similarly, A(AE) is the second order change in error
(i.e. A(AE) = AE(x,) — AE(x,_;)). AP is the necessary change in valve position.

How are we going to program this in RTL/2?

We shall assume at this stage that the measurement is somehow read into a global variable and
that a suitable output command can be generated from AP. (Although input and output are
fundamental to any program, since one presumably wishes to have some result, it is not
convenient to discuss them at this point). We can put all our variables in a data brick, set up
constants and measurements and simply grind out the formula. Investigation of the formula
shows that the three latest measurements and set-points are required. Concentrating then on the
relevant declarations and formula evaluation, and ignoring the problems of timing and contact

with the physical process, our program appears as:

% CONTROLLER FOR VALVE ADJUSTMENT %

DATA SYSTEM;

REAL MEASURED,SETPOINT, pA
LASTMEASURE,QLDPOINT, %
VERYOLDMEASURE,VERYOLDPOINT,
INTERVAL, 7
CORRECTION, %
KeleMs %

ENDDATA;

PROC DRC ()3

% SET UP CONSTANTS AND INPUT MEASUREMENT

CORRECTION:=K*((SETPOINT=MEASURED

CURRENT VALUES %
PREVIOUS VALUES %
% ONE BEFQRE LAST ¥

TIME

INTERVAL BETWEEN READINGS %

DELTA P = VALVE CHANGE %
CONSTANTS %

) -

%

(OLDPOINT=LASTMEASURE))

+ L*(SETPOINT=-MEASURED)*INTERVAL
(OLDPOINT=LASTMEASURE))

+ M* (((SETPOINT=MEASURED) =
=((OLDPOINT=|LASTMEASURE

) / INTERVAL:
% RESET FOR NEXT SAMPLING POINT %

) =

(VERYOLDPOINT=VERYOLOMEASURE))

VERYOLDMEASURE ;=LASTMEASUREy VERYOLOPOINT:=OLDPOINT;
LASTMEASURE:=MEASURED; OLDPOINT:=SETPOINT;

% NOW QUTPUT CONTROL SIGNAL X%

ENCPROCS
38

This is not very efficient! The formula could be simplified algebraically and, in fact, only the
errors need to be remembered for the subsequent steps. So we will rewrite the sequence with
these improvements. To indicate a different structure, we will place the calculation of each
combination of correction terms in a separate procedure brick, and thus provide a choice of
control algorithms, to be selected within the body of DDC.

DATA SYSTEM;

REAL MEASURED,SETPOINT, % CURRENT VALUES %
NEWERR,OLDERR,VERYOLDERR, % LAST THREE ERROR TERMS %
INTERVAL, % TIME INTERVAL %
CORRECTION, % DELTA P «~ VALVE CHANGE %
KelLoM; % CONSTANTS %

ENDDATA;

PROC PROP () REAL:
RETURN(CK*(NEWERR=QOLDERR)) ¢
ENDPRQC:

PROC PROPINT () REAL:
RETURN(C PROP() + L*NEWERR*INTERVAL):;
ENDPRQC

PROC PROPINTDERIV () REAL:
RETURNC PROP() + PROPINT ()
+ M*(NEWERR=240%0LDERR+VERYOLDERR) / INTERVAL):
ENDPROC:

pPROC ppC ():
% SET CONSTANTS AND INPUT MEASUTEMENT %
NEWERR:=SETPOINT=MEASURED:
% NEXT STATEMENT DEPENDS ON CONTROL SELECTED %
CORRECTION;=PROP();
% OR %
CORRECTION:;=PROPINT();
% 0R %
CORRECTION;=PROPINTDERIV();
%4 RESET FOR NEXT CALL %
OLDERR:=NEWERR)
VERYOLDERR;=QLDERR;
4 ETC %
ENDPROC?

IN THIS METHOD WE COULD CALCULATE THE COMPONENT ADJUSTMENTS IN THE %
INDIVIDUAL PROCEDURES AND SELECT THE REQUIRED FORM OF CONTROL BY A %
STATEMENT CORRECTION:=PROP()+PROPINT()+PROPINTDERIV() & HAVING SET %
APPROPRIATE NUMBERS FOR THE CONSTANTS, OR WE COULD OMIT K,L,M FROM %
THE PROCEDURES AND WRITE K#PROP()+L*PROPINT()+M*PROPINTDERIV() WITHZ
KeleM SET IN LINE BEFORE THE STATEMENT %

Notice that we cannot reset the remembered errors within the procedures PROP etc. since we do
not know which one may be called, and in any case they call each other. Note too the logical
error in the order of the last two statements of DDC; by re-setting OLDERR first we lose its
current value and hence reset VERYOLDERR to NEWERR as well! Such an error might not
show up in the actual execution since we are only dealing in approximations anyway, but might
lead to inefficient operation; it is an example of the sort of error that cannot be found for you
by a compiler!

39

To show yet another approach, we code up the same formula in a procedure which returns the
correction as result; all the required process information is passed through parameters. Clearly
this could be used for a number of different valves, and the required algorithm selected by the
choice of suitable values for K, L, M on the various calls. Note the way the errors required for

future calls for a particular valve are handled by ref-real parameters.

%# CONTROLLER FOR VALVE ADJUSTMENT %
PROC DDC (REAL K,L,M,MEASURED,SETPOINT,INTERVAL,
REF REAL OLDERR,VERYOLDERR) REAL3;

REAL NEWERR,CORRECTION}
NEWERR:=SETPQINT-MEASURED:
CORRECTION:=K+*(NEWERR=QLDERR)

+ L*NEWERR*INTERVAL
+ M*(NEWERRw2,0*0OLDERR+VERYOLDERR) / INTERVAL;
% RESET ERROR TERMS %
VAL VERYOLDERR:=0OLDERR;
VAL OLDERR:=NEWERR;
RETURNCCORRECTION);
ENDPROQC:

These various approaches are intended to illustrate the flexibility of RTL/2 and to emphasize
the need to decide (for the particular problem and its constraints) which program structure is
appropriate.

In our examples, we have mentioned selecting a particular algorithm. We need further statement
types to make a choice at a particular point in a program. This forms the subject matter of the
next section.

40

11. Conditional statement

In the DDC example of the last section we suggested that the particular algorithm required could
be selected. It is essential that certain parts of any computing process be executed if and only if
specified conditions are satisfied. For example, in a banking program, we will wish to take special
action for an overdrawn account; in a process control situation error conditons will need to be
detected; in a numerical analysis calculation, we will need to test that some desired accuracy has
been achieved.

It has already been pointed out that the execution of a procedure by means of a call involves an
implicit transfer of control to a different chunk of program text; however, this transfer does not
involve any change in the logical flow during the execution, the procedure mechanism is
effectively an efficient shorthand for writing out all the instructions at every point where those
actions are required. The decision taken to execute part of a program based on some specified
condition implies that at run-time different logical paths will be followed depending on the
various conditions involved. In planning the sequence of operations required in a problem, a
flowchart provides a useful visual aid. A flowchart consists of a number of boxes, the shapes of
which indicate the nature of the operations described within the boxes, together with connecting
lines and arrows which show the ““flow of control’’ between the boxes. In this Manual we use a
rectangle ((CJ) to indicate any general processing operation and a rhombus () to indicate a
decision; the lines leaving the latter box are labelled with the outcome of the decision that causes
that particular path to be followed.

Example:

Read last
paragraph

Do
you
understand
what a box of this

shape
means?

Yes

Within the decision box there is a condition to be tested. A condition is simply a proposition that
may be true or false (i.e. either it is satisfied or it is not). The usual condition imposed on a child
before it is allowed some treat is ““if you are good . . ."”’; the proposition “you are good’’ may be
true or false (though how this is decided may be somewhat difficult and arbitrary!). In RTL/2 a
condition consists of a proposition about a simple relationship between two expressions.
Syntactically, it consists of two expressions (such as we have already seen on the right hand side
of an assignment statement) separated by a relational operator or comparator; these are just
fancy names for any of the six mathematical symbols of equality and/or inequality:

= ‘equal to’

‘not equal to’

< ‘less than’

> ‘greater than’

<= 'less than or equal to’
>= ‘greater than or equal to’

Before we investigate how to use them, a few comments are required:

a) The ISO7 character set is not as standard as its name implies and even less so after it has been
interpreted by a manufacturer! |n particular there is a lack of uniformity in the treatment of
the number sign (hash #) and the currency symbols £ and $. Because of this, the three
symbols are considered to be interchangeable within RTL/2, the intention being that
whatever the data preparation equipment, the key marked # may be used.

41

b) The combinations <= and >= are items (like :=) regarded as indivisible and hence must not
contain any spaces or other layout characters.

Examples of RTL/2 conditions are: "

B¥B < 4,0%A*(
SIN(PHI) >= 0.6

TIME = 0,0

ABS(X=Y) <= EPSILCN
7«9 # 10.8 % ALWAYS TRUE %
3.1 > 446 % ALWAYS FALSE %

The comparators =, # should not in general be used to compare two real quantities since they do
not take into consideration the accuracy to which numbers are held within the machine

(e.g. A—B=0 may be satisfied whilst A=B is not). Instead, a comparison of the form
ABS(A—B)<TOLERANCE should be employed.

The comparisons are performed ultimately between two real numbers; since each of the two
expressions must deliver a real object to enable this to be done, variable names are automatically
dereferenced (once or twice) just as on the right hand side of an assignment statement with a
destination demanding a real.

We use conditions in conditional statements to decide whether or not to execute a particular
piece of program (this is equivalent to selecting which piece from a number of possibilities). The
simplest form of conditional statement is represented by the flowchart:

TRUE
CONDITION SEQUENCE

FALSE J

The RTL/2 form of this is similar to the standard English construction “if it rains then we will
stay indoors’’. We write:

IF Q@ < 0.0 THEN
NEGATIVERESPCNSE ()3
Qi==0Q;

END;

IF and END are keywords which delimit the statement; every |F must have a matching END. The
final semi-colon (as usual) separates the statement from the next one. THEN is also a keyword;

it marks the end of the condition and the beginning of the sequence of code which is to be obeyed
if the condition is true. The example shown behaves just as the flowchart requires. The condition
Q<0.0 is tested; if this is true then (notice that the English hardly adds much to the
comprehension!) the procedure NEGATIVERESPONSE is called, Q is negated and the next
statement to be obeyed is the one following the END; if the condition is false then the statement
following END is obeyed immediately. Note the way we have lined up the |F and END and
indented the intermediate statements; this is not essential, but aids legibility. A good rule with
matching keywords like IF, END (and there will be others) is to put both of them on the same
line if the statement can be contained on one line, otherwise to indent them to the same level.

