29. Records: user-defined structures

The personnel record system developed in section 27 worked reasonably efficiently because we
were able to pack all the required information about an individual into one integer location; one
integer index sufficed to identify the individual, and a single array was all that was required to
store the complete system. In practical situations of this kind, it is usually not possible to pack all
the information into an integer, nor indeed into a number of integers; the method of passing an
index and then accessing numerous arrays becomes inefficient in terms of program space and
execution time, and there is considerable lack of clarity in the continual packing and unpacking
of the relevant fields containing the data. This section describes the facilities in RTL/2 which
enable the user to define his own structures and to manipulate them either as entities or by
reference to their constituent parts. Clearly there are two aspects to this: the definition and the
use; we shall treat these aspects in turn.

The only structure we have at present in RTL/2 is the array. This is characterised by the fact that
each element is of the same mode. A user-defiried structure will consist of a number of
components of varying modes which are tied together under one name. The definition of a user-
defined structure effectively defines this name as a mode like integer or byte. This is reflected

in the use of the keyword MODE to introduce such a definition. Our earlier personnel system
might have been set up using the following structure:

MODE PERSON(INT AGE, SALARY, BYTE SEX, LOCATION);

Such a definition occurs outside our bricks at the same level as LET definitions; the semi-colon
separates it from other definitions and bricks.

We have created no structures by this definition; we have merely associated the name PERSON
with a layout consisting of two integers and two bytes, that is we have a template. Every time we
use the name PERSON we shall mean a ‘lump’ consisting of two integers and two bytes. Our
definition goes further than this; it also defines four other names which can be used to select

the component parts. Each field in the structure thus has a separate name. The syntax can be
deduced from the example: the keyword MODE is followed by the name being defined and

a list of components enclosed in brackets. The list of components is similar to the declaration of
parameters — mode descriptions followed by a list of names all separated by commas — but
remember that we have not actually declared anything yet. We shall return to the permissible
forms of the components later.

Having defined the shape of our structure, and associated a name with it, we can now investigate
how to declare specific examples of it. Actual occurrences (in the sense of creating space in the
computer) are called records. Records, like arrays, are static structures and hence may only be
declared in data bricks. The form of the declaration is quite standard: the mode followed by a
list of names being declared. However, instead of the mode being a keyword, like INT, it is the
name defined in the MODE definition. We can also declare arrays (multi-dimensional if we wish)
of records and ref-record variables which naturally can contain the names of actual records of the
appropriate mode. Remembering that reference variables must be initialised, we can write:

DATA RECORDEXAMPLESH
PERSCN ME,YOU:
ARRAY (5) PERSON PEOPLE:
REF PERSON WHO:=ME,BOSS:=PEQPLE(1);

ENDDATA:
which will create the following storage layout:
o &
ME You PEOPLE NP
4% 7 1
¢ "
2% -
% 5
7 :
A 4 v

Each actual record consists of four separate fields.
149

We must now investigate how we name the individual variables involved.

Each component of each record behaves as a variable of the mode specified in the MODE
definition and once we have learned how to name such a variable we can, of course, use it in
precisely tha same way as any other variable, using all the constructions we have learned so far
in this manual. The scope of the names of a MODE and its components is global; the names
behave similarly to those of a data brick and its variables as far as availability in blocks and

re-definition are concerned, though their uses are quite different.

In naming a particular eilement of an array, we append a subscript to the name of the array. In
the case of records we append the name of the field to the name of the actual record; in this

way, the names of components in the MODE definition are used as selectors for the various fields.
Syntactically, we write the name of the record, a point (.), and then the selector name.

ME,SEXz="'"M';
YOU+AGE!=YQU,AGE + 13 % BIRTHDAY %

As described above, once you have selected a component it behaves precisely as a variable of the
mode specified in the MODE definition, just as an element of an integer array behaves as an
integer.

The syntax is of the form ‘record name.selector nan:a’, and -gnce when we want to select a field
from an array of records we write:

PEOPLE(3).SALARY :=PEOPLE(3).SALARY + RISE;

The name of the record is given by an array element (foimed in the usual way); a fieid is ther
selected as above.

