rH
Introduction to RTL /2

1381102;

iy 120=XEEh
- O0OA"{e[sxh

JC10sE=e]

¢ 2o0eEEly
JO/F4aaee . -

\
I

\\\\\

/ /

L/

L

5

S
L

-

INTERNATIONAL

RTL/2 high-level computer language

was designed and developed by

Imperial Chemical Industries Limited.

RTL/2 software for use in conjunction with

Digital Equipment Corporation PDP-11,

IBM System 360/370 and ICL System 4 computers
is marketed in the UK and Western Europe by

SPL International

12-14 Windmill Street, London W1P 1HF.

I’|‘| is atrade mark of

Imperial Chemical Industries Limited, England.

\\\ A\ \ \\

D

Introduction

RTL/2is a high-level programming language. Itis designed for use in real-time
computing and is especially suited for the programming of on-line data collection,
communication and control systems. The language is independent of particular types
of hardware and is practical to use on small computers. Advantages in use include
lower programming costs, faster implementation and improved software reliability.

RTL/2 (Real Time Language) was developed in the Corporate Laboratory of
Imperial Chemical Industries Limited, England. The project was initiated in 1969
following some earlier exploratory work. The objective was to develop an improved
method of programming real-time computer applications as an essential step
towards full exploitation of low cost hardware. To be effective the method had to be
capable of generating compact and highly reliable multi-task software on a wide
range of computers.

A prototype language RTL/1 was implemented in 1970 and was employed
successfully in two major process control applications. RTL/2 was defined in 1971
and its first compilers were made available early in 1972. Since then RTL/2 has been
inregularuse by ICl computer application teams and has achieved its full design
objectives. The basic language definition is therefore frozen and there are no plans
for further extension or modification.

The range of supporting software will continue to develop and includes :

% compilers and linkers for translating RTL/2 programs into code for different types
of computer.

% system standards and software to aid the development and running of RTL/2
programs.

% RTL/2 library programs.

Information on RTL/2 documentation and software items currently available is
included in the pocket of this manual.

A brief description of the RTL/2 language and its application follows.

RTL/2 Reference: 2 © Imperial Chemical Industries Limited 1974

i

PURPOSE BUILT

RELIABLE

EFFICIENT

FLEXIBLE

PRACTICAL

RTL/2IS NOT

Key Features

RTL/2 s specifically designed for use in a real-time environment. It can be used for
conventional programming, butincorporates basic features that are particularly
important for the programming of on-line computer applications.

ability to express multi-task programs in which activities proceed in parallel

All code isre-entrant and tasks may have identifiable private data areas ; these,
together with high-level supervisor calls, provide the basis for efficient task control
andinteraction. They simplify the planning and writing of software for computer
systems that have to respond automatically to external events.

highly developed safeguards against programming error

The language structure enables stringent checks to be applied automatically during
compiling and linking of programs ; it also provides for efficient run-time checking
anderrorrecovery. These are essential for real-time applications in which errors
may cause irretrievable loss of data or product and are difficult to reproduce for
diagnostic purposes.

ability to generate compact code with low run-time overheads

Variables and data structures are designed for economic handling of real-time data
and communications ; they include bytes, fraction variables and record structures.
Reference, or “pointer”, variables enable further structures such as lists and queues
to be created and lead to efficient use of modern hardware for data accessing and
procedure calls.

a highly modul/ar program structure

Interfaces between modules are explicitly defined and can be checked for valid
correspondence. This aids overall software management and safe modification of
on-line programs.

ease of application

RTL/2 is awell-defined language ; it can be taught in a few days and the absence
of ad hocrules and restrictions makes it easy to remember. The notation is
conventional and can be typed on standard keyboard equipment. The ‘size’ of the
language makes it feasible to compile on a typical 16K computer.

The above combination of features reflects the fact that RTL/2 has been specifically
engineered for real-time programming.

simply a variant or subset of an existing data-processing language, for use on small
computers.

a set of extensions to an existing language, implemented by means of an operating
system that has to be provided on every computer.

specific to process control (although many of its early applications were in this
field).

dependent on a particular type of computer or standard software system.

an unproven language proposal yet to be implemented.

\\\\\\\\\ \\ \\\\\\\\\ \\\\\ \
///////// /////////// ////////

Applications

RTL/2 comes intoits own on real-time applications, especially (but not exclusively)
where small computers are involved. This field typically includes systems for
communications, commercial data entry, process control and factory automation,
traffic control, and the monitoring and analysis of research data. It also includes the
wide range of special systems produced by OEM suppliers.

Within this field, RTL/2 may be used at various levels :

SPECIALSYSTEMS for programming special systems
RTL/2 programs need very little additional software at run-time. Thus minicomputer
applications notrequiring a full range of system facilities need not incur the
overheads ; they can be programmed directly in RTL/2. The software development
isdone on alarger and more convenient off-line machine.