Our next sort of conditional statement deals with the case of alternative actions; in English we
say “if it’s fine then we will go to the seaside otherwise we'll go to the cinema’’. Our flowchart
now appears as:

SEQUENCE B SEQUENCE A

. v)

In RTL/2 we use the keyword ELSE to introduce the alternative (rather than ‘otherwise’) and
our statement will take the form:

IF Q € Q04,0 THEN
NEGATIVERESPONSE ()3
HEE SN

ELSE
POSITIVERESPONSE ()
Q:=Q+INTERVAL:

END:

Strictly speaking the semi-colons preceding the ELSE and END are redundant, but they do no
harm and in the event of adding further statements in these positions avoid the mistake of
omitting the separating semi-colons. The concept of having statements within a conditional
statement may be confusing: the construction as a whole (from IF to END) behaves as a single
statement and this is how it appears from outside; however, within, it can contain as many
complex statements as you like; it is similar to a bracketed expression which behaves as a single
term but may contain many complex terms and operators.

Again, our example behaves as the flowchart; the condition Q<0.0 is tested; if it is true then
the procedure NEGATIVERESPONSE is called, Q is negated and the next statement is the one
following END; if it is false then the procedure POSITIVERESPONSE is called and Q is
increased by INTERVAL, the next statement being the one following END.

Clearly the two alternatives are exclusive, and to avoid the execution of both there must be some
change in sequence at run-time; the changes are explicitly programmed by the use of IF,ELSE,
END, the actual changes being organised by the compiler.

A more complex situation arises if we have a number of possible actions at run-time depending
on a number of conditions for example the particular range in which a variable lies. This is
illustrated by the following flowchart:

SEQUENCE A

SEQUENCE B

»
CONDITION SEQUENCE C
3
.
CONDITION SEQUENCE D
4/
SEQUENCE E

43

To cope with a succession of conditions, we introduce the further keyword ELSEIF. As this is an
item, there must be no spaces — ELSE IF will be treated as two keywords. The RTL/2 text
corresponding to the flowchart then appears as:

IF @ <€ 040 THEN
NEGATIVERESPONSE ()3
Qe==Q;

ELSEIF Q@ < 1,0 THEN
FRACTICNACTION ();

ELSEIF @ < 10,0 THEN
POSITIVERESPONSE ()3
Qi=Q+INTERVAL:;

ELSEIF Q@ < 100,0 THEN
Q:=G0/10,0;

RECYCLE ()
ELSE ERRORACTION ()3
END:

This is the most general form of the conditional statement. The behaviour of this and the earlier
forms may be described as follows: the condition following IF is tested; if this is true then the
sequence following THEN is executed and this completes the statement (i.e. the sequence
delimited by ELSEIF, ELSE or END; by completion we mean that the next statement is the one
following END — this is where the idea of the conditional statement as an entity is important);

if the condition is false then the conditions following the optional keywords ELSEIF are tested
until one is found to be true; the sequence following its THEN is executed and this completes
the statement; in the absence of ELSEIF conditions of if they are all false then the sequence
following the optional ELSE is executed and this completes the statement; in the absence of an
ELSE part, the statement is completed and the overall effect is nothing. That’s not quite true —
nere is a warning! Within the various conditions, we may be calling functions which, as side effects,
alter the values of global variables for instance; only the first condition is guaranteed to be tested
{since if it is true any ELSEIF parts will be ignored) so be careful with functions in conditions
which produce side-effects!

Hence tiie general form may be symboli :aiiy regresented as:
IF cendition THEN sequence

ZLSEIF condition THEN sequence ~ optional — as many of
these as you like

ELSE sequence — optional
END — obligatory

ELSEIF is, in fact, equivalent to ELSE |F except that the use of the compound form saves the
need for a matching END and also produces a clearer rendering of the appropriate flowchart (and
may be compiled more efficiently). The following two sequences are identical in action:

IF ALPHA>BETA THEN ACTIONT();
ELSEIF ALPHA<Q.,0 THEN ACTIONZ2():
ELSE ERRORACTION ()3

END;

IF ALPHA>DBETA THEN ACTION1();
ELSE IF ALPHA<C.0 THEN ACTIONZ2();
ELSE ERRORACTIONC);
END:
END3

Note the different indentations to indicate to which IF each END belongs.
a4

We can now write our earlier procedure to return the maximum of two real numbers using a test
rather than an arithmetic formula:

PRCC MAX (REAL A,B) REAL;

% RETURNS THE MAXIMUM OF A AND B %
IF A>3 THEN RETURNCA)s END;
RETURN(B):

ENDPROC S

Notice that we have not used an ELSE part; you may complain that when A is greater than B, the
sequence following THEN will be obeyed and then the statement following the END will be
obeyed so that B will always be returned. This is not so. The sequence following THEN contains
a return-statement which sets up a result and exits from the function to the point of call so that
the rest of the body is not executed. It would be perfectly legitimate to write:

IF A>B THEN RETURN(A) ELSE RETURN(B) END;

However, the compiler may not be very clever in spotting that each logical path contains a
RETURN statement and may think an exit from the function is possible without setting up a
result!

Whenever we wish simply to select a value according to certain conditions, the conditional
statement becomes tedious and messy to use, since we may need to introduce auxiliary variables
merely to remember temporarily the value selected. To avoid this, RTL/2 allows the use of a
conditional expression which behaves like a bracketed expression. In form, it is similar to a
conditional statement with the following important differences:

i) Instead of sequences, each possibility consists of an expression.

ii) The ELSE part must be present: this is obviously sensible, since an expression must deliver
some object, regardless of the conditions.

iii) Since we are in an expression, there must be no semi-colons.

Our procedure becomes:

PRCOC MAX (REAL A,B) REAL:
RETURNC(IF A>B THEN A ELSE B END):
ENDPROQCS

As usual, the expressions for each possibility can be as complex as we like (and may therefore
contain conditional expressions!) but each path must deliver an object of the required sort. Thus
dereferencing will be applied where necessary. Consider the following:

FEAL A,B,MAX;
REF KEAL BIGGER:

BIGGER:=I1F A>B THEN A ELSE B END;
MAX :=IF A>B THEN A ELSE 8 END;

The right hand sides look identical, but their actions will be different. In the first assignment, the
destination is a ref-real which requires the name of a real identifier; the conditional expression
will therefore yield the name A or the name B according as the value of A is greater than B or not.
In the second case, we require a real object to be delivered, so the contents of A or the contents
of B is the object delivered by the expression.

By now it should go without saying that conditional expressions may occur wherever terms may
occur so that we may use them in parameters and write expressions such as:

A := C+HIF A>=B THEN B*B ELSE 697.2—(A+C)END*3.0;
We conclude this section with a worked example:

Write a procedure to rearrange three given variables in ascending order and return the maximum
difference between them, unless the minimum value is negative, in which case zero is the result.

45

Since we wish to rearrange values, the procedure will have ref-real parameters; call these A,B,C.
We can draw a flowchart:

MM

swap A & B

T
-

swap B & C A<B swap A & B
now

Return 0.0 Return B—A Return C—B

We will use our earlier procedure SWAP to perform the changes.

PRCC SWAP (REF REAL X,Y):
REAL TEMP;

TEMP:I=X3;

VAL X:=Y;

YAL Y;=TEMP;
ENDPROQOCS

PROC MINASC (REF REAL A,B,C) REAL:
7 REARRANGES VALUES OF A,B,C INTO ASCENDING NUMERICAL ORDER IN A,B,C %
% AND RETURNS MAXIMUM DIFFERENCE OR ZERO IF MINIMUM IS NEGATIVE %
IF A>B THEN SWAPC(A,B): END;
IF B>C THEN
SWAP(B,(C):
IF A>B THEN SWAP(A,B): END;
END;
RETURNC(IF A<0.9 THEN 0,0
ELSEIF B=A > (=B THEN B=A ELSE C»B END):
ENDPROC

46

Notes:

i)

ii)

iii)

Some of the inequalities are the reverse of the ones shown in the decision boxes, to make the
action part follow the THEN and give a null ELSE part which can be omitted — we could
have written for instance:

IF A<B THEN 4 NULL ACTION %

ELSE SWAP(A,B):
END:

when documenting such cases, it is probably best to reverse the inequality (and the true and
false labels!) of the decision box.

Note the use of a conditional statement within a conditional statement.

Note that VAL is not required within MINASC — all dereferencing (once or twice) is
automatic — you are recommended to work through the procedure and indicate where
dereferencing occurs.

47

Section 11 examples

48

Rewrite the DDC example of section 10 using conditional statements to select the control
algorithm required. lllustrate the use of a conditional expression used as a parameter by
writing a call of the final version of DDC.

Write a procedure to return the step function:

0.0 for x<0.0
f(x) =4 0.5 for x =0.0
1.0 for x>0.0

A cylindrical tank has the following shape:

Write a function to compute the volume of fluid contained for a given depth h; you may
assume that the tank does not overflow.

Rewrite the ABS operator as a function.

The Newton-Raphson method for the extraction of a square root computes successive
approximations to/a from the formula

X4 = %2(x, +a/x,) (where x, is a first guess)

terminating when two successive approximations differ by less than some desired accuracy.
Draw a flowchart to represent this process, and write a procedure in RTL/2 which will
return the square root of a positive number.

12. Labels; transferring control

Did
you try No
section 11 Naughty! Go and

example 5? try it now

Read on!

If you still haven’t attempted the examples look at the answers, where you will see that the
solution consists of an indefinite number of repetitions of three statements. Even with a large
number, n, of these repetitions we cannot guarantee (for a particular value of EPS) that a value
will be found of the correct accuracy for all possible values of the parameter A. In any case, it
would be very tedious and error prone if, in iterative situations, we had to write out n repetitions
of the same sequence (Dijkstra compares it to writing out punishment lines at school!); we
introduced procedures partly to save drudgery, so we want to make this situation simpler too.