Again, as in the array case, selecting a field using a ref-record variable will result in automatic
dereferencing of the ref-record variable to yield the name of an actual record from which a field
can be selected:

WHO.LOCATION := 3; %WHO DEREFERENCED%

This dereferencing is important. Records are static structures, and hence the only forms which we
can declare locally (particularly in declaring parameters) are ref-record variables (assignment to
these is straightforward and similar to assignment to a ref-array variable). In this way, we can pass
a reference to the whole structure as a parameter; within the procedure, there is no need to access
many arrays using an index passed as parameter; all we have to do is select the appropriate
component using the ref-record variable.

PROC UPDATE (REF PERSON WHO)3

WHOLSALARY =

ENDPRQC;

%“ A CALL OF THIS WILL APPEAR AS %
UPDATE(PEOPLE(2))

No ‘whole record’ operations are allowed (just as in the array case); hence there is no ambiguity

in an assignment of the form WHO := PEOPLE(2) and no possibility of using VAL. We have
pointed out many similarities between records and arrays and the key to both is understanding
the formation of a name of a variable. Records have an advantage over arrays in that the required
component field can be calculated at compile-time (like a constant subscript) and that there is
never (even in the ref-record case) any need to perform run-time checking and hence no overhead;
all fields are defined by the MODE definition and all checking is carried out at compile-time. The
record form may also be more legible.

150

Having seen the definition of a structure using a MODE definition and how to declare actual
records and manipulate both them and their components, we must now consider what modes are
permissible for the components. The only things that are not allowed as components are records
arlmld arrays of records; any other modes or ref-modes (including ref-records) or arrays of them are
allowed.

MODE ARITH (BYTE B, INT I, FRAC F, REAL R)}
MODE STRUCT (ARRAY (é) BYTE NAME, REF INT RI1T1,RIZ,

ARRAY (4) REF FRAC RF, REF STRUCT RS,

REF ARRAY ARITH RAA)3
% NOTE THAT STRUCT CONTAINS A REFERENCE TO0 A STRUCTURE %
% OF 1ITS OWN KIND, SUCH RECURSION AND MUTUAL RECURSION X%
% ARE QUITE PERMISSIBLE AS LONG AS ONLY REFERENCES ARE X%
% INVOLVED %
% THE FOLLOWING IS ILLEGAL %

MODE WRONG (INT ALPHA,BETA, ARITH WA, WRONG NOTRIGHT)3

Components whose modes are references to structures can be used to set up a list structure in
which records are chained together:

MODE CHAIN (...other components... REF CHAIN BACK, FORE); enables CHAIN structures to
be linked (but not automatically) in the form:

P I

|

I |, S R

If we have an actual CHAIN named Q, Q.BACK is the name of a reference to a CHAIN variable;
we can therefore select a field from the record name which it contains by the usual method:
Q.BACK.FORE; the appending of the selector will force Q.BACK to be dereferenced and the
FORE field of that record is now named; this is another ref-CHAIN variable and if we assume
that the linked list pictured in our diagram has been set up, it will, of course, contain the name
Q. In the case of arrays and references to arrays (particularly the multi-dimensional case) we
added subscripts to get down to the correct level or ultimate variables; similarly, for records we
select fields until the required variable is obtained.

The similarity with arrays is continued when we consider the initialisation of records upon
declaration in a data brick. (Note here that if a MODE definition includes components which are
references, all actual records of this mode must be initialised to ensure that such components are
safely initialised). The initial value for a record consists of a list of ‘constants’ separated by
commas and enclosed in brackets. Whereas in the case of arrays all the ‘constants’ were of the
same mode, the ‘constants’ in a record must be of appropriate modes to match the selectors
specified in the MODE definition. Repetition factors are not permitted within a record
initialisation, in the sense of repeating a value for a number of components; the initialisation of an
array component may contain repetition factors in the normal way; and, of course, a record may
have a repetition factor attached to it in the initialisation of an array of records — each bracketed
record initialisation behaves as a constant at the lowest level of the array.