OPERATING SYSTEMS for writing standard operating systems
Task supervisors, standard mput/output drivers and utilities can be built up in a
modularfashion using the minimum of assembly code ; real-time operating systems
arein use for which 95% of the code has been generated from RTL/2. Such systems
are easier to understand and adapt to special requirements — for example, addition of
an interface to a special I/O device or to another computer. To the extent that they are
writtenin RTL/2, they are also less machine-dependent.

APPLICATION forapplication programming

PROGRAMS Real-time application programs will generally define a set of tasks to be scheduled
and serviced by an operating system. The latter may be a system written in RTL/2 or
asupplier's standard system to which RTL/2 has been interfaced. Application
programs communicate with the system through RTL/2 procedures and supervisor
calls ; therecommended RTL/2 standards for |/O and error recovery apply to both
single-task and multi-task systems.

STANDARD for writing standard packages
PACKAGES These include, for example, standard programs for process control and sequencing,
orforimplementing conversational systems.

The use of RTL/2 is not confined to real-time systems or small computers. It may

also be used:
APPLICATION for general application programming
PROGRAMMING Although RTL/2 is not designed for the same purpose as FORTRAN or ALGOL its

algorithmic facilities compare favourably with such languages.

SOFTWAREAIDS for writing system utilities and various software aids
The data structures and character handling in RTL/2 enable it to be considered as an
alternative to assembly code for system programming. The re-entrancy and other
real-time features are also relevant.

RTL/2 compilers are themselves written in RTL/2.

\\ \\\ \\\\)‘ \\\
//// /// [/ /// ///)

Practical Benefits

RTL/2 offers the usual advantages of a high-level language over assembly code :
cheaper, quicker and better documented programming plus the ability to run
software on different computers. Itis of special benefitin on-line applications where
smooth commissioning and reliability are the critical factors ; forexample, in the
control of a continuous industrial process. Experience in use of RTL/2 has
demonstrated the following benefits in the stages of such a project:

PLANNING The re-entrancy of RTL/2 code and natural task structure allow design effort to be
concentrated on the actual computer tasks and their organisation. Moreover, where
the operating system is also written in RTL/2, its ease of adaptation permits a more
flexible approach to the overall design. This applies particularly to small systems.

WRITING, A several-fold increase in productivity, depending on the nature of the job and
COMPILING software tools available. This is due partly to the modularity of RTL/2, which enables
& ASSEMBLY the work to be tackled in a well organised manner, and partly to the range of language

facilities, expressly designed to minimise the need for assembly code in real-time
programming.

COMMISSIONING The integrity features builtinto RTL/2 enable the programs to be thoroughly
checked during both compiling and linking : thus programs reaching the
commissioning stage should be free from all but fundamental logical errors.
Moreoever, if the programs have been compiled with run-time error monitoring
provided by the language, there is a good chance that such errors will be trapped and
quickly diagnosed. Experience has shown that the integrity features of RTL/2 are a
valuable asset during the commissioning of on-line computer installations,
especially if the hardware is late or being troublesome.

MAINTENANCE & Maintenance is assisted by the clearer documentation of programs and continued
POST-DEVELOPMENT use of run-time error detection and recovery to trap unforeseen error situations.
The modular nature and integrity of RTL/2 software makes it easier and safer to
modify as requirements change, especially if the work has to be undertaken by
someone otherthan the original programmer.

\ \ \ A \ \ \ \ \ \ \
\ \ \ \ \ \) \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ A\ \ \'\ \ \‘:, \ \ \ \ \ \ \'x \\ \\ \ \, \ \\ \ \
‘ Yo 000 T WD N W S S U S S S S S S D S SN S
[[/ / 4 4
/ / /

b
\
\ \)
/ / / / / /
i / l/
/ /
/

/ / / /) VAV /
/ / / / / /
/ / / / / / / / . /
i/ / /) / /
[/ . /

\
)

~.
~.

/
/

/
/

i / /
// / / / / // //
/ / /'/ / { / / // /
/

/

/
/

/ / / /

/ /
/ / / // / / /
/ / / / / // // // / /
/ / / /
/o /] / /
/ / y v /_/ / / / / /
/ / / // / //

VY A A
/

A

,>
/
/)

MOCE CTCELLCARRAY(8B)BYTE NAME,INT COUNT);
MODE RTCELLCINT RNAME,RCOUNT)

MODE LKCELLCINT CB,REF LXCELL LAST.REF PROCHD THISPROC,BYTE RA1,RA2,
ARRAY(Q)INT (NCALS):

