
RTLIz
Languege specificaticn

RTLI? Reference : 1 @ lmperialChemical Industries Limited 1974
Version : 2

Contents

0 lntroduction
0.1 Note on imPlementation
O,2 Syntax notation
0.3 Note on examPles

1 Basic Elements
1.1 Text
1.2 Names
1.3 Arithmeticconstants
1.4 Strings
1.5 Comments
1.6 Titles
1.7 Options
1.8 Code
1.9 Separators

1.10 ltem hierarchy
1.1 1 LET replacement

2 Program Structure
2.1 Multitasking

3 Declarations
3.1 Modes
3.2 Simpledeclarations
3.3 Array declarations

3.3.1 Vectordeclarations
3.3,2 Multidimensional array declarations

3.4 Recorddeclarations
3.5 Inatialisation of data

3.5.1 Primitive modes
3.5.2 Reference modes
3.5.3 Arrays and records
3.5.4 Syntax

3.6 Proceduredeclarations
3.7 Stack declarations
3.8 Label declarations
3.9 Scopes

3.10 Data bricks

4 Expressions
4.1 Expressioncomponents

4.1.1 Constants
4.1.2 Variables and structures
4.1.3 Function calls
4.1.4 Conditional exPressions

4.2 Arithmetic expressions
4.2.1 Primaries
4.2.2 Integers and fractions
4.2.3 Monadic operators
4.2.4 Diadic operators

4.3 Conditions
4.4 Non arithmetic exPressions
4.5 Byte arithmetic

7

Appendix 1

Appendix 2

Appendix 3

Appendix 4

Appendix 5 Syntax rules

Statements
Labels
Blocks
Assignment statements
Goto statements
switch statements
Cond itio na I statements
For and to statements
While statements
Procedure statements
Return statements
Dummy statements
Code statements

Modules

Integrity

Standard input - output

Standard error recovery

RTL|?language subset of |SOT

Keywords

5
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

5.10
5.11
5.12

6

O lntroduction

RTL/2 is a high-level programming language developed at the Corporate
Laboratory of lmperial Chemical Industries Limited. lt is designed for use
in real-time computing and is especially suited for the programming of
on-line data âcquisition, communication and control systems. Structurally a

simple language, it incorporates features important for the effective programming
of real-time applications including the ability to program tasks which the
computer performs in parallel (or at least appears to do so as far as an outside
observer is concerned). lt was considered particularly important to be able to
produce programs of high integrity which are nevertheless eff icient enough
in speed and storage requirements to run on smallon-line computers.

This manual is intended to provide a semi-formal def inition of RTL|2.lt is not a

training manual but a reference manual

See also

lntroduction to RTL/2
RTL/2 training manual
RT Llz Systems standards
RTLI2 Standard stream l/O

RTL/2 Reference
RTL/2 Reference
RTL/2 Reference
RTLI2 Reference

0.1

It is virtually impossible to define precisely a high-level language such that programs
will be executed equally efficiently by all types of computer. lt has therefore
been necessary to leave certain areas of the definition of RTL/2 deliberately
\Ægue so that implemeâtation can take the best advantage of characteristics of
particular computers. The most important of these areas are (i) accuracy and
range of real values (ii) number of bits in an integer word, (iii) behaviour on
arithmetic overflow; they are indicated in this manual by phrases such as

. '.., is implementation dependent'. On the other hand it should be noted that
the representation of integer values has been explicitly specified to be in 2's
complement form; thus implementations of RTL/2 on computers which do not
use this representation will be less efficient.

0.2 Syntax Notation

The notation used to describethe syntax of the language is as foilows:
The terminal symbols of the language stand for themselves. The names of
classes are in lower case letters whereas the language alphabet is represented
by the upper case letters. ltems are separated from each other by spaces.

The metasymbol ::= denotes'is'and the metasymbol I denotes'or'.

The brackets I and] are used to denote that the items enclosed within are
optional.

. A sequence of three dots ... denotes that the immediately preceeding item
may be repeated many times.

Example:

name ::= letter I letter I digit] ...
digit ::=0t 1 | 2 I 3 | 4i b | 6 I 7 | I I I

letter ::= A I B I C.......... Y I Z

Thus a'name' is a sequence of letters and digits of which the first must be a letter.
A'digit'is one of 0, 1...9 and a'letrer'is one of A, 8... Z.The individual digits
and letters are terminal symbols and cannot be decomposed further.

In the text the names of classes are enclosed in quotes when formal correctness
is to be emphasised. In less formal passges the quotes are omitted.

2
3
4
5

0.3 Notes on Examples

This manual contains many examples in which, for compactness, identifiers are
used without being formally declared. In all such cases the identifiers should
be considered to be declared as follows:

MODE COMPLEX (REAL RL, IM);
MODE LIST (INT HD, REF LIST TL);
MODE PERSON (INT AGE, ARRAY (8} BYTE NAME,

REF ARRAY BYTE ADDRESS,
REF PERSON MOTHER. FATHER,
REF ARRAY PERSON CHILDREN, SIBLINGS,
BYTE SEX);

EXT PROC () REAL TIME;
EXT PROC (REAL} REAL LOG, EXP, SIN, COS;
EXT PROC (INT, INT, INT) INT F;
EXT PROC (REF ARRAY BYTE} TWRT;
EXT PROC (INT) IWRT;

DATA EXAMPLES;
REAL X,Y,Z;
REF REAL XX,YY,ZZ;
INT I, J, K, L;
REF INT JJ, KK, LL;
BYTE M, N;
FRAC P, O, R;
LABEL RESTART;
COMPLEX U, V, W;
LIST CELLA, CELLB;
REF LIST NEXTCELL;
PERSON JOHN, JIM, JANE;
REF PERSON WHO;
ARRAY (7} INT G;
ARRAY (10} REAL A, B, C;
ARRAY (5) LIST CELLS;
ARRAY (1OO) PERSON PEOPLE;
ARRAY (5, 1O) REAL A2,82,C2;
ARRAY {6) LABEL S;
REF ARRAY REAL AA, BB;
REF ARRAY (,) REAL AA2,BB2:
PROC (} ROUTINE;
PROC (REAL} REAL FN;

ENDDATA

1 Basic Elements

1.1 Text

The text of an RTL/2 program is a sequence of characters drawn from the
'language subset' of lSO7. This set is tabulated in Appendix 3.

The characters are grouped together into items of various sorts and the program
text is best considered as a sequence of these items. This section of the manual
describes this grouping which should be considered to occur before any further
analysis takes place.

The items are of various types:

(i) A name
(ii) An arithmetic constant
(iii) A string
(iv) A comment
(v) A title
(vi) An option
(vii) A code sequence
(viii) A separator

An item is terminated by any character which cannot be interpreted as being part
of that item.

As a consequence of this general rule the layout characters space, newline or tab
will terminate most items. Layout characters are otherwise not significant outside
items and may be freely used to improve the legibility of program text.

1.2 Names

A name consists of a sequence of letters and digits of which the first is a letter.
There is no limit to the number of characters in a name and all the characters will
be significant.

ln particular, names which are significant externally (via EXT and ENT; see 6) will
be presented in full to the external system; this system may of course impose
restrictions on the number of characters allowed and hence on the user's choice
of such names.

Syntax:

rlârTtê !i= letter I letter I digit J ...
letter::=AlBlC lD XlylZ
digit ::=01 1 | 2l 3 I 4l 5 | 6 | 7 | I | 9

identifier ::= name

Names are used for two purposes:

ti) to denote keywords in the language. Keywords are names such as
lF and REAL which have a predefined meaning. All the keywords
are listed in Appendix 4.

(ii) to denote user identifiers. ldentifiers are used for a variety of
purposes such as naming variables, arrays of variables or pieces of
code. A name which denotes a keyword cannot be used as an
identifier.

Examples of identifier':

J
GEORGE
Vl7X
N02

Note that as a consequence of the general rules regarding the termination of items,
a layout character will terminate a name. Thus PROC FRED consistsof two
adjacent names whereas PRocFRED is a single name; similarly the keyword
GOTO must not be written as GO TO.