161

MODE AM (BYTE AB, ARRAY (4) BYTE ANAME, REF A AA)
MODE BM (INT BI, REF ARRAY BYTE BB, REF INT BRI)3

DATA INITIALISEDRECORDS;
AM ACTUALA:s ('A',"FOUR",ACTUALA), % REFERS TO ITSELF %
A2323A3:5('9',(0,1,2:3),ACTUALA)}
BM ACB;=(2937,A2,ANAME,ACB.BI)}
ARRAY (5) AM ARAM sm (
(0, "H#O0C(LIH" ,A2),
('Q',"NULL",A3)(3), % REPETITION FACTOR FOR RECORD %
("A',(1,2,3(C2)),ARAM(1))
)i % OUTER BRACKET OF ARRAY %
ARRAY (2) BM ARBMi=(
(27 ,ARAM(3) ,ANAME,ACB.BI),
(0, "NULL",ARBM(1),.BI))1
ENDDATA)

We now give a simple example in which records are chained together. Basically we are adding
words (contained in a byte array and padded to the right with spaces to make them all the same
length) sequentially to a pool and chaining them together in alphabetical order. Advantage is
taken of the alpha-characters being in ascending order in the ISO7 character set and the fact that
* *<'A’. Having forward and backward pointers allows us to remove words from the ordered
list, but not from the pool. The first version uses crude coding to show constructions of names
of the form LIST(1).NAME(J); the second economises by using inner blocks and intermediate
reference variables.

LET sSp=' *;

LET NOCHAR®15; % MAXIMUM NUMBER OF LETTERS IN WORD X%
LET MAXNO=100001 % MAXIMUM NUMBER OF WORDS %

LET MAXNOZ2=9998;

MODE ENTRY (ARRAY (NOCHAR) BYTE WORD, REF ENTRY BACK,FORE))
% BACK REFERENCES PREVIOUS, FORE THE NEXT ENTRY IN ORDER %

DATA LEXICON}
ARRAY (MAXNQ) ENTRY LIST:=(
("#SP(NOCHAR)A#",LIST(1),LIST(2)), % FIRST ENTRY = DUMMY X
("#'Z"(NOCHARIH#",LIST(1),LIST(2)), % LAST ENTRY = DUMMY X%
("#O(NOCHARI#" , LIST(1),LIST(1)) % PAD % (MAXNOZ2))
INT NOIN;=2; % NUMBER CURRENTLY IN POOL %
ENDDATAY

PROC INSERT (REF ARRAY BYTE X) REF ENTRY}
% RETURNS POSITION IN POOL OF WORD IN X, ASSUMED TO BE OF X%
% LENGTH NOCHAR AND RIGHT PADDED WITH SPACES, IF IT IS NOT IN %
% THE POOL IT IS INSERTED AND THE NECESSARY ADJUSTMENTS %
% MADE TO THE ALPHABETICAL ORDER %
REF ENTRY NEXT:=LIST(2), % END OF CHAIN %
Qe=LIST(1):
TO NOIN DO % WE KNOW NUMBER IN THE LIST X%
Q:=Q,FORE}
FOR J:=1 TO NOCHAR DO
IF Q,WORD(J) <€ X(J) THEN GOTO NOGOs END3s
IF QWORD(J) = X(J) THEN
IF JENOCHAR THEN
%2 ALREADY IN POOL %
RETURN(Q) ;
END3

152

GOTO NEXTCHAR;
END3:
X CORRECT POSITION FOUND = NEXT WILL NOW CONTAIN ¥
% A REFERENCE TO THE WORD ALPHABETICALLY AFTER X X%
NEXT:=Qyp
GOTO HOLE:
NEXTCHAR:
REP?I
NOGO:
REP}
%X NOTE HERE THAT NEXT CONTAINS LIST(2) = WE ARE ADDING X %
% TO THE END OF THE CHAIN OF ACTUAL WORDS %
HOLE:
NOINs=NOIN+1}
IF NOIND>MAXNQO THEN
% NO ROOM LEFT IN POOL %
% OUTPUT SUITABLE MESSAGE AND TAKE ACTION %
RETURNCLIST(1))3 % SAFE RESULT %
ENDy
FOR l:=1 70 NOCHAR DO
LIST (NOIN) WORD(I):sX(I)s
% FILL IN WORD %
REP}
% NOW UPDATE CHAIN %
LIST(NOIN) ,FORE3aNEXT}
LIST(NOIN) BACKI=NEXTBACK)
NEXTeBACK FORE ;= LIST(NOIN)
NEXTeBACK:=LIST(NQIN);
RETURN(LIST(NOIN))
ENDPROC?