The basic problem is that we want to say “‘as before”” or “’go back and do it again”’. We need to
make an explicit transfer of control; the point is illustrated in the flowchart at the head of this
section. On the ‘NG’ route we wish to return to the previous section; we have left an arrow
dangling. You know where to go though, because the example is numbered.

We naturally use the same principle in RTL/2. Firstly we wish to identify a particular point in
the program text, that is, to /abe/ it. What can we label? Statements. Any statement can be
labelled, even if it is a statement which is a constituent of a more complex statement — for
example an assignment embedded in a conditional statement; only statements can be labelled.
Syntactically, all we do is to precede the statement we wish to label by a name followed by a
colon (:). Thus,

NEXTX:=(CURX + A/CURX) % 0.5:
L:s IF ABS(NEXTX=CURX) < EPS THEN RETURN(NEXTX); END3:
CURX:=NEXTX;:

The conditional statement has been labelled, and we have chosen to call that point L. We have in
no way affected the logic of the program. After the assignment to NEXT X, the conditional
statement is obeyed; that is, passing through a label in the normal lexicographical flow causes no
action to be taken.

What is a label? A label is an object (similar to a reai number) which happens to be a particular
(fixed) point in the program text. We will learn how to manipulate such objects in later sections.

There is nothing to stop us labelling a statement that is already labelled! We merely precede it
with another name and colon:

M: L: IF ABS(NEXTX—CURX)<EPS THEN ...

This may seem absurd (or an academic nicety) but in fact can have practical advantages, for
example:

i) Where uses of the point are made in widely differing parts of the program two mnemonically
significant names may increase the clarity of the program.

ii) Two labels may emphasize similarities with other sections of program.

iii) Two labels may be useful if, at some later date, the actions performed there are likely to
become distinct.

Since a label is affixed to some statement, it must occur in a procedure brick. Although a label is
in some sense a ‘constant’ (it is a fixed point and is not a place that can be assigned to) its name

49

is regarded as local to the procedure in which it is set (i.e. occurs) and it can only be used in that
procedure (the reasons and rules for this will become more definite in later sections).

The sort of use we want to make, of course, is to cause an explicit transfer of control to a
labelled point — we cannot make a transfer to an unlabelled statement! Normally the successor
statement to a statement is the one which follows it in the program text. An explicit transfer of
control must break this sequence. The statement which performs this effectively defines the
successor statement. The keyword GOTO (single item so no spaces — GO TO is two names!)
followed by the name of a label (as mentioned before, in the same procedure brick) forms a
goto-statement and says that the next statement to be performed is the one with the given label
name. So we simply write

GOTO L;

We can now construct a flowchart and produce the RTL/2 text for our square root example:

|

set up accuracy EPS
set up initial guess
CURX

calculate next
approx. NEXTX

EXIT

Return NEXTX
as root

accuracy
achieved?

Reset CURX to the
approx. in NEXTX

The picture of continually repeating the last three steps until the accuracy is reached (and the
RETURN statement finishes the procedure) is precisely what we wrote in our earlier solution;
however we now only need to write it once and include a label and a goto-statement:

PROC SQRT (REAL A) REAL:
REAL EPS, % ACCURACY %
CURX, % CURRENT AFPROXIMATION %
NEXTX3 % NEXT APPROXIMATION %
EPS:=0.001;
CURX3=1,0:
TRYAGAIN: NEXTX;=(CURX + A/CURX) * 0,5;
% RELATIVE ERROR TEST PREFERABLE TO ABSOQOLUTE ONE %
IF ABS(NEXTX=CURX) < EPS*NEXTX THEN
RETURN(NEXTX):
END:
CURX:=NEXTX3
GOTO TRYAGAIN;
ENDPROC:

50

Any such iterative loop returning a result must contain a test which will eventually lead to the
termination of the loop — or else the machine will obey the same group of instructions
infinitely! The classic infinite loop would be:

L:GOTO L;

Endless loops may be used sensibly in real-time applications, but these will normally be
interrupted frequently, and/or contain instructions to delay their activities. The goto-statement
is not the first transfer statement that we have encountered; you will remember that the
return-statement performs the action of exiting from a procedure body and returning to the
point of call; we also said that encountering ENDPROC caused a return to the point of call. The
following two examples are therefore equivalent:

PROC FRED();

RETURN:

ENDPROC;:
PROC FRED():

GOTO L:

L:
ENDPROC;

You may argue that L is not labelling a statement, since we have not introduced any
‘endproc-statement’. In order to allow the placing of such labels we define a dummy-statement.
This is simply an empty statement which does nothing and can now be forgotten! Just remember
it if you have a conscience about putting a label before ENDPROC and similar keywords!

Above, we said that falling through a label had no effect; it does have the effect of obeying the
statement at that point of course. Sometimes we will wish to write pieces of program which can
only be reached by an explicit transfer of control. Where can we put them? The obvious place is
after a transfer of control statement; any statement following, say, a goto-statement cannot be
reached unless it is labelled and jumped to from somewhere else:

L}
GOTO NEXTACTION;
% CONTROL WILL NEVER REACH HERE %

L: P:=®SQRT(A);
ERRCRACTIONC) :
GOTO NEXTACTION:

The coding between L: and the next goto-statement is completely self-contained and will only be
executed if an explicit branch (jump) is made to L.

So far, all our jumps have been backward ones, that is, to points earlier in the text. There is no
restriction on forward jumps to points later in the program; the only rule that has to be obeyed
is that the label in a goto-statement has to be set in the same procedure body.

51

Finally, in this section, a short note on efficiency of coding. Consider the following conditional
statement:

1F Q<0.0 THEN
NEGATIVERESPONSE();
RQe:==Q;
GOTO RECYCLES

ELSE
POSITIVERESPONSE();
Q:=Q+INTERVAL;

END;

NEXTACTIONC)

] , RECYCLE

l

Since the actions when the condition is true contain a jump to RECYCLE, the only way the
statement following END can be reached is if the condition is false; therefore we might as well
put al// the actions to be taken for a false condition after the END. This removes the ELSE part
entirely, and might be compiled more efficiently since some of the inherent jumps in a
conditional statement will not be required. The RTL/2 is also slightly clearer:

IF G<0,0 THEN
NEGATIVERESPONSE();
Q::nQ;

GOTO RECYCLE;

END:

POSITIVERESPONSE();

G:=Q+INTERVAL;

NEXTACTIONC()

T RECYCLE
| —

52

Section 12 examples

1 Assuming that ERRORACTION, CYCLE, RECYCLE, QUENCH, ALARM are
parameter-less, result-less procedures and that P, Q are real parameters, write a procedure

brick to perform the following:

ENTER

EVALUATE P/Q
and

ERRORACTION

ALARM
RETURN P/Q

p2 _ 0_2
QUENCH
'RECYCLE
CYCLE
T
NEGATE Q
F
N
RETURN P/Q

!

EXIT

ALARM
RETURN P2 — Q2

i

EXIT

——> EXIT

2 One way of checking the accuracy of real arithmetic is to multiply together two complex
numbers whose modulus is unity, and then to repeatedly multiply the product by one of
them. Write a procedure to do this; devise a counting mechanism for the number of
multiplications, and return this count as result as soon as the modulus of the product differs
from unity by more than 0.0001.

Hints:

i) Each complex number x + iy will have to be represented by two reals X,Y; its modulus is
v/ (x?+ y?) and the product of two complex numbers is given by (x; +iy;)(x; +iy,) =
X1 X2 — Yyi1Ya +ilX1y2 + Xv1)

ii) Pythagoras’ Theorem provides good complex numbers of modulus unity:

B G- 6

iii) Skeleton flowchart:

L

set up counter and zero
set up complex of modulus
unity : second complex can
appear explicitly in
the multiplication

2
=1

form product and new
modulus; increment count

Yes

acceptable
tolerance?

Return the number of
multiplications

I

EXIT

54

13. Integers

So far we have seen four kinds of object (a real, a name of a real variable, a procedure and a label
— note that a data brick is not an object in this sense) but we have only been able to manipulate
real values and names. Declarations must have seemed somewhat redundant, since (apart from
ref-reals) everything could be interpreted correctly purely from its context. The last example
showed the deficiencies of real arithmetic when used for a simple counting task. We now
introduce another p/ain (i.e. arithmetic) mode, with which we can perform such operations
accurately. This is the mode integer, the objects being whole numbers.

We can retrace our steps through sections 1 to 12 seeing how integers fit in to the pattern, and
noting how, in general, they behave as the mode real does. The form of the integer constant is
simply a sequence of decimal digits; when representing whole numbers we can dispense with
decimal points and exponents, and give the number explicitly in a fixed point representation.
Thus:

3 267 1065487932

are valid integer constants. Note that we cannot follow the written English practice of using
commas to group the digits. Integers are held exactly, so there is no question of accuracy as in
the case of reals. The finiteness of machines means that there is a restricted range of values
(machine dependent) which can be held and this is usually much smaller than the real number
range. Effectively, with integers, one purchases exactitude at the expense of a limited range of
values, though for the majority of uses this will not matter.

As an item, an integer constant is terminated by any non-digit character, and is characterised by
its beginning with a digit and containing no decimal point, and, like the real constant, does not
need to be declared.

We can declare integer variables to contain such numbers, and ref-integer variables; we use the
keyword INT for this purpose. The declarations

INT COUNT, INDEX;
REF INT WHICHONE;

inform us that the locations named COUNT and INDEX will contain integers, and the location
WHICHONE the name of an integer variable. The usual rules for forming an identifier name

apply.

The assignment statement follows exactly as in the real case, with the left hand side defining
a destination, and the nature of the object which must be delivered by the right hand side. The
rules for dereferencing and the use of VAL are identical:

INT COUNT, INDEX;
REF INT WHICHONE;
WHICHONE := INDEX;
COUNT := 21;
VAL WHICHONE := COUNT;

You are left to work out the effect of these statements.