MODE STK(INT STKLNGTH,REF LKCELL BASECELL,INT TOPSTACK,BYTE MS1,MS2,
ARRAY(16)INT GREGS,REAL FPRO,INT PCOUNTER,LABEL SVERL,INT SVERN,
PROCCINT) SVERP,PROCC)BYTE SVIN,PROC(BYTE) SVOUT,BYTE SVTERMCH,
SVIOFLAG,SVSTSFLG.GOTOFLAG,INT STKSPARE):

BARBRRBLHDY% RROBG Au%hhiahhs

ENT PRCC RRDBG(REF STK X)3;
INT ERNO{=X.SVERN;
REF LKCELL CELL:

SET();

CELL:=X«BASECELL;

TWRT("HNLH#RTL ERROR WUMBER ")

IWRT(ERNQ) ;

TWRTC(® ON LINE ")

IWRTS(XGREGS(?7),3):; % GR 6 HOLDS LINE NUWBER %

TWRT("#NLH IN PROC ")

NAMELOC(CELL):

WHILE CELL.LAST:#:XBASECELL DO
CELL:=CELL.LAST:
TWRT("H#NLACALLED FROM PROC ")
NAMELOCC(CELL);

REP;

IF ERNO>=10000 THEN
TWRT("HNLHEPROGRAM COUNTER = ");
XWRT(XePCOUNTER)

END:

TWRT("HNLHREGISTERS 0=7 ")
FOR I:=1 TO 3 DO

SPS(2):

XdRT(XaGREGS(I)):
REP:

TWRT("ANL(2)H#RETROTRACE#NLE ")
FOR I:=15 BY =1 70 0 DO
BLOCK
REF RTCELL RTC;=RTABLECC(I+RPTR SRL 3) LAND 15)+1);
INT RNe:=RTC.RNAME;

IF RNEQ THEN
TWRT(CTABLEC(RN SRL 4) NAME);
3PS(2)1
IWRT(RTC.RCOUNT=RN+1);
TWRT("HNLH ")
ENDg¢
ENDBLOCK;
REP: .
RRCNT () 3 Example of RTL/2 system programming
ENDPROC;

il

/

s

Use of RTL/2

The steps in developing an RTL/2 program follow the
conventional pattern. The program is typed or input
to acomputer on standard equipment and then
translated into code using an RTL/2 compiler. A large
program may be written and compiled as several

independent modules which are then linked together.

The language definition enables a well-written
compilerto thoroughly check that programs conform
exactly to the rules of RTL/2 : explicit cross—
references enable further checks to be made during
linking of modules.

Inthe case of areal-time program the first step in the
design is to clearly identify the various run-time tasks
and theirinteractions. The following example
illustrates how the RTL/2 language structure assists
atthis planning stage :

A computer system for industrial control might have
the following specification :

% scan aseries of analogue and digital inputs at
regularintervals.

% check each point for alarm conditions, printing or
displaying alarm warnings.

% compute control actions (direct or supervisory)
based on some of the scanned points.

% apply sequences of control actions on certain
sections of the plant, spanning periods of minutes
or hours.

#% display information on demand and read plant
control data from an operators panel.

This specification implies a set of parallel activities
within the computer, some at regular but differing
time intervals and some irregular. The activities
require access to common areas of data describing
the current state of the plant and control settings.
Each activity also requires a private work space in
which to hold temporary data arising during
calculations orindicating its current status. Finally
each activity requires its defining code, or program,
and (for storage economy or otherreasons) some
programs may need to be shared as common routines.

These requirements are reflected in the program
structure of RTL/2. All RTL/2 software is built-up of
units called ‘bricks’, of which there are three basic
types : procedure bricks, stack bricks, and data
bricks.

A procedure brick is a set of RTL/2 statements. All
procedures are defined in RTL/2 to be re-entrant,
meaning that the code is never changed during
execution and all temporary data is stored elsewhere.
Thus a procedure may serve several activities, or
tasks, atthe same time ; for example, a procedure
defining a sequence of control actions may be applied
to two plant streams simultaneously, or a procedure
required by a high-priority task may be used without
waiting for a lower-priority task to finish with it. This
distinction between a procedure — a passive set of
instructions —and a task —the execution of a
procedure for a particular purpose —is fundamental in
RTL/2.

The parallel use of procedures is accomplished by
assigning a stack brick ortemporary work area, to
each active task. In this stack, the work-space
needed by procedures used by the task is kept
separate from the workspace for another task using
the same procedures. Access to data in each stack
is looked after automatically and change of task
simply means change to another working stack. The
ability to assign and refer to stacks explicitly (and
hence to their associated tasks) is the other important
ingredientin RTL/2 which makes multi-task
programming possible.

Finally, RTL/2 allows the programmer to create any
number of data bricks or named common data areas.
These may be used to store data of interest to several
tasks or data which outlives the duration of individual
tasks.