1.3 ArithmeticConstants

There are four types of numerical data in RTL/2. Theæ are real, integer,
fraction and byte and are defined in detail in section 3.1.

Arithmetic constants (numbers) are used to denote literal and initial vatuesof
these types but it should be noted that the form 'integer'is used to denote
constants of both type integer and byte. See 4.,|..l.

Syntax:

number ::= real I integer I fraction
sign ::= [+ t -]

exponent ::= E sign digitlist
real ::= digitlist . digitlist [exponent] I digitlist exponent

integer ::= digitlist I BtN bindigitlist I OCT octdigitlist I

HEX hexdigitlist | 'stringchar'
i!= rêâl B sign digitlist
::= digit...
::= bindigit...
::= octdigit...
::= hexdigit...
::=0 | 1

::= 0 | 1 I 2 | 3 I

::=digitlAlBl
Examples of 'number':

9.47 0.1E7
999 BtN 101,A, ,I '
0.49381 17.68-5

The following are not legal numbers:

fraction
digitlisr

bind igitlist
octdigitlist
hexdigitlist

bindigit
octdigit
hexdigit

4t5t6t7
CIDIEIF

E9
, ,t ,

768-4
HEX F7

1 El 08-36

.001
3B-4

are ræl
are integer
are also integr
are fraction

27.,t
Notes:

{i} A stringchar is any character of the language subset of ISOT
except for

It can be an actual space.

The numerical value of a constant denoted by a stringchar in
single quotes is the ISOT value of that character as listed in
Appendix 3.

ln the case of the binary, octal and hexadecimal forms for integers,
the keyword BlN, OCT or HEX must be followed by one (or more)
of the layout characters space, newline or tab. All other occurrences
of a layout character will terminate an arithmetic constant.

The fraction constant includes a binary scale factor following B.
Thus 17.68-5 is stored as 17.6 x2-5 .

A real constant may include a decimal exponent following E.
Thus 0.1 E7 is stored as 0.1 x 10? .

LFHT4f

j

I

.i,i

i

i

t;

(ii)

(iii)

(iv)

{v)

1.4 Strings

A string provides a convenient way of representing a set of byte constants such
as a byte array parameter or the anitial value of a byte aray. (See 3.5.2,
3.5.3,4.4, 5.9).

A string is basically a sequence of stringchars enclosed in double quotes (") and

denotes the set of values formed by taking the ISOT values of those characters.

As a consequence of this rule space characters are allowed in strings (and stand
for themselves) whereas newline and tab are not. Thus a string must be on one
line; this restriction prevents subsequent lines of program text being treated as

part of a string if the closing quote is inadvertently omitted. Strings that are
adjacent apart from layout characters will be concatenated as a single string and

so a long string can be written as several stringparts on successive lines.

The character # (which is not a stringchar) has a special significance. A
sequence enclosed within a pair of # characters within a string (a stringinsert)
will be interpreted as part of an array initial value as described in 3.5.3; thus
it will consist of a sequence of integer constants in the range 0-255 (possibly
followed by replication factors) separated by commas. Such sequences
behave like normal program text and so tab and space characters, comments
and LET replacements (see 1.11) are allowed in the normal way. Newline
characters are, however, not allowed since the # sequence is formally part of
the string.

Syntax:

Notes:

(i) There is no direct way of representing a newline in a string. lt
must be treated like any other character which is not a stringchar
and inserted in a # sequence using the LET facility for clarity if
so desired (see 1.1 1).

(iil The characters $ or f may be used as alternatives to # but they
must occur as matched pairs.

(iii) For two or more adjacent strings to be treated as one string they
must occur explicitly as strings in the text and not implicitly via
LET replacements.

Examples of 'string':

Assuming that
LET NL = 10;
LET TAB = 9;

have been set, then valid examples are

"THIS lS A STRING" is a simple example
"#NL#" is a single newline
"DAY#TAB#MONTH#TAB#YEAR" inserting tabs
"#NL(4), TAB#ALARM" four newlines, tab and

,rrt.. \
ttALARM"

a null string

The following are not legal strings

"PRlcE=f"

1.5 Comments

All characters starting from and including the character Yo up to and including
the next % are treated as comment and ignored. The layout characters space
and tab are allowed in comments but a newline is not. This restriction prevents
subsequent lines of program text being treated as comment if a % character is
inadvertently om itted.

Example:

% THIS IS A COMMENT %

Titles

A title provides a means of labelling the object code or a listing of the source
code in whole or in part. The details will depend upon the implementation.
It consists of the keyword TITLE followed by any sequence of characters
not including a semicolon (;).

Example:

TITLE DEBUG ROUTINE 13 MAY 1971

Options

An option provides a means of informing the compiler of any special actions
which may be required. An option is valid from its point of occurrence until
another option or the end of the program text. Each option completely over-
rides any previous option and actions not explicitly reset will take a default
value.

Syntax:

option ::= oPTloN (digitlist) [opitem [,opitem]...1
opitem ::= opchar...
opchar ::= letter I digit

The 'digitlist' numbers the option and allows the compiler to be informed of
temporary alterations to particular options without modification of the source
text.

Example of 'option':

oPTroN(3) CM, BC

1.8 Code

A sequence starting with the keyword CODE will be interpreted as a machine
code sequence.

Syntax:

codeseq : := codeheading codeitem...
codeheading ::= CODE digitlist, digitlist;

codeitem : := lSOT-character-other-than-tripl -or-trip2 |

tripl letitem I trip2 name

The two values denoted by 'digitlist' in the heading will be interpreted in a

machine dependent manner and may be used to indicate resources in terms
of code size and stack workspace required by the code seguence. Within
the codeheading layout characters are permitted in the normal way.

The sequence of characters following the codeheading constitutes the actual
code and within this sequence layout characters stand for themselves.

1.6

1.7

Within the sequence an RTL/2 letitem (see '1..|1) may be denoted by immediately
prefixing the item by the machine dependent character'trip1'. Thus a name,
number, cor-nment, string or separator may be referred to by this means and
in particular a LET name will be replaced by its corresponding item sequence.
Also notethat it is possibleto declarean RTL/2 literal label within a code
sequence. The action performed by the compiler and the code inserted for each
item will be implementation dependent.

Whenever any variable name in a data brick or selector name of a MODE is
referenced then that name must be followed by the name of the host brick
or mode itself preceeded by the second (different) character'trip2'. This
construction allows the compiler to check the validity of the reference and
will minimise errors due to incorrectly accessing names if their definition is
changed.

The characters 'trip1'and 'trip2' may themselves be denoted within the seguence
by pref ixing them by 'tripl'.
The code sequence is terminated by the last 'codeitem' being the keyword
RTL preceeded by the character 'trip1'.

1.9 Separators

The remaining items are separators which are used as punctuation symbols and
operators. Separators are either compound apd constructed of several characters,
or else just a single character.

The compound separators are:

:= :l l/ (=)= :=: :#'.

with :$: and :f : being alternative forms tor :#:. A compound separator may not
contain a layout character.

The single character separators are:

()*+,.1:;<=
with S and f being alternative forms tor #.

1.10 ltem Hierarchy

It is emphasised that the various items are all of the same lexicographic priority,
apart from the case of items in a # sequence in a string and the case of letitems
in a CODE sequence.

Thus within a string the characters % and ' have no particular significance and
similarly the characters " and' have no particular significance within comments.

Note, however, that there may be an end-of-module character which has overall
significance and thus may only be used to mark the end of a file of program
text.

1.1 1 LET Replacement

RTL/2 includes a simple non-parameterised replacement facility. This enables
the user to give a name to a sequence of items and use this name instead of the
sequence. The use of the facility to name constants within a program is
strongly recommended (see 1.4 Examples).

Syntax:

letdefinition ::= LET name = iletiteml ...;
letitem ::= name I number lstring lcomment I separator

The 'name' following LET may not be a keyword and the letitems may not be

one of the keywords;

LET, TITLE, OPTION, CODE, MODE, RTL.

A'letdefinition' may only occur where a moduleitem is valid. See 6.

The definition is valid from its point of occurrence in the program text until
the end of the text or redefinition. All occurrences of the name during its
validity will be replaced by the defined sequence, this includes occurrences
within # seguences within strings.