The same monadic operators which we met for reals may be used with integers, and, as before,
negative numbers are regarded as the result of applying the monadic operator ‘—’ to a (positive)
integer constant:

OPERATOR OPERAND RESULT INTERPRETATION
+ Integer Integer Identity: no action
== Integer Integer Negate the operand
ABS Integer Integer Negate the operand if it is negative;

otherwise no change

Rules for combining monadics are the same as before.
65

When we come to consider dyadic operators, the situation becomes a little more involved.
Addition and subtraction pose no problems. When we multiply together two numbers each in

the range [—o,<) (for those unfamiliar with this notation, this means a number x satisfying
—x<x<«), the product will be in the range (—=2,x2]. This is true of real and integer
multiplication. In the real case the range is large and the situation is completely dealt with by
overflow of the range and any associated actions. In the integer case the situation is more likely
to be encountered; also, most machines have some multiple length instructions for coping with
such situations, of which we can take advantage. We therefore define an intermediate mode
known as a big integer which has a range [—x? ,«?) when integers have a range [—,x). Note that
this range may not be sufficient for all multiplications and that overflow may still occur; the
reason for its choice is discussed later. Intermediate modes can only arise during the evaluation

of an expression and cannot be stored or manipulated in the same way as reals and integers. Their
purpose is to explain precisely what is happening. The result of a multiplication between two
integers is therefore a big integer. What happens if we want to store the product in another integer
location? A mode conversion must occur from big integer to integer (also called normal integer).
This is performed automatically — but since there is a contraction of the range (narrowing) there
is the possibility of arithmetic overflow at this point also.

Division between integers is defined in an elementary way, in which we have a quotient (exact
and integral) and a ‘remainder’ (also exact and integral); two operators supply the relevant results.
Regarding division as an inverse to multiplication, the dividend expected for such an operation is
naturally a big integer. What happens if we want to divide a normal integer? Again a mode
conversion is required and performed automatically; in this case, since there is an expansion of
the range (widening) there is no possibility of overflow. We now define these dyadic operators
for integers:

FIRST SECOND
OPERATOR PRECEDENCE OPERAND OPERAND RESULT INTERPRETATION
+ 1 Integer Integer Integer Form the sum of the
operands
- 1 Integer Integer Integer Subtract the second
operand from the first
* b Integer Integer Big Form the product of the
Integer operands
i/ 5 Big Integer Integer Quotient on dividing
Integer first operand by second
MOD 5 Big Integer Integer Remainder on dividing
Integer first operand by second

Notes:

i) Arithmetic overflow can occur in all cases; this may seem odd in the case of division, but
think of 8:/1 where =2 and « is the range for integers; similarly the division implicit in the
MOD operation can cause overflow.

ii) MOD is a reserved word (short for modulo). If negative quantities are involved, there is
clearly a need to define explicitly how a sign is to be attached to any remainder. The rule is
that the remainder has the same sign as the dividend; thus:

22 MOD 6 is 4
2MOD -6 is 4
—22 MOD 6 is —4
—-22MOD -6 is —4

iii) Having fixed the sign for any remainder, we can easily decide how to define the quotient
when negative quantities are involved. The rule here states that the result of ordinary
division is truncated towards zero (i.e. any fraction part is forgotten!) Hence:

56

22/ 6 is 3
22:/ -6 is -3
-22:/ 6 is -3
-22:/ -6 is 3
Like :=, :/ behaves as a single item — “integer divide"'.

The rules for forming expressions, precedence and bracketed expressions then follow just as for reals.
Example:

INT COST, CHANGE, NUMBER, UNITCOST, CAPITAL;
COST :=UNITCOST*NUMBER;
CHANGE :=CAPITAL—COST;
NUMBER := CAPITAL :/ UNITCOST;
CHANGE :=CAPITAL MOD UNITCOST;
CHANGE :=CAPITAL — CAPITAL :/ UNITCOST*UNITCOST;

%LAST TWO ASSIGNMENTS EQUIVALENT — NOTE PRECEDENCE%

When it comes to functions, procedures and data bricks, integers behave in exactly the same way
as reals; locals and globals can be declared similarly, we can have parameters and results that are
integer. However since the parameter mechanism is that of assignment, if we define a procedure
brick having an integer parameter, then we must provide an integer expression in the call.

The six comparators =, #, <, >, <=, >= may all be used between integer expressions in conditions.
Since we are now dealing with exact quantities, = and # can be used confidently. We can write

conditional expressions for integers; each possible path through the expression must deliver an
integer:

COUNT :=|F INDEX #0 THEN COUNT +1 ELSE COUNT —1 END;

We now present some bricks using integers; each procedure calculates the highest common factor
of two numbers (with varying degrees of efficiency!) The reader is left to see how they work and
to ensure that he understands the RTL/2 involved.

PROC HCF1 C(INT P,Q) INTy
INT MAX,TRYy
IF Q>P THEN
% SWAP USING MAX AS A TEMPORARY VARIABLE %
MAX:=Q;
Qei=P;
Pr=MAXS
END3
MAX:=TRY:=13
At IF TRY<L=Q THEN
IF P MOD TRY = 0 THEN
IF @ MOD TRY = O THEN MAX:sTRY; END;
END:
TRY:=TRY+1;
GOTO A;
END:
RETURN(MAX);
ENDPROC:

PROC HCF2 C(INT P,Q) INT:
INT TEMP:
L: IF G=0 THEN RETURN(P); END:
TEMP:=Q3}
Q=P MOD Q3
Ps=TEMP;
GOTOQ L3
ENDPRDC

57

PROC HCF3 C(INT P,G) INT;
M:; 1F P>Q THEN
IF Q=0 THEN RETURN(P); END;
P =P=03
ELSE
IF P=(THEN RETURN(Q); END;
Ds=Qm=pPy
END:
GOTC M2
ENDPROC;

PROC HCF4 CINT P,Q) INT:;
REF INT BIG,SMALL:
Ny IF P>Q THENW
BIG;=Ps SMALL:=G}
ELSE BIG:=Q; SMALL:=P;
END;
IF SMALL=0 THEN RETURN(BIG):; END;
VAL BIG:=BIG~SMALL:
GOTO N3
ENDPRQC

We have discussed the way in which dyadic operators are combined, the precedence rules that
govern the combination of monadic and dyadic operators, and in this section we have mentioned
the automatic mode transfers between the normal and big integers. There remains the problem of
combining together, if possible, integers and reals.

The rules governing mode transfers are very simple; we have already met the first one:

1 All mode transfers between normal and intermediate modes are automatic.

2 All mode transfers in which no information is lost (i.e. the case of widening) are performed
automatically.

3 Any mode transfer (not involving intermediate modes) in which information is lost (i.e. the
case of narrowing) must be programmed explicitly.

The only possible explicit narrowing which arises at present is that of transferring from real to
integer. To indicate this, we introduce a further monadic operator and a second usage of the
keyword INT:

OPERATOR OPERAND RESULT INTERPRETATION

INT Real Integer Rounds operand to nearest integer value

The interpretation of conversion to the nearest integer poses a problem when the real quantity
lies midway between two integer values; in this case the algebraically greater of the two possible
integers is taken. Hence:

INT 6.32 is 6
INT —4.95 is -5
INT 7.50 is 8
INT —7.50 is -7

We have seen three arithmetic modes so far, namely real, integer and big integer; we can
investigate the six possible assignment statement types (only six, since a big integer cannot
appear as a destination).

58

INT I;

REAL R:

R:=0.71 % FAMILIAR %

Ri=4; % RIGHT HAND SIDE DELIVERS AN INTEGER %
% AUTOMATICALLY WIDENED TO 4.0 %

Ry=62%71; % RIGHT HAND SIDE DELIVERS A BIG INTEGER %
% AUTOMATICALLY WIDENED TO 4402.0 %

I1=4; % FAMILIAR %

1:=62+711 % RIGHT HAND SIDE DELIVERS A BIG INTEGER %
% AUTOMATICALLY NARROWED TO NORMAL FORM %

I:=INT Oa72 % RIGHT HAND SIDE INITIALLY DELIVERS X%
% A REAL WHICH MUST BE NARROWED EXPLICITLY %

% INFORMATION IS LOST AND 1 STORED IN I %

Note that in the case of assigning a big integer to a real, the conversion is performed directly
without first narrowing to an integer; this is important since a value outside the normal integer
range can be handled without overflow developing. We can express the automatic mode transfers
diagrammatically:

REAL

BIG INTEGER < —> INTEGER

The same rules apply when considering the evaluation of an expression containing a number of
modes. How are they applied? Consider an operator [J and the expression «<[Jg; there are a
number of possibilities which will be treated as follows:

1 The operator O is only defined between one pair of modes (for instance / between two reals).
Then there are three cases

a) «, B are of the correct mode and the expression can be evaluated immediately.
e.g. 0.6/1.3
27 :/ INT 3.2
b) Either or both of =, 8 can be converted to the correct mode by a widening operation:
the necessary widening is performed automatically and the expression evaluated.
e.g. 3/4 %WIDENED TO 3.0/4.0%
This situation applies also to any necessary narrowing or widening of intermediate
modes: :
e.g. 7*4:/3*5 %BIG INTEGER NARROWED%
3*4/7 %BIG INTEGER WIDENED%
c) Either or both of «, 8 cannot be coverted to the correct mode (any monadic mode
transfers specified explicitly are, of course, taken into account for the terms «, §);

the expression is illegal and a compilation failure will occur:
eg. 3.2:/7

2 The operator O is defined for a number of pairs of modes (for instance + is defined between
two integers and two reals). Exactly the same rules are applied as in 1 except that we repeat
them in a specific order for the various pairs of possible modes, and a failure under 1 ¢) is
only recorded when all the possibilities have been tried. This information is shown by
arranging our entries in the tabular presentation of operators in the order in which the mode
matching will be attempted.

59

e.g. 1 ¢ ha7 % CANNOCT BE PERFORMED AS AN ADDITION
% BETWEEN TWO INTEGERS BUT CAN BE AN
% ADDITION BETWEEN TWO REALS IF WE
%4 WIDEN TO 1.0 + 4,7

N T 3

Similar considerations are made in the case of monadic operators. Note that for completeness
INT is also defined for an integer operand.

We now gather together all the operators met so far to indicate the ordering; remember this is
only significant for a particular operator; the ordering of the operators themselves is arbitrary.