Returning to the industrial control example, itis now
possible to see how to plan the programming in
RTL/2. Thefirststep is to identify the tasks :

% SCAN TASK:: Scans points, checks alarm states,
computes and outputs control actions. Runs
regularly and frequently.

% ALARM TASK : Prints out alarm messages on
demand from scan task (this might be part of the
scan task if the time scale for printing matches
thatforscanning).

% SEQUENCE TASKS : One for each section of the
plant which is wholly or partially time-
independent. Takes the plant through a sequence
of operations, monitoring its progress. Called by
operator or from other tasks.

For the purpose of this example it is assumed that
two identical sections of the plant require the
same control sequence A and a third section
requires a different sequence B.

% OPERATORS PANEL TASK: Responds to
operator demands (viainterrupts) and inputs or
outputs data as requested.

It will be seen that activities have been grouped into
tasks each of which has its own natural time scale.

Ne ety \ A \\\\

\ \\\ \\

) ,,

/

/ /[/ / f /

operating
system

alarm sequence sequence operators

print A = panel
procedure procedure procedure procedure

Scan

procedure

ScanTask Alarm Print
Task

Sequence Operators

Sequence Control Tasks Control Task Panel Task

procedure

data procedure

data procedure data

further procedure and data bricks used by
tasks on a private, shared or global basis

Following this step, the programmer can now plan finally linked together to form the complete system
the procedures and data bricks which he will need with checks applied for correct matching of
for these tasks. The total software structure, including references between modules.

one RTL/2 stack per task, will have a layout

resembling the diagram above In practice some of the software required by the user

will already be available in the form of standard

The procedure, stack and data bricks have now to be packages. Inthe type of application illustrated above
specifiedin RTL/2, compiled and checked. At this he would generally expect to use a standard

stage the bricks may be dealt with in groups or operating system to control and supervise the tasks,
modules convenient for teamwork and general possibly itself programmed in RTL/2.

program management. The compiled modules are

// // / / /
A
/ / / Iy

/)

/'/ /
[/
/
/

v ’ /

/

\ \ \ \ \ \ \ \ N N \ \
\ \ \ \ i\ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \ \ \
\ \\ \ \\ \\ \ \\ \\ \\ \‘\ \\\\ _ \ \\
\ \ \ \ \
\ \ \ \ \ \\ \ \\ \ \ \\ \
i\ \\ \,\ \ \\ \ \ \ \\ \ \ \-,\
))) Yy) Voo
/ / / / / / { / / / / /
/ / // / / // // / / / / // / / / / / /
] [Y Y A
/ / / / | / / / / / /
/ / // / / / / / / / // / // // /,/ / / /
[/
/) . /))

/]
/ / /
// /

Summary of RTL/2 language features

CHARACTER SET (I1SO 7)

ABCDEFGHIJKLM
NOPQRSTUVWXYZ
0123456789

") X, —.], <=>
£$ (interchangeable)

& @

HT (horizontal tab)

LF (/ine feed)

SP (space)

RTL/2ITEMS

Item is terminated by any character not part of it.
Names
name ::= letter [letter|digit]...

Reserved keywords

ABS ENDPROC MODE SLA
AND ENT NEV SLL
ARRAY EXT NOT SRA
BIN FOR OCT SRL
BLOCK FRAC OF STACK
BY GOTO OPTION SVC
BYTE HEX OR SWITCH
CODE IF PROC THEN
DATA INT REAL TITLE
DO LABEL REF TO
ELSE LAND REP VAL
ELSEIF LENGTH RETURN WHILE
END LET RTL
ENDBLOCK LOR SHA
ENDDATA MOD SHL

Numbers
integer real fraction
456 3.47 0.493B1
BIN 101 0.1E7 17.6B—5
OCT 37 76E—4 1E10B—36
HEX AF2 TE+2 —1E—=1B-+1
‘A 0.0 0.0BO

actual space and all RTL printable characters except” # £ $
allowed between” *

Strings
“"THISISASTRING”
"#NL(2)$TABLE HEADING” assumes LETNL=10;
xxg9 9 MESSAGE#104”

(or £ or$) enclose numeric insert

newline not allowed in strings but concatenated strings treated
asone

"THISISTHE FIRST PART”
"ANDTHISISTHE REST”

Comment
%THISIS ACOMMENT%

Option
OPTION(1) BC,CM, TR;
OPTION(2);

optionitems always available are

BC bound checks on access

BS bound checks on storage

NW no warning messages

NS no scope warning messages
others depend onimplementation.