Examples:

LET NL = 10;
LET RAB = REF ARRAY BYTE;
LET ATMOS = 14.7;

2 Program Structure

A computer which is not specifically designed to execute RTL/2 code directly
will need to be enhanced with various control routines to create an RTL/2
machine. In a simple single-state machine the rest of the software, if derived
from RTL/2, could be of items of software of similar status and this group of
items would be known as a program complex. More usually, however, and of
necessity in a two-state machine, the remaining software will have a hierarchical
structure. The top level, usually known as the supervisor will itself be a program
complex and the individual groups of lower levels can themselves be
considered to be program complexes but with a different environment to the
supervisor complex.

An RTL/2 complex consists of a collection of items known as bricks of which
there are the following types:

(') Procedure bricr
(ii) Data brick
(iii) Stack brict<

A procedure brick consists of the declaration of a single literal procedure. A
procedure is a read-only piece of code describing an executable process. lt may
have parameters and local variables but the latter are restricted to be scalars.
The entry mechanism and implementation of local variables is re-entrant. The
coding of a procedure may directly access variables in a data brick, but not
the local variables or parameters of another procedure. A procedure may
not include internal procedures

A data brick is a named static collection of scalars, arrays and records.

A stack brick consists of the declaration of a single literal stack. A stack is
an area used for the storage of links, dynamic (ie, local) variables and other
housekeeping items.

Several bricks may be grouped together to form a module which is the unit
of compilation. A program complex will be the result of linking together one
or more such modules.

The compiler must be informed of the environment of a module for satisfactory
compilation to take place. This environment will, in general, consist of two
parts; firstly there is the environment of the complex as a whole and secondly
there are interfaces with other modules in the complex.

The environment of the complex as a whole will in the case of the supervisor be
simply the enhanced machine, whereas in the case of a complex running under
the supervisor in a two-state machine, it will also consist of the environment
provided by that supervisor. This will comprise a set of procedures accessed
as supervisor calls (SVC procedures) plus a set of data bricks private to each
task and nominally housekept by the supervisor (SVC data). A module must
include descriptions of SVC procedures and data bricks which it accesses.

To reference a brick within another module in the complex, a description of the
brick must be included in the referring module and the brick referred to in
the other module must have been specified as an external entry in that module.

The various cross references implied by these environment descriptions will
be satisfied by the linker program. See 6.

2.1 Multitasking

A program complex rnay represent a simple program with a definite start and
finish. lt could however consist of the code and data for several processes
running concurrently and in order to describe such a complex the term
task is introduced.

t0

A task, broadly speaking, is an identifiable execution of a logically coherent
set of instructions by a (pseudo-) processor.

A conventional computer with a single processor can be considered to be
obeying at all times one unique task. lt is, however, usually more convenient
to consider the execution of each logically distinct process as a task and to
convert the one actual processor into several psuedo-processors by a scheduling
algorithm within a supervisor.

As a langua ge, RTL/2 imposes few constraints on the design of multitasking
systems and the actual facilities of such systems are outside the scope of this
manual. lt is however possible to describe in outline the intended relationships
between the various bricks in a multitasking system.

The creation, control and elimination of tasks will, in general, be performed by
a supervisor and the supervisor call (see 6) will provide the channel for the
communication of task control requests.

Whenever a new task is createo a stack will be nominated as workspace and a
procedure as the coding to be obeyed. Later operations on the task may be
made by reference to its stack. Each stack can, of course, only be used by
one task at a time, whereas procedures and data bricks may be used by several
concurrent tasks. The procedure nominated as coding can call other
procedures and access variables in data bricks as required.

Communication between tasks can be via supervisor calls and any message
scheme provided by the supervisor or simply via data bricks with the
suitable use of semaphores.

An SVC data brick is private to each task and may be used in a reentrant
manner. lt will be housekept on task changes and this might well be
implemented by mapping it onto part of the stack.

i

.t
ii
ll
.l
:i

j

I
t

i
.i

!l

l1

3 Declarations

Declarations serve to define the properties of the various identifiers used within
a module of program. ldentifiers are used for many purposes and these are
classified below.

3.1 Modes

An RTL/2 program is ultimately concerned with manipulating numerical data
of four plain modes. These plain modes are

(i) Real
A value of mode REAL is represented by a floating point number.
The range and accuracy are implementation dependent.

(ii) Integer
A rralue of mode INT is a signed integer. The range is implementa-
tion dependent but will usually be that provided by the natural
word of a word machine. ln the remainder of this manual the
term word will be used in the sense of the space occupied by an
integer. lt is anticipated that at least 16 bits will always be used;
it is also assumed that integer values are stored in 2's complement
form (this latter restriction is necessary to ensure that logical
operations such as LAND are well defined). See also 4.2.21or
double forms of the integer mode.

(iii) Fraction
A value of mode FRAC is a value in the range [-1, +1) (that is

including -1 but not +1). The accuracy is implementation
dependent but a fraction value will occupy a word as defined
for integers. Fractions are provided so that machine independent
fixed point arithmetic operations can be written for computers
that do not have floating point hardware. See also 4.2.2f or
double forms of the fraction mode.

(iv) Byte
A value of mode BYTE is an integer in the range [0,2551 .

There are also three other primitive modes:

Label
A value of mode LABEL is a level-address pair. The level
indicates a stack pointer position identifying an execution of
a procedure and the address is that of a literal label in that
procedure to which control will be transferred if the label value
be used in a GOTO statement (see 5.4).

(vi) Procedure
A value of mode PROC is a pointer to a piece of executable code
(ie, a procedure).

(vii) Stack
A value of mode STACK is a pointer to an area for dynamic
workspace (ie, a stack).

ldentifiers may be used to denote locations which contain values of the above
modes in the traditional manner. In addition to these primitive modes there are
reference forms of these modes, values of which are references to instances of
values of the primitive modes themselves; identifiers may be used to denote
locations which contain these references. (Thus we have 'normal' variables and
'address' variables).

The programmer may also define new composite modes known as records and
associate an identif ier with such a new mode (this is tantamount to introducing

(v)

a new keyword such as REAL). ldentifiers may be used to denote actual instances
of records. References to records may be manipulated and identifiers used to
denote variables containing such references.

Arrays of values may also be denoted by identifiers. References to arrays may
also be manipulated and identifiers used to denote variables containing such
references.

Finally identifiers may be used to denote literal instances of labels, stacks and
procedures. lt has not been felt necessary to allow identifiers to denote literal
instances of plain values since the effect may be achieved by the use of the LET
facility.

In order to clarify the distinction between literal, normal and reference modes
two examples will be considered.

Firstly consider the case of mode integer.

(a) Literal form; in this case an identifier would be used to denote an
actual integer constant. Strictly speaking this is not allowed in
RTL/2 but

LET NL = 10;

has a very similar effect. The identifier NL denotes the constant
10 and whenever NL is used it is as if the constant 10 had been
used. Note carefully that there is no location called N L. The sub-
sequent statement NL := 20 is not legal since this is equivalent to
the nonsence 10 := 20.

(b) Value form; in this case an identifier is used to denote a location
which contains integer values. Thus the declaration INT J will
define such a variable and a subsequent statement such as

J:=20
is valid.

(c) Reference form; in this case an identifier is used to denote a
location which contains the address of a location such as J above.
Thus the declaration

REF INTJJ

will define such a variable and a subsequent statement such as

JJ :=J

will be valid and assign the address of J to JJ.

Secondly consider the case of mode procedure (see 3.6).

(a) Literal form; in this case an identifier is used to denote an actual
piece of coding thus

PROC SIN (REAL X) REAL;

:

ENDPROC

declares a literal procedure called SlN.

The association between the coding and the identifier SIN is
permanent and there is no variable location called SIN whose
value could be changed.

13

(b) Value form; in this case an identifier is used to denote a location
whose value is a pointer to an actual piece of coding. Thus

PROC(REAL)REAL FN

declares a variable FN which could be used in a sequence such as

FN := SIN;
X:= FN(Y);

FN := COS;
Z:= FN(Y);

where the result would be to assign the value of SIN(y) to X and
COS(Y) to Z. The use of variables such as FN as formal parameters
is familiar in languages such as Algol and pLl1.