Monadics:
OPERATOR OPERAND RESULT INTERPRETATION
+ Integer Integer Identity: no action
Real Real
— Integer Integer Negate the operand
Real Real
ABS Integer Integer Negate the operand if it is negative:
Real Real otherwise no change
INT Integer Integer Identity: no action.
Real Integer Rounds operand to nearest integer value
Dyadics:
FIRST SECOND
OPERATOR PRECEDENCE OPERAND OPERAND RESULT INTERPRETATION
s 1 Integer Integer Integer Form the sum of the
Real Real Real operands
- 1 Integer Integer Integer Subtract the second
Real Real Real operand from the first
* 5 Integer Integer Big Integer From the product of
Real Real Real the operands
Divide the first operand
/ 5 Real Real Real ¥ the secoi
3 5 Big Integer Integer Quotient on dividing first
Integer operand by second
MOD 5 Big Integer Integer Remainder on dividing
Integer first operand by second

Although the automatic widening operations may appear to lift some of the onus of mode
conversion from the programmer, there are pitfalls to be avoided, and care should be taken in the
choice of modes for variables and constants. For instance, a large exact constant, say a million,
may be required in real arithmetic and the temptation is to write it in the exact form 1000000;
however, on a small machine of small integer range, such a constant may fail at compile time,
because the compiler will treat it as an integer and find it to be out of range, even though its
usage is correct. This is easily avoided by writing it in the form 1000000.0 or 1EB; this is more
efficient, anyway, since the constant is used as a real; the program becomes independent of

the machine’s integer range, and the formation of the real can be made at compile-time rather
than converting the integer value at run-time.

60

Section 13 examples

Write suitable bricks to evaluate the roots of a quadratic equation with integer coefficients.
2 The Fibonacci numbers are defined by the relations
Un = Un_1+ Un_2 (n>2) U1 = U2 = 1

.U . .
The ratio —n=1 converges to a limit as n increases.
n

Write suitable bricks to caleulate this limit.

3 Assuming that the operator :/ and MOD do not exist, write procedures that will perform
their functions (i.e. you may use / etc.)

4 Assuming that the monadic operator INT does not exist, write a procedure that will perform
its function.

61

14. Arrays

When names were first introduced in section 2 we darkly hinted that a name might be used for
groups of locations as well as for a single cell. This forbode the idea of a named structure; in fact
we have already had examples in the name of a data brick (naming a set of declarations and a
static area at run-time) and of a procedure brick (naming a collection of instructions). Consider
the following examples:

Example 1:
Arrange three given numbers in ascending order of magnitude.

DATA NUMBERS;
REAL A,B,Cy % THREE GIVEN NUMBERS %
ENDDATA;

PROC ARRANGE ()3
REAL SWAP;
IF B<A THEN
SWAP;=8;
Byi=A;
A3=SWAP;
END¢
IF C<B THEN
SWAP:=(C;
C:=8Bs
B:=SWAP;
IF B<A THEN

SWAP:=8B3
Bs=Aj;
A:=SWAP;
END3s
END;
ENDPRQC:
Example 2:

Arrange 3000 given numbers in ascending order of magnitude.

We do not attempt to solve this yet! Clearly the choice of 3,000 names and the writing of a large
number of conditional statements and swapping sequences is not a very efficient method, and
extremely tedious to write out. This situation of wishing to operate on sets of data treating each
individual datum in the same way is common in programming. The facility we desire is to be able
to name a set collectively but work with the individual members of the set.

In RTL/2 this is achieved through the use of arrays. An array is an indexed set of variables
identified by a single name. It is comparable to a vector (having a certain number of components)
or to a set formed by attaching subscripts to a name. In such a structure, all the e/lements of the
set must be of the same mode, and this mode is an attribute of the array. We must also know
precisely how many elements belong to it. As usual, such information is given to the reader and
the compiler in the declaration of the name. Thus, in our example, to declare an array for the
given 3000 numbers we would write:

ARRAY (3000) REAL A;

The keyword ARRAY says that we are declaring a structure; an integer constant (necessarily
positive) in brackets specifies the number of elements (the /ength of the array) and a mode
description (REAL) informs us of the nature of each element; there follows the usual list of
names. Note that in this list, each array declared will have space for 3000 real variables. Similarly
we can declare arrays of integers: '

ARRAY (317) INT FUNNY, ANOTHER;

Arrays are static structures, and hence such declarations are only permitted in data bricks.
At execution time we will have a named area of core each element of which can be named

62

individually by indexing the name of the structure, from 1 to the number (bound) specified in
the declaration.

1 2 3 2998 2999 3000

The name A belongs to the total structure and we have not shown this on the diagram which is
purely illustrative — arrays may not be laid out in this way; the hatched location will contain
information about the size of the structure — the use of this will be examined later. Note that it
is legal (and sometimes useful) to declare an array of zero length; this structure will have a name
but no elements.

Each element of the array is to behave as a single variable; what is the name of such a variable?
We have said that an element is named by indexing the name of the total structure. In writing
RTL/2, we do this by following the array name with an integer expression (subscript) in round
brackets, the value of the expression indicating the element we wish to identify. Thus A(3) is the
third variable element of the structure; as usual the expression can be as simple or as complex as
we like, but must deliver an integer value for use as an index. Having formed a name in this way,
the element behaves just as a variable of the mode associated with the array, and may occur in
expressions, as a destination in an assignment, in parameters and conditions. The following
example illustrates how this can happen — it is not meant to be a sensible or useful program.

DATA STRUCTURES;
ARRAY (10) REAL AR;
ARRAY (20) INT Al

ENDDATAS

.PROC ACTION ()3

INT J.,K:

REF INT WHERE;

REAL P,Q;

PEF REAL WHICH:
WHERE:;=A1(3); % PUTS NAME OF ELEMENT IN WHERE %
WHICH:=AR(?7); % SIMILAR %
JisKi=6g
Pi=AR(J); % DEREFERENCE AR(J) TO YIELD REAL %
AI(1):=7 % A1C1) IS DESTINATION %
AR(K=2)1=P*AR(J*AI(3)); % MCRE COMPLEX SUBSCRIPTS %
IF AI(17)<AR(2) THEN %Z AI(17) WIDENED TO REAL %

AT(20) :=INT AR(K); % EXPLICIT NARRCWING %

END;

PERFORM(AR(K+y=2) , AIC INTCAR(3)+AR(K))))3
% WHERE PERFORM IS A PROCEDURE OF THE FORM %
% PROC PERFORM (REAL A, INT B); X%
%» NOTE THE USE OF INT TO FORCE AN INTEGER SUBSCRIPT %
ENDPROCS

We can see that the subscript expression can itself contain the names of array elements and this
nesting can occur indefinitely. When the subscript contains variable names, its value can only be
determined at run-time, when the contents of those variables are known; what happens in the
last statement above if the integer expression INT (AR(3) + AR(K)) yields a value of 30'or a
value of —73? Only the elements Al(1), Al(2), ..., Al(20) are defined by our declaration; a
variable specified with a subscript which is out of the range of the declaration is not defined. The

63

possible effect can vary; if the name is to be assigned to a ref-variable or if it is the destination in
an assignment statement there is a danger that we will overwrite some location which may not
belong to our program if we try to interpret the variable; to prevent this, a check (bound check)
is made at run-time and an out of range subscript will give rise to an error condition. |f we are
simply dereferencing the variable, there is no possibility of corruption, only the probability of
accessing meaningless values; a check.here is optional. In the case of integer constant subscripts,
the check can be, and is, made by the compiler. This topic is discussed more fully in a later
section; the important point at this stage is to appreciate that a problem exists if the integer
expression lies outside the range 1 to the number of elements.

Example 3:
Write a procedure to form the sum of the elements of an integer array containing 100
elements.

DATA SUMARRAY;
ARRAY (100) INT Qg
ENDDATAS

PROC SUMMATION () INT3
% FORMS AND RETURNS SUM OF ELEMENTS OF @ IN A SIMPLE LOCP %

INT SUM, % FORM SUM OF ELEMENTS %
13 % ELEMENT COUNTER %
SUM:=03
I1:=13
NEXTEL:

SUM:=SUM + Q(1);
IF I>100 THEN
% FINISHED %
RETURN(SUM) ;
END
[:=1+1;
GOTO NEXTEL:
ENDPROQC;

64

Example 4:

Write a procedure to rearrange the elements of a real array into ascending numerical order.

Let us take an array named A of 20 elements; the logic of the solution is to seek the name of the

minimum element and swap the contents of this location with A(1) [This may of course be a swap
with itself] . We repeat this process with the remaining 19 elements using A(2) and so on until the
array is correctly ordered. Two loops are required [counted by | and J] as shown in the flowchart.

ENTER

SET lto 1

Assume A(l) contains
current minimum

SetJtol+1

7
<

A(J)<MIN
?

X

NG

Put name A(J)
into minimum

increment J

J<20?

%<>§

~

Swap current minimum
into A(l)
Increment |

<

1<<20?

EXIT

Noting that the minimum is a name and must therefore be contained in a ref-real variable we can
write the corresponding RTL/2. (This is not the only method; we could for instance maintain an
integer containing the subscript for the current minimum element).

65

DATA GLOBAL:
ARRAY (20) REAL Ay
ENDDATA:

PROC ORDER ();

% PUTS ARRAY A INTO ASCENDING NUMERICAL ORDER %
INT 1,42 % LOOP COUNTERS %

REAL TEMPs X USED IN SWAPPING %

REF REAL MINs % NAME OF CURRENT MINIMUM %

I1:=13; % INITIALISE ELEMENT LOOP %

NEXTEL: MIN;=A(I): % ASSUME A(I) IS CURRENT MINIMUM ¥%
Jisl+1; 7 INITIALISE SEARCH LOCP %

CHECK; [F ACJ) < MIN THEN % NOTE DEREFERENCING OF MIN %

% NEW MINIMUM %
MIN:=A(J))

J+13 % NEXT ELEMENT INDEX FQOR SEARCH %
J<=20 THEN GOTO CHECK; END;

% SEARCH COMPLETE FOR THIS ELEMENT:; PERFORM SWAP %

TEMP:=A(]):

ACI):=MIN;

VAL MIN:;=TEMP;

% NEXT MINIMUM NOW IN ACI) %

% OLD CONTENTS NOT LOST %

Ii=1+1; % NEXT ELEMENT %

I1F I<20 THEN GOTO NEXTEL?: END;

% NOTE NO NEED TO CHECK THE LAST ELEMENT A(20) %
ENDPRQC3

This is all very well, but when we call SUMMATION or ORDER, we always operate on the arrays
Q and A respectively. In practice we want routines which will operate on different arrays on
different calls. Arrays, however, are static, so we cannot declare an array parameter for the
procedures — remember that parameters are dynamic variables. When faced with the problem of
affecting our parameters earlier, we used a ref-variable in order that a particular name could be
made available to a procedure at the time of the call. We solve our array difficulty in a similar
way, by defining new modes (further ref-variables) which can contain the names of arrays. Just
as different modes ref-real and ref-integer were necessary to hold the names of real and integer
variables, we must have different modes to contain the names of different sorts of arrays:

REF ARRAY REAL A; % DEFINES A VARIABLE TO CONTAIN THE NAME OF
% A REAL ARRAY %
REF ARRAY INT N,P3 % CONTAIN NAMES OF INTEGER ARRAYS %

The declarations specify as usual the names of the variables being declared and their modes: in
this case their contents will be names of arrays of the mode indicated. That is all; note that the
bounds of the arrays are not required.