Let
Text replacement

LETNL=10, %NEWLINEISISO7 10%
LET MASK=0CT 1000 ;

LET RAB=REF ARRAY BYTE;
LETNR=5;%NUMBER OF REACTORS%
LETATMOS=14.7; %PRESSURE IN PS1%

DECLARATIONS

scalars : local to procedure or global in databrick
arrays and records :only global in databrick

General syntaxis
typeitem [,item]...
where type describes characteristics of identifiers being

declared and item is either an identifier or a group of identifiers
with initial value separated by :=

Scalar Declarations

primitive modes : BYTE,INT,FRAC,REAL,
LABEL, PROC de=criptor, STACK
also REF scalar, REF array, REF record.

Descrip}or of PROC variable lists parameter modes in brackets
and followed by result mode — same as external description of
PROC bricks.

withoutinitial values thus :
INTI,J, COUNTER;
REALHEIGHT;
LABEL RESTART;

with initial values thus :

INTK:=—310,R:=0CT 37;

BYTETERMINATOR :="*, FLAG :=1;
REALPRESSURE:=0.0;

PROC(REAL)REALFN :=SIN; %SIN IS PROC BRICK%
REFINTI:=K;

REF ARRAY BYTE MM :=""MESSAGE"’;

initial values for local declarations may be any valid expression;
in data brick must be:

BYTE/INT/FRAC/REAL :suitable number

PROC/STACK :brick name
LABEL :not possible

REF scalar :variable name
REF array array name/string
REF record :record name

all variables except plain and LABEL must be initialised in
application language.

Array Declarations

Can have arrays of scalars and arrays of records but not arrays of
arrays ; multidimensional arrays are actually arrays of REF arrays.
Lower bounds always 1. Upper bound (=length) may be zero.

ARRAY(3)INTAI,AJ;
ARRAY(7)REF ARRAY REAL RPTRS;
ARRAY (5,10) BYTETABLE;

Initial values are denoted by list of element values in brackets —
repetition factors (also in brackets) may be applied. In case of
array of bytes may be denoted by string. Structure nested in
multidimensional case.

ARRAY(12)INT DAYSINMONTH := (31, 28, 31, 30, 31,
30,31 (2), 30, 31,
30, 31);
ARRAY (2,2) REAL UNITMAT := ((1.0,0.0), (0.0,1.0));
ARRAY (16) BYTE HEXDIG :=""0123456789ABCDEF” ;
ARRAY (5) REF ARRAY BYTE STEPS:= (/SLOW”’ (2),
QUICK” (2),
”SLOW™) ;

\ A\ \ \ b \\ \
\\‘\\\. \ o\

Record Declarations

Components of record may be scalars or arrays but not records
orarrays of records. Component may be REF record. Shape of
record described by MODE definition at brick level.

MODE name (type namelist [, type namelist]...);

MODE COMPLEX (REALRL, IM);
MODELIST (INTHD, REFLISTTL);

Actual records and arrays of records declared as for scalars.
Initial values denoted by list of component values in brackets —
but no repetition factors.

COMPLEX|:= (0.0,1.0);

ARRAY (100) LIST MAIN := ((0, DUMMY) (100)) ;

LISTDUMMY := (0, DUMMY) ;

BRICKS
ENT before brick makes accessible from outside.

EXT (or SVC, but no SVC stack !) before description of brick
indicates is outside.

Data Declarations

[ENT]DATA name ;databody ; ENDDATA;
Databody is collection of declarations

ENT DATAMISC;
INT COUNTER;
REAL TEMP, PRESS :
ARRAY (5) BYTE MARK :=""PQLXV"’;
ENDDATA;

External description omits initial values.

Stack Declarations

[ENT]STACK name length ;
ENT STACKMYSTACK 500,

External description omits length.
EXT STACKMYSTACK;

Proc Declarations

ENT PROC name (paradescription) [resultmode];
blockbody; ENDPROC;

Blockbody describes action ; paradescription describes and
names parameters — brackets always present even if no
parameters ; result mode describes resultif procedure isto be a
function.
PROC SUM (REF ARRAY REAL A) REAL;
REALT:=0.0;
FORI:=1TOLENGTH A DO T:=T+A(l) REP;
RETURN (T);
ENDPROC;

ENTPROCSTOP () ;
L:GOTOL;
ENDPROC;

PROCMP (INTI,J, REALR, LABEL L) BYTE;

ENDPROC;
External description has name last and no names in parameter
list.

EXT PROC (REF ARRAY REAL) REALSUM;
EXT PROC ()STOP;
EXT PROC (INT, INT, REAL, LABEL) BYTE MP;

Stack and proc descriptions may describe several bricks.
EXTPROC (REAL) REAL SIN, COS, TAN, SQRT;

EXPRESSIONS

Basic constituents are constants (numbers or literal names),
variables, function calls and conditional expressions. Dyadic
and monadic operators may be applied with brackets overriding
normal precedences.