Reference form; in this case an identifier is used to denote a
location which contains the address of a location such as FN
above. The use of such variables is likely to be rare.

denoting a real variable
denoting an integer variable
denoting a fraction variable
denoting a byte variable
denoting a label variable
denoting a procedure variable
denoting a stack variable

with the keyword REF prefixed if a reference mode be required; also the modq
description could be

(c)

3.2 Simple Declarations

A simple declaration serves to declare certain identifiers to represent simple
variables of a given mode. lt may also assign initial values to the variables.

A simple declaration consists of a simple mode description followed by a list
of identifiers (with optional initial values) separatd by commas.

The simple mode description is one of
REAL
INT
FRAC
BYTE
LABEL
PROC procdescriptor
STACK

REF recmode
REF arraymode

reference to a record
reference to an array

fo_r'procdescriptor' see 3.6, for 'recmode' see 3.4 and for ,arraymode,
see

3.3.2.

Syntax:

simpledec : := simplemode initidlist
simplemode ::= [REF] primmode I REF arraymode I REF recmode

primmode ;;= plainmode I progmode
plainmode ::= REAL I INT t FRAC I BYTE
progmode ::= LABEL I STACK I pROC procdescriptor

initidlist ::= inititem [, inititemJ ...
inititem ::= identifier [:= [identifier :=] ... initvalueJ

For the syntax of initial values and examples see 3.b.

14

il
I

I
I

I

!

Examples of 'simpledec' without initial values:

REAL X,Y,Z
BYTE M,N
INT I,J,K
FRAC P,O
LABEL RESTART
PROC 0 ROUTINE
REF LIST NEXTCELL
REF ARRAY BYTE S,T
REF ARRAY REF LIST D

Simple variables may be declared in a data brick or as variables local to a
procedure.

3.3 Array Declarations

An array declaration declares one or more identifiers each representing an array
of subscripted variables. The array may have one or more dimensions. The
declaration gives the bounds of the subscripts and the modes of the variables.
It may also assign initial values.

Arrays may only be declared in a data brick.

The elements of an array may be of any mode except arrays themselves; they
may be references to arrays, records, references to records or primitive valuæ.
The elements must all be of the same mode.

Multidimensional arrays are implemented as vectors of references to other
vectors and it is thus convenient to consider first the simple case of a vector.

3.3.1 Vectordeclarations

A vector (one dimensional array) is a data structure consisting of an indexable
set of components of the same mode. The structure has a length attribute and
the index ranges from 1 to the length.

The syntax of a vector declaration is as follows:

Syntax:

vectordec ::= ARRAY (length) amode initidlist
length ::= integer
amode ::= simplemode I recmode

Examples:

ARRAY (10) REAL A,B,C
ARRAY (5) LIST CELLS

The first example declares three vectors A, B, C of real variables each of which
is of length 10. The second example declares a vector of 5 records of mode
LIST called CELLS. See 3.4.

The length of an array could be zero in which case no elements will actually exist
(eg, a nullstring "").
Elements of a vector are accessed by appendirrg an integer expression in brackets
to the identifier of the arrcy.

E>ramples:

A (7)
CELLS (I+J)

It is possible to declare variables whose values are references to vectors as
described in 3.2. Thus

15

REF ARRAY REAL AA, BB

declares two simple variables AA and BB whose values are references to arrays
of reals suchas A, B and C above. Supposing that the value of AA is in fact a

reference to the array A then the elements of A can be accessed indirectly by
appending an integer expression in subscripts to the variable AA, thus
AA(7) would in this instance access A(7) itself .

This automatic indirect reference is an instance of automatic dereferencing
which is described in 4.

Note that REF ARRAY REAL is itself a simple mode and so one can declare
an array of references to other arrays; thus

ARRAY (10)REF ARRAY REAL AAA

or even a reference to such an array

REF ARRAY REF ARRAY REAL AAAA

The full syntax of 'arraymode'has been deferred to the next section to avoid
introducing unnecessary syntactic classes. This full syntax contains a

mechanism for simplifying the description of the items AAA and AAAA above.

3.g.2 Multidimensional array declarations

Multidimensional arrays are treated as vectors of references to vectors and
although in general the mechanism described above could be used for their
creation a more convenient form is provided. The full syntax of array
declarations is as follows:

Syntax:

arraydec ::= ARRAY (length [, length J ...)
amode initidlist

arraymode ::= ARRAY [(t ,]...)l amode
length ::= integer
amode ::= simplemode I recmode

In an 'arraydec' the number of dimensions of an array is equal to the number
of lengths. Thus

ARRAY (5, 'IO) REAL A2

will declare a two dimensional array A2. This array is in fact a vector of length
5 each element of which is a reference to a vector of length 10. The elements of
a multidimensional array may be accessed by expressions of the form

A2(l,J) or A2(l)(J)

which are equivalent. The form A2(1) may stand alone to access the reference
to the sub array.

. In an 'arraymode'the dimension of the mode is the number of commas in
round brackets plus one (or just one if the brackets be omitted). Thus

REF ARRAY (,)REAL AA2

will declare a simple variable AA2 whose value will be a reference to a two
dimensional array of reals.

It will be noted that because of the way in which multidimensional arrays
are created from vectors the modes.

REF ARRAY (,)REAL

and

REF ARRAY REF ARRAY REAL

16

are equivalent.

Note carefully the difference between 'amode' which is the sort of thing of
which one can have arrays and 'arraymode' which is the arrays of these
things.

Examples of 'arraydec' without initial values:

ARRAY (5, 1O) REAL A2,82,C2
ARRAY (7) INT G
ARRAY (120) BYTE BUFFl,BUFF?
ARRAY (3,9,2) REF LIST TABLE
ARRAY (7) REF ARRAY BYTE DAYS
ARRAY (3) REF ARRAY (,) PROC (INT) H

The following are illegal

ARRAY (2) ARRAY (3) REAL X
ARRAY (I, J) REAL X

3.4 RecordDeclarations

A record is a data structure consisting of several components. A record will
belong to a record class defined by a MODE definition which indicates the
modes of the individual components and the identifiers by which the components
may be selected.

Records may only be declared in a data brick.

Syntax:

recmodedef ::= MODE recmodeident (rspec [, rspec]...]
recmodeident : := identifier

rspec ::= simplespec I arrayspec
simplespec : :='àimplemode idlist

idlist ::= identifier [, identifier]...
arrayspec ::= ARRAY (length [,length]...)simplemode idlist
recmode r i = rêcrnodeident

Note that a component of a record may only be a simple item or an array of
simple items. lt may not be a record or an array of records but can be a reference
to a record or an array of such references. Note also that initialisation is not
allowed in the mode definition.

Examples of 'recmodedef':

MODE COMPLEX (REAL RL, IM)
MODE LIST (INT HD, REF LIST TL)
MODE XLINK (INT XP, XO, REF LISTXT}
MODE PERSON (INT AGE, ARRAY (8)BYTE NAME,

REF ARRAY BYTE ADDRESS.
REF PERSON MOTHER, FATHER,
REF ARRAY PERSON CHILDREN, SIBLINGS,
BYTE SEX}

The first example defines a mode known as COMPLEX which has two components
of inode REAL known as RL and lM respectively. The second example defines
typical list processing cells where the component HD contains an integer value
rvhilst the component TL points to another such cell. This mode definition is
recursive; mode definitions may also be mutually recursive.

The following are illegal.

MODE NUT (LIST KERNEL}
MODE CAT (ARRAY (4) CAT KITTEN}

17

Having defined the mode of a record class it is possible to declare actual records
in a manner analogous to simple declarations.