PROC ALPHAPRINT ()
% PRINTS OUT THE LIST IN ALPHABETICAL ORDER USING THE CHAIN X
% AND ASSUMING AN CUTPUT PROCEDURE PROC TWRT(REF ARRAY BYTE X) X
REF ENTRY NEXT:=LI3T(1).FOREs
L: IF NEXT:=:LIST(2) THEN RETURNs END;

% WE ONLY WISH TO PRINT THE ACTUAL WORD ENTRIES NOT THE X

% DUMMY FIRST AND LAST ENTRIES X

TWRT(NEXT¢WCRD) s

NEXTs=NEXT,FORE}

GOTO L
ENDPROC?

% REVISED VERSION X

LET spP=' ',

LET NOCHAR=15; % MAXIMUM NUMBER OF LETTERS IN WORD %
LET MAXNO=100001s X MAXIMUM NUMBER OF WORDS %

MODE ENTRY (ARRAY (NOCHAR) BYTE WORD, REF ENTRY BACK,FORE)}
% BACK REFERENCES PREVIOUS, FORE THE NEXT ENTRY IN ORDER %

DATA LEXICON;
ARRAY (MAXNO) ENTRY LIST:=(("#0(NOCHAR)#",HEAD,TAIL) (MAXNQ))}
% MUST BE INITIALISED AS CONTAINS REFERENCE X
ENTRY HEAD:=("#SP(NOCHAR)#",HEAD,TAIL),

TAIL;=s("#'2Z'(NOCHAR)#" ,HEAD,TAIL)
153

X DUMMY ENTRIES FOR BEGINNING AND ENDING THE ORDERED LIST %
% WE COULD HAVE MADE THESE THE FIRST TWO ELEMENTS OF X%
% LIST AGAIN, BUT IN THIS WAY LIST IS THE POOL X
INT NOIN:=0Qy % NUMBER CURRENTLY IN POOL X%
ENDDATA:

PROC INSERT (REF ARRAY BYTE X) REF ENTRYy
% RETURNS PQOSITION IN POOL OF WORD IN X, ASSUMED TO BE OF X%
% LENGTH NOCHAR AND RIGHT PADDED WITH SPACES, IF IT IS NOT IN X%
% THE POOL IT IS INSERTED AND THE NECESSARY ADJUSTMENTS %
% MADE TO THE ALPHABETICAL ORDER %
REF ENTRY NEXT3i=TAlL: X END OF CHAIN %
BLOCK
REF ENTRY Q:=HEAD,FORE)
WHILE Qs#:TAIL DO
BLOCK
REF ARRAY BYTE CURWORD:mQeWORD?
FOR Js=1 TO NOCHAR DO
BYTE CURW:SCURWORD(J), CURXs=X(J)s
IF CURW < CURX THEN GOTO NOGO3 END3
IF CURW = CURX THEN
IF JsNOCHAR THEN
X ALREADY [IN POOL %
RETURN(Q)
END}
GOTO NEXTCHAR;y
ENDs |
% CORRECT POSITION FOUND « NEXT WILL NOW CONTAIN X%
% A REFERENCE TO THE WORD ALPHABETICALLY AFTER X %
NEXT:=Q;
GOTO HOLE
NEXTCHAR:
REP;
ENDBLOCK)
NOGO:
Q3;=2Q.FCRE4
REP;
ENDBLOCK:
4 NOTE HERE THAT NEXT CONTAINS TAIL « WE ARE ADDING X X%
% TO THE END OF THE CHAIN OF ACTUAL WORDS %
HOLE?
NOINgaNQIN+1}
IF NOIN>MAXNQO THEN
% NO ROOM LEFT IN POOL %
% OUTPUT SUITABLE MESSAGE AND TAKE ACTION %

RETURN(TAIL) % SAFE RESULT %
END3s
BLOCK
REF ENTRY NEW:sLIST(NOIN)

BLOCK

REF ARRAY BYTE Qi=NEW,WORDy
FOR I:=1 TO NOCHAR 0O
% FILL IN WORD X%
QD) ¢=Xx(1)s
REP3:
ENDBLOCK
Z NOW UPDATE CHAIN X%

154

NEWsFORE:®NEXTy
NEW.BACK:=NEXT,BACK
NEXToBACK.FORE§=NEW)
NEXT.BACKs=sNEW)
RETURNCNEW) s
ENDBLOCK;
ENDPROC:

PROC ALPHAPRINT ()3
% PRINTS OUT THE LIST IN ALPHABETICAL ORDER USING THE CHAIN %
% AND ASSUMING AN QUTPUT PROCEDURE PROC TWRT(REF ARRAY BYTE X) ¥
REF ENTRY NEXT:=mHEAD,FORE}
% WE ONLY WISH TO PRINT THE .ACTUAL WORD ENTRIES NOT THE ¥
% DUMMY FIRST AND LAST ENTRIES %
WHILE NEXT:#:TAIL DO
TWRT(NEXT.WORD)#
NEXT:=NEXT.FORE}
REP;
ENDPROCS

PROC REMOVE (REF ARRAY BYTE X)3
“ TLLUSTRATES USE OF DOUBLE CHAIN TO REMOVE AN ITEM %
% IT DOES NOT REMOVE X FROM THE POOL = INDEED IF X IS NOT X
% IN THE POOL IT ADDS IT TO IT BY THE CALL OF INSERT %
% WE COULD TRAP THIS CASE BY REMEMBERING NOIN BEFORE CALLING %
% INSERT AND COMPARING WITH THE VALUE OF NOIN AFTER THE CALL X%
REF ENTRY Q:=INSERT(X)s
QsBACKoFORE:=Q,FORE}
Qs FORE.BACK:=2Q,BACKY
ENDPROCY

Section 29 examples

Rewrite the earlier DDC example (section 10) using records.

2. Design suitable MODE definitions for the creation of family trees. Attempt to write
procedure bricks to ascertain the family relationship between two people. The importance
of this exercise is not the complexity you can achieve, but the design and manipulation of
suitable structures.

155

30. Communication

We have had many instances in this manual when we refer to input-output (1/0) procedures or
procedures provided by the system; for example TWRT and DELAY. In section 8 we described
RTL/2 as a procedure orientated language and indicated that 1/0O, system and real-time facilities
are supplied in the form of procedures. Now clearly we do not wish each and every programmer
to include such procedures in his programs! However, although we do not have to write the
definition of such procedures, we must specify in some way their names — every name must be
declared or defined in RTL/2.

The basic unit of our programs so far has been the brick. We have seen procedure and data
bricks. We have also had things at inter-brick level — LET definitions, MODE definitions and,

of course, comments can occur at this level. Bricks and inter-brick specifications or definitions
can be grouped together to form a module. A module is the unit of compilation — it may contain
just one brick or many. As the input to the RTL/2 compiler it must be self-contained in the
sense that it contains no names which are not declared or defined. Various modules can then be
linked together in some way to form a complete program or suite of programs. The method of
communicating to the compiler the specifications of names used in one module which are
defined in some other module (the two of which will eventually be linked together) is the main
subject of this section.

Before exploring the problem, we look a little further at the advantages of having a modular
structure. At a management level it means that various members of a team engaged on a large
program complex can work independently whilst retaining good interfaces for the eventual
linking together. At an individual level it provides the convenience of breaking the work into
reasonably sized entities which can be compiled separately and tested separately.

Once a module has been successfully compiled and tested, and any further documentation
completed, it can be “forgotten” until the rest of the complex is ready. Such a module can also
be used in an “off-the-peg” manner and linked with some other suite if required. The
communication of specifications between modules also provides the programmer with a natural
way of documenting the interfaces between modules and between other programmers; it forms
the “plugs” and “sockets” which enable the modules eventually to be linked together.