Variables

Array elements denoted by appending subscript expressions in
brackets to array or ref array.

Record components denoted by appending dot (.) and
component name to record or ref record.

DAYSINMONTH (7)
UNITMAT (I, J+1)

STEPS (I,J) or STEPS (I)(J)
DUMMY . TL

MAIN(3).TL.HD

Function Calls

Procedure name followed by actual parameter listin brackets.
Brackets present even if no parameter. Parameters are any
expression of appropriate mode.
=LOG (X+Y);
T:=TIME();
AJ(3):=F(J, K, L=3);

Conditional Expressions

IF condition THEN expression
[ELSEIF condition THEN expression]...
ELSE expression END

Condition built out of comparisons with AND and OR ; AND is
more tightly binding and comparisons evaluated from left to
right until condition determined. Brackets cannot be used to
override the precedence of AND/OR.

Comparison operators :

= # on 7 primitive modes
< <= > > = on INT, FRAC, REAL
: on 9 REF modes

I:=IFX=0THEN 3 ELSEI+JEND;

B:=IFX=YANDP<OTHEN'A"ELSEOEND;

FLAG :=IF MAIN (I).TL:=:D THENOELSE1 END;

RWRT (IF P=1THEN 0.0 ELSEIF P> 1 THEN 3.7 ELSE
2.4 END);

TWRT (IF L=0THEN "“THIS”” ELSE “THAT’”END) ;

Double Length

sign point
biginteger O C3 3.
normal integer O —/.
fine integer O .]
big fraction O .03
normal fraction O .]
fine fraction O .1 3

NB fineinteger same form as big fraction.

Automatic Conversion

bigiNT/ \FR{AC

Il’\JTq—'»ﬁnelNT bigFRAC<e—FRAC

N

BYTE
big —normal may cause overflow
fine——normal rounded

Conversion is automatic where no loss of information can
arise; in other cases it must be forced by BYTE, INT, FRAC
operators

\

\\\\ SRR RRRR A\
\\\\\\\\\\\ \\ |

\

\

\\‘\\\\ \

I

/////// /) ////////' / ////

Monadic Operators
operand result

+,ABS BYTE, INT, FRAC, REAL asoperand

-_ FRAC, INT, REAL as operand

NOT INT INT

INT bigFRAC fineINT
INT, REAL INT

FRAC fineINT bigFRAC
FRAC, REAL FRAC

BYTE BYTE, INT, REAL BYTE

REAL BYTE, INT, FRAC, REAL REAL

LENGTH array INT

REAL—INT and REAL— FRAC are rounded
Dyadic Operators

precedence operands result
SLL,SRL,SHL 6 INT INT INT
SLA,SRA,SHA 6 see below INT see below
* 5 INT INT bigINT
INT FRAC bigFRAC
FRAC INT bigFRAC

FRAC FRAC fineFRAC
REAL REAL REAL

2/ 5 bigINT INT INT
fineINT FRAC INT
bigFRAC FRAC INT

// 5 fineINT INT FRAC
bigFRAC INT FRAC
fineFRAC FRAC FRAC

/ 5 REAL REAL REAL
MOD 5 bigINT INT INT
fineINT FRAC FRAC
bigFRAC FRAC FRAC
LAND 4 BYTE BYTE BYTE
INT INT INT
LOR 3 BYTE BYTE BYTE
INT INT INT
NEV 2 BYTE BYTE BYTE
INT INT INT
+— 1 INT INT INT

FRAC FRAC FRAC
REAL REAL REAL

Arithmetic Shifts — Result Types

Firstoperand SLA SHA SRA
big big big big

normal big normal fine
fine fine fine fine

STATEMENTS

Statements may be labelled by prefixing by identifier and colon.
May be several labels.
L A =B;
M2 RETURN

Block
BLOCK blockbody ENDBLOCK
where blockbody ::=[simpledec;]...sequence
BLOCKINTS:=0;
FORI:=1TONDOS:=S+Q(l) REP;
IWRT (S) ;
ENDBLOCK;

Assignment Statement

destination := [destination :=]...expression
Each destination consists of a variable possibly preceded by
VAL

|:=J:=0;

Al):=J+1;

MAIN(2).TL:=DUMMY ;

VALII:=IlI4+1;

MM :=IF FLAG#0 THEN " /ELSE " HALT” END;

Goto Statement

GOTO label-expression
GOTOFINISH;

Switch Statement

SWITCH expression OF labellist
Labellist must consist of local literal labels. If expression out of
range then no jJump occurs.