Syntax:

recorddec ::= recmode initidlist

Examples of 'recorddec' :

COMPLEX U, V, W
LIST CELLA, CELLB
PERSON JOHN, JIM, JANE

It is also possible to declare arrays of records (see 3.3) or references to records
(see 3.2) thus:

ARRAY (5} LIST CELLS
REF LIST NEXTCELL
ARRAY (1OO) PERSON PEOPLE
REF PERSON WHO

Individual components of a record are accessed by suffixing 6 . (point) and the
component name to the identifier of the record thus:

U. R L W.IM
CELLA.HD CELLB.TL

Automatic dereferencing (see 4) occurs if it is wished to access the components
of a record referenced by a REF variable thus

NEXTCELL.HD

3.5 Initialisation of Data

Data in a data brick or local to a procedure may be initialised. In the former case
the initial value must be a constant or constant address whereas in the iatter case
the initial value may be any suitable expression such as could occur in an
assignment statement. (ln the case of the application subset of RTL/2 all variables
other than those of plain modes and LABEL must be initialised. See 7)

Initialisation is indicated by following the identifier by := and the appropriate
initial value. Multiple initialisation is allowed in a manner analogous to the left
part list of an assignment statement. See 3.2, 5.3.

Examples of initialisations of local data:

lNTl:=J+K
REF INT JJ:= G(K)
REAL X := Y := 3.9+Z
LABEL L:= RESTART

lf a local variable is not initialised then its initial value is undefined.

The remainder of this section will be devoted to the description of the
initialisation of data in a data brick.

3.5.1 Primitive Modes

The initial value of a variable of mode REAL, INT or FRAC must be a signed
'real', 'integer'or'fraction'respectively whereas in the case of mode BYTE it
must be an (unsigned) 'integer'in the range [0,255] . lf no initial value is given
then a default value of zero (of appropriate mode) will be applied.

The initial value of a variable of mode procedure or stack must be (the identifier
of) a literal procedure or stack, possibly external to the module. lt is not possible
to initialisevariables of mode label. There is no default value for variables of
mode label, procedure or stack.

18

I
t
l

;fi

'l
i

Syntax:

simpleinitvalue ::= sign numi.rer ; identifier

Examples:

lN'T' J := 37 , L,l := K := -11;
PROC (REAL)REAL FN := SIN

Note that L above is initialised to zero by default.

3.5.2 Reference Modes

The initial value of a reference variable (that is of mode commencing REF)
must be denoted by a variable of appropriate primitive mode, or, in the case
of a ref array or ref record variable, a structure denoting an appropriate actual
array or record. This variable or structure need not be in the module being
compiled, but subscripts occurring in it must be constants of form integer
and no automatic dereferencing must be involved in determining its value.
These restrictions ensure that the value can be determined at compile time
without appeal to the contents of other initialised variables. Note that a form
such as A2(4,61 is not allowed as an initial value since dereferencing (albeit
implicit) is involved.

In the case of REF ARRAY BYTE variables a special form of initial value
is allowed in addition to the normal structure denoting a specific array of bytes.
This has the form of a 'string' and the array of bytes denoted by the string
is located in a pool of strings and the REF ARRAY BYTE variable is

initialised to the address of this string. See 4.4 for other uses of the string
pool.

Default values for uninitialised reference variables are not defined.

Syntax:

refinitvalue ::= variable I structure I string

For 'variable' and 'structure' see 4.1 .2.

Examples:

REF INTJJ := K, KK := G(3), LL:= CELLA.HD
REF ARRAY REAL AA := A
REF LIST NEXTCELL := CELLS(4)
REF PERSON WHO :=JIM
REF ARRAY BYTE P :=,'PIG,'

The following are illegal

REF LIST NEXTCELL := CELLA.TL
REF lNT JJ := G(J)
REF ARRAY REAL AA := A2I2I

3.5.3 Arrays and records

ln the case of an array or record the initial value is denoted by a list of the
initial values of the components separated by commas and enclosed in brackets.
A repetition factor in brackets may follow an initial value to denote repetition
of that value over successive elements of an array. (Tne repetition factor may be

zero.) The initial value of a byte array can also be denoted by a string.

t

tgi

Examples:

COMPLEX U := {2.0,4.0}
AR RAY (10) INT I ;= (9,6,4 ,1 ,2,3,O,O,O,-1l'or ARRAY (10) INT J ;= (9,6,4,1,2,3,0(3),-l

)

ARRAY (3) BYTE PP := ('P','l','G')
or ARRAY (3) BYTE PP := "PlG"

ARRAY (9) REF ARRAY BYTE PLANETS :=
(,,MERCURY,,, "VENUS", "EARTH", "MARS",
"JUPITER", "SATU RN", "URANUS",
,,NEPTUN E,,,,, PLUTO")

The last example declares an array of length 9 in a data brick, and initialises
each element to one of g (in this case distinct) entries in the string pool.

Multidimensional arrays and arrays of records may also be initialised and in
this case the initial value is expressed as a list of lists.

Examples:

ARRAY (2,2)REAL UNIT := ((1.0,0.0),(0.0,1.0))
ARRAY (5) LIST CELLS := ((O,CELLA)(5))

3.5.4 Syntax:

The full syntax of initial values is as follows:

initvalue ::= simpleinitvalue I ref initvalue I

recinitva lue I arrayinitva lue
simpleinitvalue ::= sign number I identifier

refinitvalue ::= variable I structure I string
recinitvalue ::= (initvalue [, initvalue] ...)

arrayinitvalue ::= ([arrayinititem [, arrayinititem]...1) | string
arrayinititem ::= initvalue [(integer)]

3.6 ProcedureDeclarations

Normal literal procedure declarations in which an identif ier is associated with a
piece of code are declared as follows:

The word PROC is followed by the identifier of the procedure, a description of
its parameters and result, a semicolon, a body describing the action of the
procedure, and the word ENDPROC. lf the declaration is preceeded by ENT
then it will be externally accessible. See 6.

Syntax:

procdec ::= PROC identifier (paradescription) resultmode ;
blockbody ENDPROC

resultmode ;;= [simplemode]
paradescription ::= [pspec [, pspec 1...1

pspec ::= simplespec
blockbody ;;= [simpledec ;]... sequence

For 'simplespec' see 3.4 and for 'sequence' see 5.

The parameters may be of any mode except actual records and arrays. The
formal parameters behave exactly like normal declared variables in the body
of the procedure.

lf the procedure declaration def ines a function call then the mode of the result
must be indicated.

tt
I:i'. 20

Execution of the statements which form the body of the procedure is normally
initiated as a consequence of calling the procedure either from a procedure
statement (see 5.9) or as a function call (see 4.1.3).

Control may be transferred out of a procedure by
(i) obeying a generalised GOTO statement
(ii) calling a procedure which itself directly transfers control
(iii) obeying a RETURN statement
(iv) encountering the final ENDPROC which implies RETURN

Examples of 'procdec':

PROC TRACE (REF ARRAY (,) REAL A) REAL;
REAL T := 0.0;
FOR I := I TO LENGTH A DO T:=T+A(t,l) REp;
RETURN (T};

ENDPROC

PROC F (REAL X, LABEL L};
lF X (= 0.0 THEN GOTO L END;
p := LOG(X); O := SORT(X);

ENDPROC

PROC FAIL (INT N, REF ARRAY EYTE S};
TWRT ("FAILURE "); IWRT (N);
TWRT (" BECAUSE OF "); lruRT (S);

GOTO RESTART;
ENDPROC

PROC CALL (INT N, M, PROC {IN.T)]NT P} INT;
TO N DO M := P(M) REP;
RETURN (M);

ENDPROC

In the last example the third parameter P is a procedure and is described in
the same way in which a variable of inode procedure is declared {just as all
parameters are described in the same way as corresponding declarations).

A procedure variable is a variable which can take as rlialue (a pointer to)
a particular 'literal procedure'. Thus in the above example the variable P

will point to the particular piece of code which is handed over as parameter.
ln RTL/2 this sort of variable can be declared in a manner analogous to a
variable of any other mode (see 3.2). lt is necessary however to specify
the type of parameters and result if any. This is done by a 'procdescriptor'.

Syntax:
procdescriptor ::= ([simplemode [, simplemode]...1) resultmode

Thus the type of the parameter is specified by a list of modes in brackets and
the result type appended. This is very like the description of the parameters of
a literal procedure except that no identif iers are associated with the parameters
since there is no need to cross-refer to them.