Procedures which we wish to call in a module but which are not defined in that module are
termed external procedures. To specify the name of such a procedure we write the keyword
EXT, a description of the form of the procedure and its name. Such a specification occurs at
inter-brick level and, as usual, is separated from other inter-brick and brick information by a
semi-colon. The description of the form of the procedure needs to record the nature of any
parameters and any result. However, unlike the definition of a procedure -i.e. a procedure brick —
the names of any parameters are quite immaterial and therefore omitted. The name of the external
procedure follows this description; this allows a list of procedures with identical descriptions of
course, to be appended. For the checks performed by the compiler (see section 8) such a description
supplies all the necessary information. Thus our procedure TWRT would be specified as

EXT PROC (REF ARRAY BYTE) TWRT;
If there were more than one procedure we would write

EXT PROC (REF ARRAY BYTE) TWRT1, TWRT2, TWRT3;
This tells us and the compiler that TWRT, TWRT1, etc are procedures having a parameter of
mode ref-array-byte, no result, and that their definitions are external to this module. As we have
seen by implication, calls of external procedures are identical to calls of procedures defined in the
current module; parameters to, and use of a result of, any call must match the specification in
the same way.

Examples:
EXT PROC (REF ARRAY BYTE) TWRT;% OQUTPUTS STRING X%
EXT PROC (INT) INT IPRINT: % OUTPUTS SIGNED INTEGER %
% RETURNS NUMBER OF CHARS, OUTPUT %
EXT PROC C(INT,INT) IWRTF; % FORMATTED INTEGER PRINT %

Procedures specified in external descriptions in various modules, must be defined in some module
— on linking modules together we must have some code to execute on calling such a procedure.
On defining a procedure which will be used in other modules, we must inform the compiler of

156

this intentioni(since it will need to create any necessary “plugs” or “sockets”) by making the
name an entry which may be specified externally elsewhere. This is achieved simply by
preceding the definition by the keyword ENT. Thus a module to read a number of real numbers
and print out their average could appear as:

% THIS MGDULE READS AN INTEGER TO CONTROL THE NUMBER OF REALS %
% READ, AND PRINTS OUT THEIR AVERAGE %

LET NL=10;

EXT PRQC (INT) IWRT

EXT PRCC () INT IREAD:

EXT PROC (REAL) RWRT:

EXT PROC () REAL RREAD;

EXT PROC (REF ARRAY BYTE) TWRT;

QUTPUT INTEGER %
READ IN INTEGER %
OUTPUT REAL %
READ IN REAL %
QUTPUT TEXT %

e ¢ o8 Be a8

ENT PRCC PRINTAV ()3
INT NUM3;=IREAD();
REAL AV:=0.0;
TO NUM DO
AVei=AV + RREAD();
REP:
AVesAV/NUMg
TWRT("#NL#NUMBER OF REALS READ : ");
IWRT(NUM) 3
TWRT("#NL#AVERAGE VALUE IS : ")3;
RWRT(AV);
TURT("HNL(2)H");
ENDPRQOC:

No input or output is defined as part of the RTL/2 language. For a given operating system
supporting RTL/2 programs, 1/O operations will be defined in terms of a set of external
specifications. A standard set of procedures which should always be available in all RTL/2
systems has been defined, and details can be found in the manual “RTL/2 Standard Stream
I/Q". The use of such standards allows machine-independence of programs to be maintained.
It is recommended, nevertheless, that |/O be gathered together in some convenient fashion

so that modification for differing systems operation can be made simply and correctly. The
basic method employed is streaming in which a sequence of single characters is read or
written. The procedures assume that there is a method of transferring characters between a
program and a channel — this channel being either a receiver or a sender. Usually a channel will
be a physical device (e.g. teletype, paper-tape reader, line printer) but there is no reason why it
should not be a simple internal array. The way in which stream changes may be made, and more
primitive character handling are described in Section 32. It would be very tedious if all text had
to be processed as single characters; various facilities are available for breaking down and building
up sequences of individual characters. We therefore have a number of standard stream 1/0
procedures which read from or write to the current input or output stream (the various formats
will be found in the stream 1/0 manual):

% INPUT PROCEDURES %

EXT PROC () INT IREAD: % INPUT INTEGER %
EXT PROC () FRAC FREAD; % INPUT FRACTION %
EXT PROC () REAL RREAD; % INPUT REAL %

EXT PROC (REF ARRAY BYTE,REF ARRAY BYTE) INT TREAD;
% READ IN TEXT TO SPECIFIED ARRAY %
% SECOND ARRAY CONTAINS LIST OF %
% TERMINATORS, RESULT IS NUMBER %
% OF CHARACTERS READ X%