We can assign to such variables using the usual considerations:

DATA GLOBAL:
ARRAY (3) INT SMALL:
ARRAY (300) INT BIGs
ENDDATA

PROC SCMENAME ();
REF ARRAY INT P;
Pi1=SMALL;
P:=BIG:
ENDPROC

66

%

The left-hand sides of the assignment statements are the names of variables and therefore valid
destinations; they require the names of arrays of integers; the right-hand sides are the names of
integer arrays and therefore deliver acceptable objects. The bounds of the arrays are not involved.
Note, however, that the analogy with other ref-variables is not complete. We cannot write

VAL P :=SMALL;

and expect all the contents of the elements of the array SMALL to be copied into the elements
of the array whose name is currently in P (there would be a bound problem here!). Such ““whole
array’’ operations are not allowed; the name of an array is not a valid destination since it does
not identify a unique place, so statements of the form BIG := SMALL are also illegal.

What we can manipulate via ref-array variables are the elements of the arrays whose names are
held in such variables. To do this we simply append a subscript to the name of the ref-array
variable:

P(1 +J)

P is a ref-array variable; a subscript applied to it is meaningless, just as + applied to a ref-real is
meaningless. We interpret this as meaning apply the index given by the subscript to the contents
of P; that is, we dereference P and use the name of the array contained in it to yield, with the
index, the name of a variable which then behaves in the normal way . That's all! The
dereferencing is always automatic, since no other sensible interpretation can be put on the
construction.

In both examples 3 and 4 we used the number of elements in the arrays explicitly. Clearly, if no
information about the number of elements involved is contained in the declaration of a ref-array
variable, we can no longer do this when we write general procedures to operate on arrays — the
number of elements involved will differ from call to call.

To cope with this we introduce a new monadic operator:

OPERATOR OPERAND RESULT INTERPRETATION

LENGTH Array name Integer No. of elements in the array

LENGTH is a keyword, and the only operator amongst the monadics and dyadics which operates
on a name rather than a value. Note that the mode of the elements of the array operand is
immaterial.

For our example above, LENGTH BIG will yield the integer value 300; the use of LENGTH with
an actual array name as in this case is somewhat redundant, since the answer can always be
obtained by consulting the declaration. LENGTH will generally be used to ascertain the length of
an array whose name is contained in a ref-array variable; naturally the ref-array variable will be
dereferenced to yield an array name as a suitable operand for LENGTH. As the result is an integer,
the operator may occur quite generally in an expression, and all the usual rules governing monadic
operators and widening and narrowing apply:

REF ARRAY REAL A;
INT I;
| := LENGTH A+ 3;

We can now rewrite our two examples with ref-array parameters:

67

PROC SUMMATION (REF ARRAY INT Q) INT:
INT SUM, 1
SUM:=0;
l:=1;
NEXTEL: SUM:=SUM+Q(I1):
Q DEREFERENCED THEN THE NAME OBTAINED BY INDEXING %
% THE CONTENTS OF Q ALSO DEREFERENCED %
l:=1+1;
IF I>DLENGTH Q THEN RETURN(SUM):; END;
GOTO NEXTEL;
ENDPROQC:

PROC ORDER (REF ARRAY REAL A):

INT 1,42

REAL TEMP;

REF REAL MIN;
I1:=1;

NEXTEL: MIN:=A(I);
Jizl+1;

CHECK: IF A(J)<SMIN THEN MIN:=A(J); END;
JisJ+1;

IF JSK=LENGTH A THEN GOTC CHECK: END;
TEMP:=A(1):
ACT):=MIN;
VAL MIN:=TEMP;
s=1+1;
IF IKLENGTH A THEN GOTO NEXTEL#s END;
ENDPROQC

Not much change! Except that, each time Q or A occurs, it will now be dereferenced to yield an
array name. Make sure you understand all the dereferencing in these examples; for instance the
statement A(l) := MIN involves four dereferences: A is dereferenced to give an array name since

a subscript follows; | is dereferenced to give an integer which is used to index the array name thus
giving a real destination; MIN must then be dereferenced twice to deliver a real number.

What can we have arrays of? So far we have seen real arrays and integer arrays. We can also
declare arrays of ref-reals and ref-ints; each element is now a ref-variable which can contain the
name of a variable of the appropriate mode. The name of an element of such an array is formed
from the array name and a subscript and this element behaves just as a ref-variable:

DATA S;
ARRAY (10) REAL AR:
ARRAY (20) INT Al
ARRAY (3) REF REAL T3 % NOTE THAT THE MODE QOF EACH ELEMENT
% FOLLOWS THE LENGTH INFORMATION %
ARRAY (7) REF INT U;
ENDDATA:

PROC MAIN ()

T(2):=AR(7); % NAME OF ELEMENT AR(7) %
AL(17):e=U(6)s % DEREFERENCE U(6) TWICE TO YIELD INTEGER
VAL T(1):=04.3; % FORCE DEREFERENCING OF T(1) TO YIELD %

%# A REAL VARIABLE DESTINATION %
ENDPROC:

68

%

%

Of course we can also declare references to arrays of ref-variables. Note here carefully though,
that VAL is only needed to force dereferencing of the individual element; dereferencing of the
ref-array variable is implicit in the use of a subscript.

DATA S;
ARRAY (10) REAL AR:
ARRAY (29) INT Al
ARRAY (3) REF REAL T
ARRAY (7) REF INT U2
ENDDATA;

PROC MAIN ()
REF ARRAY REF REAL Ay
REF ARRAY REF INT B3
Ai=Ts % NAME OF ARRAY QOF CCRRECT MODE ¥%
% NQTE A:=AR ILLEGAL SINCE A DEMANDS NAME OF ARRAY %
% OF REF=REALS %
By=U¢
A(1):=AR(6); % A DEREFERENCED AUTOMATICALLY; NAME AR(4) STORED %
AI(2):=B(3);
% Al1(2) DEMANDS AN INTEGER; B IS DEREFERENCED TO YIELD AN ARRAY %
% OF REF~INTS WHICH IS INDEXED BY 3 TO GIVE A REF«INT, THIS IN %
% TURN IS DEREFERENCED TWICE 70 YIELD THE REQUIRED INTEGER %
VAL B(1):=7;
7 DEREFERENCING OF B IS AUTOMATIC; VAL APPLIES TO THE REF=INT %
% VARIABLE OBTAINED BY INDEXING THE CONTENTS OF B BY 1 ¥%
ENDPROCS

What other modes have we had? Arrays.

Can we have arrays of arrays then? No; if we could, each element would not be a variable, but a
structure consisting of many variables. However, we can declare an array whose elements are
ref-array variables; that is each element can contain the name of an array. As usual the mode of
the elements of such arrays must all be the same.

Consider the following:

PATA S;

ARRAY (10) INT P13

ARRAY (20) INT P2,P3;
ARRAY (3) INT P4;

ARRAY (4) REF ARRAY INT P;
ENDDATA;

PROC SETP ()3
P(1):=P1;
P(2):=P2;
P(3):;=P3;
P(4) :=P4;

ENDPRQC:

An element, such as P(1), is a ref-array-int variable and as the destination of an assignment
demands the name of an integer array; P1 is such an acceptable name.

69

What sort of structure have we created with P?

P T e /I/(/)
1 P1 :
2 P2 7
3 P3 P2 2/9
4 P4

pa 3]

It is basically a two level structue; the actual integer variables require two levels of indexing from
the name P. To name the 17th element of P3 using P we need to write:

P(3)(17)

The index 3 on P gives a ref-array-int variable; the following subscript forces dereferencing to
give the name of an array (in this case P3) which is indexed by 17 to give the name of an integer
variable. This then behaves just as an ordinary integer variable.

Such structures can be used to represent any organised data with a two-dimensional structure, e.g.
matrices. In a matrix, we normally have the same number of elements in each row vector, unlike
the differing lengths in our structure P. In RTL/2 we allow direct declaration of such
two-dimensional structures:

ARRAY (3,4) INT ALPHA;
This declaration is equivalent to declaring
ARRAY(3)REF ARRAY INT ALPHA;

and assigning to each element the names of integer arrays each of length 4. Such a structure will
be created, but no intermediate names (in the RTL/2 sense) will exist.

awn 7R

v

/

some internal
) 4, naming mechanism]
v

[The arrows indicate

___.__.% Z A
/)

If we make any assignments to the elements of the first level of ALPHA we destroy the structure
generated by the compiler. For example if we write ALPHA(1) := P2; we can only regain the
original rectangular two-dimensional structure if we have previously remembered the old contents
of ALPHA(1) in a suitable ref-array-int variable.

The word dimension refers to the number of bounds possessed by the array and not to the
extents of the vectors which compose it. Thus ALPHA has dimension 2, and:

LENGTH ALPHA is 3

whilst LENGTH ALPHA(1) is 4 (since ALPHA(1) contains the internally generated name of an
array of four elements). We may name the individual elements in precisely the same way,
ALPHA(2)(3) is the name of an integer variable found by indexing the contents of ALPHA(2).

70

Following the normal algebraic practice we also allow the forms ALPHA (2,3) and P(3,17).

As usual, the subscripts can be any expressions provided they deliver integer values within the
bounds of the array.