Examples of 'procdescriptor':

PROC(lNT,INT)lNT describes a procedure with trro integer
parameters and integer result

PROC(INT,INT,PROC(lNT) INT) INT describes a procedure
like the literal procedure CALL in the example above.

I

21

3.7 Stack Declarations

Normal literal stack declarations in which an identifier is associated with an
area of store to be used as a stack are as follows. The word STACK is followed
by the identifier of the stack and its length in machine dependent units. lf the
declaration is preceeded by ENT then it will be externally accessible. See 6.

Syntax:

stackdec ::= STACK identifier integer

Example:

STACK JOB 150

A stack variable is a variable which can take as value (a pointer to) a
particular literal stack and can be declared in a similar manner to proced'ure
nariables (see 3.6). Stack variables are likely to be of most use as formal
parameters of supervisor calls controlling multitasking. Corresponding actual
parameters will usually be the identifiers of literal stacks which are in use by
various tasks. For example there might exist procedures dæcribed thus

EXT PROC (STACK} STOP,START;

which are used in statements such as

SIOP(IOa) ; START (OTH ERJOB) ;

whereJoBandoTHERJoBaretheidentifiersof|itera|stacks..|npraetice
STOP and START might be supervisor calls. See 6.

3.8 Label Declarations

Normal literal label declarations in which an identifier is associated with a
particular statement in a procedure are described in 5.1.

A label variable is a variable which can take as value a level-address pair as
described in 3.1. They may be declared in the usual way (see 3.2). The use of
label variables is described in 5.4. -\

3.9 Scopes

All identifiers are in scope throughout a complete module except for

(i) Parameters and other variables local to a procedure
(ii) Literal labels in a procedure
(iii) ldentifiers defining LET sequences.

The scope of LET identifiers is described in 1.1 1. In the other cases the scope
is the block in which they are declared plus inner blocks unless the name is
redefined therein; see 5.2.

3.10 Data Bricks

A data brick is a named collection of scalars, arrays and records. The word
DATA is followed by the identifier of the brick, a semicolon, a series of
declarations separated by semicolons and the word ENDDATA. lf the brick is
preceded by ENT then it will be externally accessible. See 6.

Syntax:

datadec ::= DATA identifier;
declaration [; declaration] ... ENDDATA

declaration ;;= [5impledec I arraydec ; recorddec]

All declarations of variables other than simple variables local to a procedure must
be in a data brick.

22

Example of 'datadec':

DATA LOCAL;
INT I,J,K;
ARRAY (1OO) REAL A, B := 11,2,31i
PERSON JOHN;

ENDDATA

23

4 Expressions

Expressions are rules for computing values and define the operations to bè

performed on the components of the expression. The meaning and value of an

expression may depend upon the environment in which it is to be evaluated.

The environment of an expression will be determined by

(i) The mode of the destinations of an assignment statement.
(ii) The mode required in some statement parameter (eg, after TO).
(iii) The mode of operand required for a monadic or diadic operator.

In deciding upon the meaning and validity of an expression in a given environ-
ment certain automatic changes of mode may occur. These automatic
changes are of two kinds; firstly there are the familiar transfers between
the various arithmetic modes and secondly the mechanism known as

dereferencing. The latter is familiar in practice but is not normally tr'eated
as a formal mechanism and so needs describing in some detail.

Broadly speaking dereferencing is 'taking the contents of '. lt has been
observed above that identifiers can be used for various levels of reference,
for example, as normalvariables as in REAL X, Y, and as reference variables
as in REF REAL XX, YY. When an identifier occurs in an expression it is

first considered at its face value, either as the name of a place such as X, or
the name of a place such as XX. lf this does not suit the environment then the
identifier is reconsidered as standing for its contents; this process can be repeated
in the case of reference variabies.

As an illustration we will consider the assignment statement in which the
destinations dictate the mode required. (See 5.3).

X := 3.14 X is the name of a place which holds real values and so the
right hand side must generate such a real value. However the
right hand side is a value (3.14) already and no dereferencing
is required.

X := Y Here Y at face value is the name of a locatipn, however X
needs a value and so we take the contents of Y. One level of
dereferencing is required.

XX := Y In this case XX requires an address and Y does stand for such
an address. The address of Y is assigned to XX and no
dereferencing is required.

X := YY In this case two levels of dereferencing are required to access
the value in the location pointed to by the value in the
location YY.

XX := 3.14 This is illegal.

Note that dereferencing is also applied in array and record access in the case of
a reference variable, see 3.3.1 and 3.4.

Occasionally it will be found that dereferencing must be forced on the left hand
side. In this case the operator VAL can be used. See 5.3.

Automatic transfers between arithmetic modes are restricted to those in which
no information is lost. Thus

BYTE -* INT --' REAL
FRAC _ REAL.

These types of transfer are known as widening.

To obtain transfers in which information is lost the appropriate monadic operator
(BYTE, INT or FRAC) must be applied explicitly. See 4.2.3. These types of
transfer are known as narrowing. See 4.2.2 tor the details of transfers between
double and single forms of integer and fraction modes.

24

t

4.1 Expression Components

Expressions are built up from four kinds of component:

(i) Constants
(ii) Variables
(iii) Function calls
(iv) Conditional expressions

4.1.1 Constants

Constants denote literal values which remain unchanged throughout the
execution of a program complex. Constants are either actual expressed
numbers denoting fixed plain values or are identifiers denoting literal
stacks, labels or procedures or are fixed reference values represented by
appropriate variables, structures or strings.

Syntax:

constant ::= number i identifier I variable lstructure lstring
number ::= real I fraction I integer

The mode of a constant of form 'real'is REAL and of form 'fraction' is FRAC.
The mode of a constant of form 'integer' is BYTE if its value lies in the range
[0,255] and is otherwise lNT. See 1.3 for these forms of 'number'. Non
plain constants are fully described in 4.4.

Examples of 'constant':

3.75
,P'
,'PIGLETS,'

SIN

4.1.2 Variables and structures

Variables are single places whereas structures are complete arrays or records.
They are denoted by similar syntactic forms. A variable may occur as the
destination of an assignment statement whereas a structure may not.

Variables and structures are either simple or are array elements or recoi.d
components (or both).
(a) A simple variable or simple structure is represented by an

identifier. The modes of the value of a simple variable or the
elements or components of a simple structure are defined by
the declaration of the identifier.

Array elements are denoted by the use of a subscript list. The
array is indicated either directly by a structure denoting the
array or indirectly by a ref array variable (in which case
dereferencing is applied). The subscript list follows and consists
of one or more arithmetic expressions separated by commas
and enclosed in brackets. The particular element referred to is
specified by the actual numerical values of the subscript
expressions which are evaluated as mode integer. The array
and its subscripts are evaluated from left to right.

(iii) Record components are denoted by the use of a selector. The
record is indicated either directly by a structure denoting the
record or indirectly by a ref record variable (in which case
dereferencing is applied). This is followed by a point (.) and
a selector denoting the component concerned. The selector
is an identifier.

(ii)

Syntax:

rariable : :..' identifier I arrayelement I recordcomponent
gtructure ::= array I record

array ::= identifier I recordcomponent
record ::= identifier I arrayelement

arrayelement ::= variable (subscriptlist) | array (subscriptlist)
recordcomponent ::= variable.selector I record.selector

subscriptlist ::= expn [, expn]...
selector : := identifier

Since elements of arrays and records may be reference variables to other arrays
and records the conseguent dereferencing means that the syntactic form of
variables and structures may include many instances of component selection
and element indexing. Note that the syntax allows A2(l)(J) as an alternative
form for A2(l,J).

Examples of 'variable' without dereferencing:

XX
A(1)
RESTART
CELLA.HD
PEOPLE(27).NAME(3)
A(G(J))

Examples of 'variable' with deref erencing :

BB(J).
NEXTCELL.HD
WHO.AGE
CELLA.TL.TL.TL.HD
JIM.MOTH EH.NAME(8)
PEOPLE(99).FATHE R.SI B LINGS(1).SEX

Examples of 'structure' :

G
CELLA
JIM.NAME
WHO.NAME
PEOPLE(K)

4.1.3 Function calls

A function call defines a single value which results through the applicatjon of
statements defined by a procedure declaration to a set of parameters. The form
of a function call is the same as for a procedure statement. lt cons[sts of the
identifier of a literal procedure (or SVC procedure see 6) or the identifier of
a procedure variable followed by a list of parameters separated by commas and

enclosed in round brackets. The brackets must not be omitted even if there
are no parameters. The allowed form of parameter in each position in the
parameter list is an expression of mode determined by the corresponding
procedure declaration. For further details see 5.9.