157

% UNFORMATTED OUTPUT %

EXT PROC (INT) IWRTs % CUTPUT INTEGER %
EXT PROC (FRAC) FWRT; % OUTPUT FRACTION %
EXT PROC (REAL) RWRT: % QUTPUT REAL %

EXT PROC (REF ARRAY BYTE) TWRT;% CUTPUT TEXT %

2

« FORMATTED OQUTPUT %

EXT PROC (INT,INT) IWRTF; % OUTPUT INTEGER X%
EXT PROC (FRAC,INT) FWRTF; % QUTPUT FRACTION %
EXT PROC (REAL,INT,INT) RWRTF; % OUTPUT REAL %

>

~ MISCELLANEQUS %
EXT PROC (INT) NLS,SPS; % OUTPUT NEWLINES, SPACES X

When we come to the systems and real-time functions, no such standards are available. For any
given system, however, there will still be an interface defined in terms of brick specifications.

It is likely that the basic facilities available will be similar between systems. The kind of functions
we are now talking about, for example the procedure DELAY which gives us a time lag, are
different in the sense that they may need to use hardware functions directly or use the interrupt
structure of the machine or system. Some machines have a multi-state nature and such procedures
may need a special linkage to invoke the primitive functions required. Such procedures are
termed supervisor calls and their different nature is reflected in their specification by the use of
the keyword SV C instead of EXT.

SVC PROC (INT,INT) INT STIM;
SVC PROC (REF INT,REF INT) REF ARRAY BYTE LISTEN;
SVC PROC (INT,INT) FAIL1,FAILZ:

There is no analogue to ENT for the SVC procedure. Whether it is possible to write the actual
procedure in RTL/2 will depend upon the machine and the system. This will probably not
concern the user, only the system writer. Details of the method of definition and the special
linkages involved will be found in the documentation of specific systems.

Calis of SVC procedures are identical to any other procedures and, apart from a small difference
discussed in section 32 and the fact that we write SV C instead of EXT, their use is the same.
Specifying a procedure as SVC rather than EXT enables the compiler to generate different code
on a call to take account of any special linkage mechanism.

Similar considerations arise with data bricks. The position is not quite so simple, and in any case
much greater care must be taken in a multi-user situation because, unlike procedure bricks, data
bricks are not read-only; several users updating the same data brick in a random real-time
situation may lead to unexpected results. The use of data bricks for communication purposes in
such situations must be planned with this in mind. Such considerations, however, do not affect
the specifications. To take the simple case first, a data brick name may be made into an entry in
precisely the same way, by the addition of ENT to the definition of the brick. For an external
procedure we were only concerned with the name of that procedure and not with any parameter
names (which are in any case local to the definition of that procedure). Variables within a data
brick are global to the module in which the definition occurs, and their individual names are
certainly required. An external data brick is obviously one whose variables we wish to use in this
module but which is defined (and hence initialised and space created for it) in another module.
Firstly, then, an external data brick cannot contain any initialisations (not even of reference
variables — that these contain safe values is guaranteed in the definition of the brick, i.e. in the
module containing its ENT definition). Secondly, we want the names of the variables; these must
occur in the same order and should have the same names (although it may not always be possible
to check this thoroughly at the linking stage). Syntactically an external data brick appears as an
uninitialised data brick preceded by the keyword EXT. Variables specified in this way are global
to the module. Note that the requirement to have external data bricks is a reason for having data
bricks named — we do not use the name elsewhere.

158

MODE PERSON (INT AGE,SALARY, BYTE SEX,LOCATION),

ENT DATA PERSONNEL;
INT NCOFEMP:=260,NOCFMEN:=232, TOTALSAL:
ARRAY (500) PERSON STAFF3;=((0,0,0,0)(S500))i
ENDDATA:

% THIS WILL BE SPECIFIED IN ANCTHER MODULE BY THE FOLLOWING : %
MODE PERSON (INT AGE,SALARY, BYTE SEX,LOCATION):

EXT DATA PERSONNEL;
INT NQOFEMP,NOOFMEN,TOTALSAL}
ARRAY (500) PERSON STAFF;
ENDDATA}
% ENDDATA STILL REGQUIRED TO TERMINATE BRICK SPECIFICATION %

We also have SVC data bricks, but the keyword SVC is used merely for convenience; there is no
concept of supervisory data or a call being involved. However, there is a similarity in that access
to variables in such data bricks may be performed in a special way. SVC data bricks are supplied
by the system and to the user are similar syntactically to external data bricks. Variables in an
SVC data brick are global in scope, but the brick is “housekept” when a change of stack is made,
for example when the program is interrupted by a higher priority activity; these variables are
unique therefore to a run-time stack and may thus be used in a re-entrant manner by the program
using that stack. It is likely that such bricks will be implemented by creating space for their
variables in the run-time stack.