SWITCH KOF P1, P2, P3, P4, P5;

TWRT ("KOUT OF RANGE") ;

Conditional Statement

IF condition THEN sequence

[ELSEIF condition THEN sequence]...
[ELSE sequence] END
IFX=0THENP:=Q; GOTO STOPEND;
IFY>1THENP:=QELSEQ:=PEND;
IFX<YTHEN

XX:=YY ;Ji=K;
ELSEIFX>YTHEN

XX:=2ZZ;J =L,
END;

For, To Statement

FOR identifier :=expression [BY expression] TO expression
DO blockbody REP

Increment, limit and initial value evaluated once only in that
order as of mode integer ; control variable is read only; if BY
omitted thenincrement assumed 1.

FORI:=1TO10DOA (l):=0REP;
FORJ:=—KBY2TOLDO
CALL(J);A) =1,
REP;
If control variable not used then use form
TO expression DO blockbody REP
this repeats body ‘expression’ times.

TO100DOOUT ("*’) REP;

\\\\\ \ \\
' /////////

While Statement
WHILE condition DO sequence REP

WHILEINPUT (3)%1 DO

DELAY (1500) ;

TWRT (“#NL#SWITCH ON PUMP”) ;
REP;

Procedure Statement

Similar to function calls in expressions ;

TWRT (“FINAL VALUE OF X="") ;
IWRTF (X, 3);
TWRT (""#NL#JOB FINISHES”) ;

Functions may be used for side effects
IN (), %DISCARD NEXT CHARACTER%

Return Statement
RETURN|IRETURN (expression)
The second form is for functions
RETURN (IFX=0THEN 38.7 ELSEY END);

Code Statement
CODE digitlist, digitlist ; codeitem. . .

RTL/2 items accessed by prefixing by ‘trip 1*; component
names and databrick variables followed by ‘trip 2* and
name of host mode or brick; trip 1° and ‘trip 2’ depend on
implementation. Statement terminates with ‘trip 1° RTL.

CODE®,0;
MOV *COUNTER/MISC, *1l (5)
*RTL;

MODULES

This is the unit of compilation and consists of one or more
bricks plus TITLEs, OPTIONSs, LET definitions, MODE
definitions and external descriptions.

The following example illustrates a complete module.

OPTION (1)BC;

TITLE
ILLUSTRATION OF MODULE;

LETNL=10;
EXT PROC (REF ARRAY BYTE) TWRT;

SVC DATA RRERR;
LABELERL;
INTERN;

PROC (INT) ERP;

ENDDATA;

MODE PAIR (INTOLD, NEW) ;

ENT PROC SEARCH (REF ARRAY PAIR P, INT X) INT;
%SEARCHES ARRAY PFOR OLD ENTRY XAND%
%RETURNS CORRESPONDING NEW ENTRY%
%OUTPUTS MESSAGE AND GOES TO ERLIF FAILS%
FORI:=1TOLENGTHPDO

REF PAIR RP:=P(l);
IFRP.OLD=XTHEN RETURN (RP.NEW) END ;
REP;
TWRT ("#NL#SEARCH FAILS”) ;
GOTOERL;
ENDPROC;

_ \ \ \ \ \.

\ \ \

Sre s

Vo
/ / / ,//

_

\\ \\ \ \\ \ \\

STANDARDS

The following procedures and data bricks should be available to

the userin any RTL/2 system. They are shown here as they
would appear as external descriptions.

Error Recovery

SVC DATA RRERR;

LABELERL; % unrec error label %

INTERN; % unrec error number %

PROC (INT) ERP; % rec error procedure %
ENDDATA;
EXTPROC (INT) RRGEL ; % set ERN ; monitor; GOTO ERL %
Stream I/0

SVC DATARRSIO;
PROC () BYTEIN; % read next character %
PROC (BYTE) OUT; % output character %

ENDDATA;
SVC DATARRSED;
BYTETERMCH, % termination charon input %
IOFLAG; % error flag forinput %
ENDDATA;

EXT PROC ()FRAC FREAD ;

EXTPROC ()INTIREAD; % read integer %

EXT PROC ()REALRREAD; % read real %

EXT PROC (REF ARRAY BYTE, REF ARRAY BYTE) INT

TREAD;

% read chars into first array ; terminators in second %

EXTPROC (INT) NLS, SPS; % output newlines, spaces %

EXT PROC (FRAC) FWRT; % write fraction unformatted %

EXTPROC (INT) IWRT; % write integer unformatted %

EXT PROC (REAL) RWRT; % writereal unformatted %

EXT PROC (FRAC, INT) FWRTF; % fraction formatted %

EXT PROC (INT,INT) IWRT; % integer formatted %

EXT PROC (REAL, INT, INT) RWRTF; % real formatted %

EXT PROC (REF ARRAY BYTE) TWRT: % write text %

Formats :

% read fraction %

FREAD() [layout] [+I—1] digit. digitlist termch
IREAD () [layout] [+I—] digitlist termch
RREAD () [layout] [+I—1] digitlist [.digitlist]