Naturally, if we wish to pass such a two-dimensional array as a parameter to a procedure, we need
to be able to declare a reference to such a structure. A variable suitable to contain the name of a
structure such as ALPHA must have the mode REF ARRAY REF ARRAY INT; we allow the
shortened form REF ARRAY/(,)INT, the comma in the empty bound list indicating that it is a
reference to a 2 dimensional structure. Our earlier declarations could also have shown the
dimension involved explicitly:

REF ARRAY() REF REAL A;
REF ARRAY() REF INT B;

We can extend this to construct arrays of as many dimensions as we desire (though in practice a
compiler may impose an upper limit) and suitable ref-variables to contain their names. In the
ref-variable case, the number of commas required in the empty bound list is equal to one less
than the dimension of the array contents; in the simple one-dimensional case, the “list’”’ is
optional. Provided you think carefully of the sort of variable involved at each stage of the
subscripting and the dereferencing involved, you will have no difficulty — there are no new
concepts involved. For instance, we could declare (in a data brick) a three dimensional array and
wish to order one of its constituent vectors using our procedure ORDER:

DATA 8S;
ARRAY (5,6,7) REAL DIM3,
ENDDATAS

PROC MAIN ()3

ORDER (DIM3(3,4))3
7 CONVINCE YOURSELF THAT THE PARAMETER DOES INDEED YIELD THE
% NAME OF A REAL ARRAY %

ENDPRQC

You will observe that because of the intermediate levels required, it is more efficient to arrange
(if possible) for the bounds to occur in ascending numerical order.

As a simple example of the use of two-dimensional arrays, we will write a procedure to return the
trace (the sum of the diagonal elements) of a square matrix presented as a parameter.

PROC TRACE (REF ARRAY (,) REAL A) REAL:
» WE ASSUME THAT TYHE PARAMETER IS A SQUARE ARRAY, THAT IS %
% LENGTH A = LENGTH A(1) %
REAL SUM; % FCRM TRACE %
co

INT I; % UNTER %
I:=13;
SUM:=0,0;
NEXTEL: SUMs=SUM + A(I,1); % ADD IN NEXT DIAGONAL ELEMENT %

Ii=1+1,
IF I <= LENGYH A THEN GOTO NEXTEL; END;
RETURN(SUM) ;

ENDPROC;

Because the left-hand side of an assignment statement can now contain array element names
which may be derived from complex subscript expressions (involving procedure calls which may
affect data variables or other variables via the parameter mechanism)} we must now define
explicitly the order of actions (mentioned in section 4) in assignment, and, indeed, in the order
of evaluation of the subscript expressions themselves. We would need to be sure of this, if (for
some reason) we wished to write something of the form:

M

DATA ANYDATA;
ARRAY (8,10,20) INT BIG)
INT K3

ENDDATA;

PROC SET (REF INT X) INT;
VAL X:=X+1;
RETURN(?7);

ENDPROC)

PROC MAIN ();
INT J2:
Ke=3; Ji=13
BIG(J ,KeSET(K));=BIGC(SET(J),K,J)isSET(J)3;
% A COMMENT WOULD BE ADVISABLE HERE « IN GENERAL SUCH OPAQUE %
% PROGRAMMING IS NOT RECOMMENDED ¥
ENDPROQOC

At first glance you might expect this statement to be equivalent to BIG(1,3,7) :=B1G(7,4,2):=7;
with J,K containing the values 3,4 respectively.

This is not the case; the rules are as follows:

i) Anarray and its subscripts are evaluated from left to right. [Note that the array must be
included in this, since the name may be obtained from a ref-variable whose contents could
be changed by a function call in one of the subscript expressions: this rule says that the
array name will be evaluated before its subscripts].

i) In an assignment, the right-hand side is evaluated first; the destinations are evaluated and
the assignments made from right to left.
Thus in our example the following sequence will be obeyed:

evaluate SET(J): this yields 7 and resets J to 2

evaluate BIG(SET(J),K,J): this indexing process from left to right will yield the name
BIG(7,3,3) and reset J to 3

evaluate BIG(J,K,SET(K)): this yields the name BIG(3,3,7) and resets K to 4

The overall effect therefore is to perform
BIG(3,3,7) := BIG(7,3,3) :=7
with J, K containing 3, 4 respectively.
The rules describe the action of any assignment statement unambiguously provided we add
the further information about any procedures involved:
iii) The parameters are evaluated from left to right before examining and calling the procedure
itself [The reason for including the procedure itself will become apparent later] .

It is important to realise that we only need worry about these considerations if we are using
procedures which have side effects on data variables or through the parameter mechanism, and
then only if we are using those variables affected elsewhere in our statement.

Note that the order of evaluation of the terms forming the operands of a dyadic operator was not
defined; thus «<[J8 may result in 8 being evaluated before «. Again this will only lead to ambiguity
if the evaluation of one term affects the other via side-effects. Since the order is not defined such

constructions should be avoided (see also page 29).

72

Section 14 examples

1 The co-ordinates of a point in space are held in an array of length 3. Write a procedure to
find its distance from the origin.

(/(x? +y? +22))

2 Write a procedure to calculate the mean and standard deviation of a set of numbers, supplied
via an array parameter.

3 Write a procedure to form in a third array the matrix product of two given arrays. (An
element of the third array is given by

Cij =2 AiBy)

4 Intwo arrays X, Y set up the values of x and some function of x for a given range of values. -

Use this table of values to calculate, by linear interpolation, the value of the function for a
given x in the range.

73

15. Let

In a large program there may be many arrays all having the same length, and a need to use this
length explicitly at various points in the program. Should the specification of the program
change, or the length change for some other reason, there will be many places where the integer
value will need to be amended: it is almost certain that some occurrences will be missed in this
amendment process, and this error may not be detected for some time, since the program will
still be syntactically correct. One solution would be to put this value in a variable (kept
unchanged throughout the program) but all the arrays would still need the explicit integer in
their declarations.

RTL/2 has a facility which is of particular use in such a situation. We define a sequence of text
which is to be associated with a name (formed by the usual rules). This definition occurs outside
our bricks and takes the form of the keyword LET followed by the name, an equals sign, the
sequence we are defining, and a semi-colon to terminate it. For example:

LET Z = 16;

On every subsequent occurrence of the name (in this case Z) in the program, the sequence (16)
will be inserted in its place. This is, therefore, a mechanism of textual replacement which is
performed by the compiler whilst reading a program, Thus:

LET NO=75; “ NUMBER OF ELEMENTS %

DATA §;
ARRAY (NO) INT A;
ARRAY (NO) REAL B;
ENDDATA;

PROC MAIN ()3
INT 13

IF I<=NQO THEN
ACI)e=7 + A(NO=I);
B(NO=]):=0,01%B(1)};
END:

ENDPROC:
is equivalent to the program:

DATA s;
ARRAY (75) INT A;
ARRAY (75) REAL B;
ENDDATA;

PROC MAIN ()3
INT I;

IF I<=75 THEN
ACLI):=7 + A(75=1);
B(75«]):=20,01+B(]);
END:

ENDPROC?

However, if the number of elements changes at some later date, we only need to amend the first
version in one place — the definition of NO — rather than in (at least) five places.

74

The textual replacement specifies exactly what happens; syntactically, the definition sequence
must be valid wherever we use the name. |f we write:

LETP=6+7;

then 6 + 7 (and not 13) is what we get for each occurrence of P. |f we attempt to put
ARRAY(P)INT. ..

somewhere in our program, it will fail to compile since we have not supplied a simple integer
constant as the array length.

It is vital to realise that we have not declared a variable P; no cell named P exists at run time.
This explains why = is used and not the assignment symbol. P is a name used as a shorthand,
which usefully concentrates changes of information in one spot. As we have seen this can
simplify re-definition of lengths of data structures. Similarly it can be used to represent other
numerical constants:

LET PI= 3.,14159
LET INSTOCM=2,54; %# CONVERSION FACTOR INCHES TO CENTIMETRES %

This use is strongly recommended as it ensures that the same value is used throughout and
minimises the chances of typographical errors. It also means that changes of accuracy can be
made at one point, particularly when transferring to another machine.

Another use is to give a name to a fixed element of an array. An array of six elements might be
used to store the current values of the co-ordinates of a point in a fluid, its density, temperature
and pressure, the array being used so that all the information could be passed to various
procedures by a single parameter. For clarity and documentation we could give names to the
various elements; these names would be replaced by the appropriate array element on reading
the program:

LET XCOORD PLACEC1)
LET YCOORD PLACE(2);
LEY ZCCORD PLACE(3);

LET DRENSITY
LET TEMP
LET PRESS

PLACE(4);
PLACE(S);
PLACE(S):

H oW

DATA FLUIDINFORMATION:
ARRAY (6) REAL PLACE;

ENDDATA;
PROC SET ()3
TEMP:=104.6: % SETS PLACE(S)sy %

ENDPROCS

As the facility is one of replacement on reading a program, such replacement of the name will
only occur in that part of the program following the definition. We can, if we wish, re-define the
name to be some other sequence and this definition will be used to replace the name in
subsequent parts of the program. This can be useful for documentation purposes and for
preserving similarity between various sections of program.

75

LET ERRGRACTION=FAIL1; % FAIL1 IS PROC GIVING MESSAGE AND RESTART

PRCC P1 ()3

IF eceesees THEN ERRQORACTION (); ENDg

ENDPROC;
LET ERRORACTICN=FAIL2: % FAIL2 IS PROC GIVING MESSAGE ONLY %

PROC P2 ()3

IF seee THEN ERRORACTION () END2

ENDPROC:

The exact requirements for ERRORACTION in the various cases may have been decided after
the initial program was written. The use of the LET facility ensures that all occurrences of
ERRORACTION are replaced correctly; again if the specification changes, the textual changes
required are localised.

What sort of things can we include in such definitions? Between the equals sign and the
semi-colon we can write any sequence of the items we have encountered so far, that is names,
real and integer constants, comments (though this is unlikely to be of much use since they are
removed anyway!) and separators (but not the semi-colon of course!). However, we cannot
make further definitions within a LET definition — hence the keyword LET is illegal in the
sequence.

Since one can put almost any sequence of items in the definition, some very devious definitions
could be made:

LET GUESS= IF A=B THEN ;

DATA 5;
INT A,By
ENDDATA;

PRCC MAIN ()3
INT WHAT;

)
GUESS WHAT := 6 CND;
ENDPROC

This is not transparent programming, not well documented and extremely error prone! The LET
facility is not intended for this sort of use.