Example: standard input procedures need somewhere to place the character which terminated
the reading of a number, and to store information about format errors. Clearly such information
is private to the program calling the routiries rather than to the routines themselves (of which
only one copy exists, used in a re-entrant manner by many programs) and it is placed in an

SVC data brick associated with the run-time stack of the calling program:

SVC DATA RRSED;
BYTE TERMCH, IOFLAG;
ENDDATA;

Further examples will be seen in Section 32.

The run-time stack is a dynamic structure, and which stack will be associated with a program is
not known at compile-time. Since the positions of variables in an SVC data brick are related to
this run-time stack it is impossible to calculate their addresses during compilation. This means
that it is impossible to use them as initialisations to reference variables in other data bricks.

Thus
SVvC DATA RRSED:

BYTE TERMCH, IOFLAG;
ENDDATA
DATA LOCAL:s

REF BYTE RB:=10FLAG:
ENDDATA

is illegal.

159

It is however perfectly legitimate to write:

EXT DATA S3
INT 1,
ENDDATA

ENT DATA GLOB;
REF INT RI:=1I3
ENDDATA:

For a large suite of programs we may wish to define all the external bricks available and include
these specifications in every module in order to save preparation time and to reduce the chance
fo error in continually copying the information. For a given external brick, there will be one
module in the suite which actually contains the definition of that brick. It would defeat our
purpose if we had to remove the specification from that module. Hence we allow the redundant
specification of a brick as being external when the definition of that brick occurs in the same
module. Naturally, though, the specification must match the definition of the brick which must
be an entry! Redundancy in the sense of bricks not actually used in the module is also allowed,
of course.

LET Sp=' '3

EXT PROC (REF ARRAY BYTE) TWRT:;
EXT PROC (INT) ACTION:

ENT DATA MESS;
ARRAY (20) REF ARRAY BYTE MESSAGES:=(
"NO GO“'
"STOP",
"LOWER OFF",
"r(16), % SPARES =
"ILLEGAL MESSAGE"
)i
ENDDATA;

ENT PROC ACTION C(INT X)3:
IF X<1 OR X>20 THEN
Xe=20y
END;
TWRT(MESSAGES (X))
ENDPROC

EXT DATA MESS;
ARRAY (20) REF ARRAY BYTE MESSAGES:
ENDDATA;

The ordering of bricks and inter brick information is, in general, immaterial; the only definition that
must occur before its use is the LET definition because of its textual replacement characteristics.
People will develop their own orderings of information and bricks. Placing all the external
specifications and definitions first makes the checking of cross-references easy, and the grouping
of logically coherent bricks may aid understanding. Note however that the compiler may swap
the ordering of bricks for efficiency within the machine, for example placing all read-only coding
together. In general it is likely to be more efficient to have any data bricks preceding the
procedure bricks.

Note also the problem of finiteness. Many systems impose a limit on the number of characters
in names which survive to the linking stage, and it is wise to keep externally known names fairly

160

short, or at least significantly different in their leading characters since only these may be used.
The compiler also places finite limits on the total number of various items (e.g. names, constants)
it can accept and the overall size of a module. Moderation is sensible and good practice in the
design of modules.

Two further forms of communication exist in RTL/2 and are now discussed.

To identify program text RTL/2 has a tit/e item. This consists of the keyword TITLE followed
by any sequence of characters not containing a semi-colon (which separates the item from the
remainder of the text and effectively terminates it). Within the item, other keywords or items
have no significance whatsoever. A title is a means of labelling all or part of a module. What
happens to titles is implementation dependent, but the idea is that they can be used to label the
object code and may be printed out for instance on compilation of the module and loading the
object code into the machine. They should be thought of as comments which are “passed on”
and not “thrown away” by the compiler. A title is an inter brick item whose position is
immaterial, though<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>