[E[+1—]digitlist] termch
FWRT (X) [—]digit.f-digits
IWRT (X) [—]1digits
RWRT (X) [—]digit.r—digits E[—] digits

field

FWRTF (X, N) (—I space) digit.N-digits N+3
IWRTF (X, M) spaces (—I space) digits M1
RWRTF (X, M, 0) as IWRTF M-+1
RWRTF (X,0,.N) (—Ispace) digit.N-digits

E (+1—) 2-digits N+7
RWRTF (X, M, N) as IWRTF then .N-digits M+N+2

Error Numbers

unrecoverable recoverable

1 stack overflow 101 FREAD
illegal GOTO 102 IREAD
inaccessible ERL 103 RREAD
array bound failure 104 TREAD

fixed overflow
floating overflow
REAL—INT/FRAC overflow

NoohbhwN

\\\\\\

\\\\\ \

\ \

//////////////////// ////// /

PROC ASK(REF ARRAY BYTE A)INT:
X OUTPUT MESSAGE A AND
INT N:

AGAIN:
IOFLAG:=0;
TWRTC(A); OUT(ENQ);
N:®IREADC();
IF IOFLAGH#O THEN GOTO AGAIN END:
RETURN(N) ;

ENDPROC

ENT PROC RECIPETASK();
INT TEMPVAL,I1,ITEM;
ERL:=GIVEUP;

TASKSTART:
WAIT(CTLBEV);

EDITREC:
I:=ASK("#NLH#RECIPE NUMBER");
IF I<1 OR I>RECIPEMAX THEN GOTO
CURREC:;=RECIPE(I); %
ITEMi=ASK("#NLHITEM");
TEMPVAL:=ASK(" NEW VALUE");
IF ITEM=1 THEN
CURREC.ANR:=TEMPVAL;
ELSE
CURREC.CAPBR;:
ENDJ
GOTO EDITREC;

=TEMPVAL?

EDITDATA:
%
TWRT("#NLRECOMMON DATA IS:#NLH");
FOR I:=1 TO DATAMAX DO
IWRTCINT(COMREC(I)*SCALEC(I))) %
REP}
TWRT("#NL#DO YOU WANT TO CHANGE
IF INQ)H'Y' THEN
TWRT(" BYE"): %
GOTO TASKSTART:
END;
TWRT("#NLH¥ WARNING: ANY CHANGE AFFECTS
NEXTITEM;
I¢2ASK("#NLH#ITEM NUMBER"):;
IF I1<1 OR I>DATAMAX THEN GOTO EDITDATA
TEMPVAL:=ASK(" NEW VALUE"):
COMREC(I) :=TEMPVAL/SCALF(I); %
GOTO NEXTITEM;

GIVEUP;
STOPTASK(THISTASK)
GOTO0 TASKSTART:

ENDPROC:

e

RTL/270/2ED/132/475

RETURN INTEGER REPLY AS RESULT %

% UNRECOVERABLE ERROR LABEL X

EDITDATA END;

CURREC PQINTS TO RECIPE | %

WRITE OUT COMMON DATA X

CONVERT TO CONVERSATION UNITSX

ITHENQHE")

FINISHED %

CURRENT BATCHANLH");

END;

CONVERT TO ENGINEERING UNITS %

ERROR ACTION %

Example of RTL/2 application programming

OFFICES & SUBSIDIARY COMPANIES:

Systems Programming GmbH,
6 Frankfurtam Main 18,
Cronstettenstrasse 66,

West Germany,

tel Frankfurt557665

telex 411505

SPL (ltalia) SpA..
viaC. Menotti 11,
20129 Milan,
Italy.

tel : 7386 660

Systems Programming Ltd.,
Svenska A.B.,

Grev Turegatan 354 tr.,
114-38 Stockholm,
Sweden

tel . 232093

QY Systems Programming Ltd.,
Lonnrotinkatu 38 A8,

Helsinki 18,

Finland.

tel 164 37 63

ASSOCIATED COMPANIES:

Steria,

3rue du Marechal de Lattre de Tassigny,

78-Le Chesnay,
France.

Steriabel, -

Rue de Namur,
59/1000 Bruxelles,
Belgium.

Applied Research of Cambridge,
5 Jesus Lane,

Cambridge,

CBb5 3BA.

tel 1022365015

Systems Programming Pty. Ltd.,
P.O.Box41165,

Craighall,

Johannesburg,

South Africa.

HEAD OFFICE

12-14 Windmill Street,
London W1P 1HF

tel :01-636 7833
telex:21784

MIDLANDS REGION

25 St. James's Street,
Nottingham, NG1 6FH
tel :0602 45011