Syntax:

functioncall ::= variable paralist I identifier paralist
paralist ::= ([expn [, expnl...]]

26

i

i

i

I

Examples:

LOG(X)
TIME 0
F(J,K,L-3)
EXP (EXP(EXP(X}}}

Note also that one can have for exampie an array of procedure wriables

AR RAY (1 O}PROC (REAL) INT OQ

and call a selected one of these by

oo(e)(4.7)

which means call the procedure pointed to by element g of array QQ with
parameter value 4.7.

4.1.4 Conditional expressions

A conditional expressron is a rule for choosing one of two or more expresions
according to the values of specified conditions.

Syntax:

condexpn ::= lF condition THEN expn IELSEIF condition THEN
expnl... ELSE expn END

The value is determined as follows:

The condition following lF is evaluated; if this is true then the expression
following THEN is evaluated and this is the result. lf the condition is not true
then the conditions following the optional keywords ELSEIF are
evaluated in turn until one of value true is encountered, the expression
following the corresponding TH EN is evaluated and this is the result. lf there
are no optional E LSE I F conditions or they are all false then the expression
following ELSE is evaluated and thls is the result.

For'condition' see 4.3.

All the alternative expressions in a conditional expression must be of the same
mode or of modes which can be dereferenced and/or widened to a common
mode. In the case of non plain rnodes only dereferencing is involved and
the mode of the expression will be that common mode entailing the least
dereferencing. Note that in the case of procedure, ret array and ref record
expressions all alternatives must have the same specifications, array modes
or record modæ respectively.

In the case of plain modes the situation is more complex and due regard must
be paid to the double forms of integer and fraction modes. See 4.2.2. lf all
the alternative modes can be reduced to a common mode by dereferencing
alone then the ræultant mode will be that common mode entailing the
least dereferencing. Otherwise all the alternatives will be dereferenced to
plain modes and the resultant mode will be the lowest point on the tree
shown below which can be reached by all these plain modes. There is,
however, also the restriction that the resultant mode must not be of double
form but will always be automatically converted to the corresponding single
form.

r

27

REAL

INT -F,/
RAC

RAC

hnr*o,bigl NT J\.,*,
BYTE

bisF

Examples:

IF
IF
IF
IF

= 3 THEN 7 ELSE 10 END
=OTHEN IF J =OTHEN O ELSE K END ELSE L+ I END
=0THEN I ELSEIF I =J THEN K ELSE L END
= J THEN XX ELSE K END

In the last example XX is dereferenced twice to give a real value whereas K is
dereferenced once to give an integer vâlue and then widened to real.

4.2 Arithmetic Expressions

There is no particular distinction between expressions which deliver a plain
mode and expressions which deliver some other mode. lt is a fact that most
operators apply to plain modes and for this reason expressions of plain mode
are considered first.

During the evaluation of arithmetic expressions an overflow condition will
arise if the operands are such that the potential result lies outside the range
of values which can be representd by the mode concerned. The behaviour of
the program under these conditions is undefined but each implementation
should provide a means of detecting an overflow condition.

4.2.1 Primaries

Expressions are built up from the primary components described in 4.1 and
expressions in round brackets.

Syntax:

primary::=constant lrariable lfunctioncall lcondexpn I (expn)

Examples of 'primary':

x
28.3
LOG {P + O),0,
IFK=0THENMELSENEND
(l:/J + 3)

4.2.2 Integers and fractions

Most computers can perform a limited range of double length operations.
For most calculations involving only integers these operations are not explicity
needed but for calculations with fractions it is often necessary to use these
operations and to be aware of their explicit behaviour. This section describes the
detailed behaviour of the operations in terms of two double length forms of
both integer and fraction values in addition to the usual single length or normal
form of each.

Normal valuæ occupy a single word (see 3.1) and the values contained in all
fraction and integer variables are thus in normal form. The other two forms
{double modes) occupy two words and so can only be taken by values arising
as intermediate results in expressions and cannot be stored in variables. These
double forms are the big form and the fine form.

28

Suppose that a word has length w * 1 and let M = 2*; the forms can then take
values as follows.

(i) Normal: A normal integer can take any integral value in the
range

-M< integer(M

and a normal fraction can take any value which is a multiple
of 1/M in the range

-1 <fraction(1
(ii) Big: ln the big form the normal part of the value occupies the

less significant word and so the range of big values is M times
that of normal values but with the same precision. A big
integer can take any integral value in the range.

-M2 < big integer (M2

and a big fraction can take any value which is a multiple of
1/M in the range

-M <'big fraction (M

(iii) Fine: In the fine form the normal part of the value occupies the
more significant word and so the range of fine values is the
same as that of normal values but their precision is M times
greater. A fine integer can take any value which is a multiple
of 1/M in the range

-M < fine integer (M

and a fine fraction can take any value which is a multiple of
1/M2 in the range

-l (fine fraction (1

The six possible modes arising from the combinations of form and type are
shown below with their points aligned.

point

big integer fJ
normal integer fl
fine integer t
big fraction fl
normal fraction fI
fine fraction E
(ln some implementations the double length forms may have an extra bit
whose use will depend on the implementation; this will be invisible to the
user).

It will be noted that a value is represented by a f ine integer in the same way as
by a big fraction. The reason for introducing the distinction between these
two modes lies in their behaviour under truncation as illustrated in the
example of the use of the multiply operator in 4.2.4.

All operators except for arithmetic shifts require their operands to be in specific
forms. Where these differ from normal form they are listed in the tables of
operators in 4.2.3 and 4.2.4. Any arguments not in the required form will be
converted according to the table below by the most direct route.

sign

29

REAL

bislNT fineF RAC

normalF RAC

lf a big value is converted to normal form then an overflow condition may
arise.

lf a fine value is converted to normal form then it will be rounded to the
normal value nearest to the original fine value; if the original value lies
midway between two normal values then the algebraically greater normal
mlue will be taken. An overflow condition may arise.

When an integer or fraction value in a double form is converted to a real value
then it is converted directly without first being converted to the single form.

4.2.3 Monadicoperators

- A term is aprirnary corrponent optionallypreceded by one or more monadic
operators. These operators are applied from right to left.

Syntax:

term
monadicop

ImonadicopJ ...pri mary
+t-IABStNOTtREALt
INTIFRACIBYTEILENGTH

The modes of the operand and result are as follows:

Operand

REAL, INT, FRAC,
REAL, INT, FRAC
REAL, INT, FRAC,
INT
REAL, INT, FRAC,
bis FRAC
REAL, INT
fine INT
REAL, FRAC
REAL, INT, BYTE
arraY

Operator

+

ABS
NOT
REAL
INT

FRAC

BYTE
LENGTH

Notes:

+

BYTE

BYTE

BYTE

Result

same as operand
same as operand
same as operand
INT
REAL
fine INT
INT
bis FRAC
FRAC
BYTE
INT

ABS

NOT

INT

This has no effect

Negation; this changes the sign of the operand. lf the operand is
a byte value then it will first be converted to mode integer.
An overflow condition will arise if the most negative value of
an integer or fraction form is negated.

Absolute value; this leaves unchanged a positive operand but
negates a negative operand. See above for note on overf low.

Logical not; this treats an integer value as a bit pattern and
changes the value of each bit.

Converts a big fraction to a fine integer without changing its
value. Converts a real value to an integer value by rounding to
the integer rralue nearest to the original real value; if the origirral

FRAC

value is midway between two integer values then the algebraically
greater integer value will be taken. Thus -3.5 converts to -3
and 3.5 converts to 4. An overflow condition may arise.

Converts a fine integer to a big fraction without changing its
value. Converts a real value to a fraction value by rounding to
the fraction value nearest to the original real value; if the
original value lies midway between two fraction values then the
algebraically greater fraction value will be taken. An
overflow condition may arise.