We can use, in a LET-definition, a name that has itself been defined by a LET-definition. This
name has been defined and so, on reading it, the compiler will replace it with the appropriate
sequence.

LET EL=5;

LET TEMP=PLACECEL)? % EQUIVALENT TO PLACE(5) %
76

A

Note that this replacement is made once in the definition and not on each occurrence of TEMP;

LET EL=5;

L]

LET TEMP=PLACEC(EL):

LET EL=7;

TEMP:=210.73

will result in the statement PLACE(5) :=10.7; since PLACE(5) is the current definition of TEMP
at this point, even though EL is now defined to be 7.

77

16. Data Initialisation

It would be extremely tedious, if we wished to ensure that a large array contained certain values
at the beginning of our program, to have to write out a vast number of assignment statements:

A(1):=7;
A(2) :=16;
A(300) := 0;

The instructions would also occupy a large amount of store.

We introduce at this point the concept of initialising variables in a data brick. This is a facility
which allows the programmer to specify the contents of his data brick (static) variables on entry
to the program.

To do this, clearly we must be able to calculate the required contents of these variables at
compile time; hence expressions and any dereferencing or type-changing is forbidden — we are
restricted to using ‘constant’’ information of the correct mode.

For a simple variable we have to supply one piece of information, namely the required contents.
This is specified by an assignment-like sequence within the declaration containing the definition
of the variable.

DATA INITIALISED;
REAL A:=1-0,B:='3-21C
INT I:=1,J:aKislL1==30
ENDDATA;

1240, 7E=1,E,F,Gy=~6ET7¢
=N:=+3,P,Q:20;

»
[]
?

=D
M3

From this example we can deduce the general rules:
i) Variables to be initialised are followed by := and the required initial value; “multiple
initialisation’’ is allowed in a similar way to multiple assignment.
ii) The initial value may be a signed constant; it must be of the correct mode.
iii) Groups of names and initialisations are separated by commas ; note that variables without
initial values may be included, in the normal way, in the list of names.

Static arithmetic variables which are not initialised in the program text will be initialised by
default to zero (a zero of the correct mode!). Thus on entry to our program, E, F above will
contain 0.0 and P will contain 0. Q need not have been explicitly initialised to zero, but it is not
wrong, and such an initialisation is good and useful documentation.

When it comes to initialising ref-variables, the “‘constants’’ we can have are the names of variables
of the appropriate mode. We have mentioned earlier that before a ref-variable is used in an
expression, we must ensure that it contains something sensible, or else on dereferencing twice

we shall have no idea what location we shall be accessing. The wisdom of initialising such
variables is forced onto the programmer : all ref-variables must be initialised (some earlier
examples are illegal in this respect) and hence there is no question of any default value. As
before, the syntax consists of assignments embedded in the declarations.

DATA MORE;
REAL A,B1:
INT I:=J:=K;=3;
ARRAY (10) INT LISTy
REF REAL WHICHREAL:=A,YQU:=ME;=B;
REF INT PLACE!=K,WHERE:sLIST(2):
REF ARRAY INT POINTER:=LIST:
ENDDATA?

We must remember that no local variables are available at this point — they only exist whilst the
call of a procedure is being executed. Variables whose names are used as initial values in data
bricks must therefore belong to some data brick; that is, they must be static so that their location
is known at compile-time.

78

An array element is such a simple variable, but only if the subscript is a constant (again so that
the exact location is known at compilation). Hence initialising WHERE to LIST(2) is quite
legitimate; an initial value of LIST (I) (even though | has been initialised to 3) would be illegal
as dereferencing of | is required. Similarly an element of a two (or more) dimensional array
A(3, 4) is illegal since an implicit dereferencing is required to find the name in A(3) before
indexing it by 4.

Now we can consider our opening problem — how to initialise an array. An array consists of a
named structure containing many simple variables; to initialise it we must therefore supply a set
of the appropriate ““constants’’. This is done by writing a list of values separated by commas and
enclosed in brackets as the initial value for the array. The list must contain exactly the right
number of constants for the number of elements.

DATA LISTS:
INT 1,J.K3

ARRAY (3) REAL A1:=(1,0,2.043.0)3

ARRAY (10) INT 1I1: 12"(102130415 607:8:9:10)!
13:=(20 :30,0,0,0,0, 00000,0)!
143

ARRAY (2) REF INT RI:s(K,J)3s

ENDDATA;

For arrays of simple variables, the same default rules apply; hence 14 above will be initialised to
ten zeroes.

In the case of 13 we only wished to initialise the first two elements and leave the rest zero. It is
not too bad to have to write (and count) the necessary eight zeroes and the commas. For a large
array, however, much writing would be laborious and error prone; the requirement to do this
would probably deter people from using the initialisation facility in such a case, relying on the
default value and filling in the first few elements by explicit assignments in the program. Where

a single value is required for many elements of an array a repitition factor may be used to specify
the number of elements to be initialised to this value. A repetition factor consists of an integer
constant in brackets following the initial value. Thus we would initialise |13 by writing

ARRAY (10) INT 13: = (20, 30, 0(8));

This facility can be used for any number of elements in any position in the array and for any
required value — though the rules for the mode of the value and the total number of elements
must be obeyed of course.

79

Example:

ARRAY (15) REAL ALPHA:=(1.0(2)'3.1(3)00.006.107.2(2):1.0E1(S)oZ?.Z)l

ARRAY (7) INT BETA:=(7(2),1(3),6,5)1
will declare arrays which on entry to the program will appear as:

ALPHA /¥ 4 BETA VI

1.0 7
1.0
3.1
3.1
3.1
0.0
6.1
7.2
7.2
1.0E1
1.0E1
1.0E1
1.0E1
1.0E1
27.2

glo|==lalN

The LET facility can be useful in such situations:

LET NOEL=100; % NUMBER OF ELEMENTS %

LET NOELLESS2=298; % SET TO NOEL=2 ¥«
X WHEN NOEL IS CHANGED WE MUST ALWAYS CHANGE NOELLESSZ : THIS
% MAKES CHANGES EASY TO IMPLEMENT %

DATA INF:

ARRAY (NOEL) INT GAMMA:=(1(NOEL))

ARRAY (NOEL) REAL DELTA:=(0,01,0,07,0.0(NOELLESS2)))
ENDDATA;

When we come to multi-dimensional structures, we must be a little more careful.

When we declare explicitly a two dimensional array, we are creating all the levels, and so can
present the initial values as an array of array initial values and the syntax reflects this.

DATA NONAME;
ARRAY (3,4) INT BIG:=

((1121304)0 (5060?18). (9,10,11,12))3
ENDDATA;

This declaration creates the structure:

v/
7/////457/////, Z/f1 2 (3|4

|

SIS

80

We may use repetition factors to repeat a particular array of values, and the scheme may be
extended to more dimensions:

DATA MULTIDIM;
ARRAY (5,6) REAL FRED:=
((1.0,2.1(5)) (3),
(1¢0+2401360+4¢0,5,0:640),
(2746€2)42647(2),0,0(2)))1
ARRAY (3,3,4) INT JOE:s
(C (1,2,3,4)(3))(2),
((54697¢8)s (807:645), (2:4:6,8)))3
ENDDATA:

This will create the following structures:

Fred 5 -
Zé%% 10 | 21| 21| 21| 21| 21

/)
%;6,10 21 20 21| 21| 21

6 1.0 21} 21| 21| 2.1] 2.1
/i

//6/% 10| 20| 30| 40| 50 | 6.0

////6/7 276(27.6|26.7 {26.7 | 0.0 | 0.0

V g4
JOE Y "
11LLLA 7/// | W /) 7/
y fal1|2|314a| [4)1|2|3]|4| [a11]2|3|a
/n /) /
1 2 T
/L 74 1/// /
7
% /’1]2 ala| (A112]s|a| FA1]2]3]a
7/ L1 7 l /] "/,
- %
L
——3
77 %/ 77 77
3 w4/5|6 7|8| V4al8|7|6|5]| V4] 214|6]|8
/A { l//4 #’ /

When, however, we are setting up a two-dimensional structure by the use of an array of
references, we are only declaring a single level, and hence can only initialise that level to a set of
names of appropriate arrays (these arrays may be initialised in their own declarations of course).

DATA STRUCT;
ARRAY (5) REF ARRAY REAL NEWFRED:=(A1,A1,A1,A2,A3)
% COULD USE REPETITION FACTOR AND WRITE (A1(3),A2,A3) %
ARRAY (6) REAL
A11=(1.0,241(5)),
A2==(1IO'2I0'3-0.4IQ’S.O'6.O).
AR:=(27,6(2),26.7(2),0.0(2))¢
ENDDA -

81

Note that the structure NEWFRED consists of an array of 5 names:

,///;//// Al Al Al A2 A3

NEWFRED

The total structure thus created is not the same as our earlier FRED. Not only are the final array

levels named, there are not so many of them! In general also, they need not be of the same
length.

A1
NEWFRED 0/////67///)) 7//
A1 6 10 | 21 |21 | 219 | 21 | 21
— (9,
i -
A2
A3
//% 10 | 20 | 30 | 40 | 50 | 6.0

A3

Y
6 276 | 276 | 26.7 | 26.7 0.0 0.0
) /

Initialisation, apart from saving a large number of assignments to be performed initially at run
time, and ensuring that ref-variables contain sensible names, is also useful for setting up tables
of values, decision tables, look-up tables etc. For instance, in our DDC example, we may use
different (say temperature) setpoints at various stages of the process and have a ‘stage number’
at any moment:

DATA PLANT;
ARRAY (5) REAL TEMPS;=(150.0,180¢7,230,0,19543,100,0)3
% TEMPERATURE SET POINTS %
INT STAGENUMBER;
ENDDATA;

N

PROC DDC ()

SETPOINT:=sTEMPS(STAGENUMBER); % SIMPLE LOOK=UP %

ENDPROC

Section 16 example

1. Write a procedure which will be called at 00 hours each day in a real-time system to update
the values of integers DAY, MONTH and YEAR held in a suitable data brick. (Note that you
must allow for the various lengths of the months but you may ignore the problem of leap years
if you wish).

82