Converts a real or integer value to a byte. lf the operand is
real then it is first converted to an integer value as for lNT.
The integer value is then converted to a byte by masking hence
producing a value differing from the integer value by a
multiple of 256. Thus BYTE 259 has value 3 and BYTE -0.7
has value 255.

Converts the operand to a real value. This operator may be
useful in conditional expressions. See 4.1.4.

This applies to an array expression and returns the length of the
array. lf the array is multidimensional then the length is the
range of the first subscript.

BYTE

Examples of 'term':

-4
NOT (I NEV J}

-ABS X
LENGTH A
LENGTH A2(I}

Note that the operands of the operators REAL, lNT, FRAC and BYTE may be
of the result mode itself. This ensures that any redundant use of the operators
for widening does not generate unnecessary coding.

4.2.4 Diadic operators

An expression consists of one or more terms separated by diadic operators
which are applied according to the precedence given below. Operations
of the same precedence are applied from left to right. The order of the
evaluation of operands is not defined.

REAL

LENGTH

Syntax:

expn ::= term
diadicop ::= SLL

t/t I

diadicop term I ...
SRL I SHLI SLA I SRA I SHA | " 1:l I

MOD I LAND I LOR I NEV t+ | -

:l

I
.l.i

!

t

i

The modes of the operands and result and the precedence are as follows

Operator

SLL, SRL, SHL
SLA, SRA, SHA

Precedence Operand types

INT
INT
INT
FRAC
INT
FRAC
REAL
lNT
FRAC
FRAC

Result

INT
see below
bis INT
bis FRAC
bis FRAC
fine FRAC
REAL
INT
INT
INT

6 INT
6 see below
5 INT

INT
FRAC
FRAC
REAL

5 bis INT
fine tNT
big FRAC

31 i

ll

I
MOD

LAND

LOR

NEV

4

3

2

fine INT INT FRAC
bis FRAC INT FRAC
fine FRAC FRAC FRAC
REAL REAL REAL
bis INT lNT INT
fine INT FRAC FRAC
bis FRAC FRAC FRAC
BYTE BYTE BYTE
INT INT INT
BYTE BYTE BYTE
INT INT INT
BYTE BYTE BYTE
INT INT INT
INT INT INT
FRAC FRAC FRAC
REAL REAL REAL

In the case of operators which have more than one entry in the above table each
successive entry should be considered in turn. lf the operands in a given instance
are of the appropriate mode or can be converted to that mode then that entry is
taken, othenvise the next entry is considered.

The first operand in an arithmetic shift must be either an integer or a fraction.
The second operand must be a normal integer. The result is the same type as the
first operand and its form is determined by the form of the first operand and the
operator as given below.

First operand/Operator SLA SHA SRA
big big big big
normal big normal fine
fine fine fine fine

Notes:

SLL Shift left logical; the first operand is shifted left the number of places
specified by the second. lf the second operand is negative or greater
than the number of bits in the integer representation, then the action
is undefined.

SRL Shift right logical; the first operand is shifted right the number of
places specified by the second. lf the second operand is negative or
greater than the number of bits in the integer representation, then the
action is undefined.

SHL Shift logical; the first operand is shifted by the number of places
specified by the second. lf the second operand is positive then the
behaviour is as SLL and otherwise as SR L.

SLA Shift left arithmetic; if the first operand is single length it is converted
first to the big form. The double length operand is then shifted left
arithmetically by the number of places specified by the second operand.
lf the second operand is negative or greater than the number of bits in
the integer representation then the action is undefined. An overflow
condition may arise.

SRA Shift right arithmetic; if the first operand is single length it is converted
first to the fine form. The double length operand is then shifted right
arithmetically by the number of places specified by the second operand.
lf the second operand is negative or greater than the number of bits in
the integer representation then the action is undefined. The sign bit is
propagatd.

32

SHA Shift arithmetic; the first operand is shifted without altering its type or
form. lf the second operand is positive then a left shift is performed, if
negative a right shift is performed. The number of places shifted isthe
absolute value of the second operand and the action is undef ined if this
exceeds the number of bits in the integer representation. A left shift
may give rise to an overflow condition. A right shift will propagate the
sign bit.

Multiply; this is either a real operation on real operands or a fixed point
operation on integer and fraction operands. In the former case an
overflow condition may arise in the usual way whereas in the latter
case it will only arise if both operands have their most negative value.
(Any subsequent conversion to normal form may itself give rise to an

overflow condition).

Note the difference between

J*INT(K*P)
which produces an intermediate fine integer and then a big integer result,
and

J*(K*P)
which produces an intermediate big fraction and then a big fraction result.

:l lnteger division; this always produces an integer result with truncation
towards zero. An overflow condition may arise.

l/ Fraction division; this always produces a fraction result with truncation
towards zero. An overflow condition may arise.

I Real division; an overflow condition may arise.

MOD Modulo; the result is the remaihder on dividing the first operand by the
second. The sign of the result is the same as that of the first operand.
An overflow condition may arise. Note that J MOD K has the same
valueasJ-J:/K*K.

LAND Logical and; this treats both operands as bit patterns. A bit in the result
will be 1 only if the corresponding bits in both operands are 1.

LOR

NEV

+r-

Logical inclusive or; this treats both operands as bit patterns. A bit in
the result will be 0 only if corresponding bits in both operands are 0.

Not equivalent; this treats both operands as bit patterns. A bit in the
result will be 1 only if the corresponding bits in the operands differ from
each other.

Addition, subtraction; this is either a real operation on real operands or
a fixed point operation on single length integer or fraction operands.
Note that integer + fraction converts to real. These operations may give
rise to an overflow condition.

Examples of 'expn':

X+Y
JSLL3
xlYl-z
KMODL
J LAND OCT 77 NEV K
P*O/iFRACX

4.3 Conditions

A condition is made up of comparisons connected by the words OR and AND of
which AND is the more tightly binding.

33

Syntax:

condition ::: subcondition I OR subcondition] ...
subcondition ::= comparison I AND comparison] ...

comparison ::= expn comparator expn
comparator ::: : | # l< l(: l) l)= I ::: I :#:

The comparators =, # operate on the irreducible level of the seven primitive
modes. The comparators (, (= ,),): operate on the three plain modes REAL,
FRAC and lNT. The comparators :=:, :#: operate on the nine. REF modes (ie,
they compare addresses).

In all cases dereferencing will be applied to the operands where necessary to
extract a value of appropriate mode. In the case of the comparisons of plain
modes, mode conversion (widening) will occur as for subtraction: Note carefully
that the operators (, (:,),)= do not apply to bytes; such operands will first
be widened to mode integer.

Conditions are evaluated from left to right only as far as is necessary to determine
their truth or falsity.

Note that the characters $ and € are alternatives to # both alone and in :#:

true if the rnlues in the locations pointed to by
XX and YY are the same value

true if the locations pointed to by XX ancj YY are
the same locations

true if the array pointed to by AA is not the array
B

NEXTCELL ::: CELLA true if NEXTCELL is pointing at CELLA

4.4 Non-Arithmetic Expressions

Expressions of modes other than plain modes are of the same syntactic form as
described above in 4.2. However, the absence of operators which deliver non-plain
modes means that in practice the syntax can be simplified as follows:

Syntax:

npexpn :t= npconstant lvariable lfunctioncall lcondexpn | (npexpn)

npconstant ::= identifier I string I structure

Non-plain constants are as follows:

Procedure and stack constants are represented by the identifiers of literal
procedures or stacks which could possibly be external to the module (but not
SVC procedures; see 6).

Label constants are represented by the identifiers of literal labels. lf a label
constant occurs in an expression then the label value is obtained by taking as level
the current stack pointer which identifies the execution of the current procedure
and as address rhe address of the label in the code. (See 3.1).

ln the case of expressions of mode ref array or ref record, the address of complete
arrays or records may be denoted by a structure of appropriate mode. In the case
of other reference modes, the address of a variable of the corresponding primitive
mode may be denoted by that variable.

In the particular case of mode REF ARRAY BYTE a string may arso be used.
Storage for the array of bytes denoted by the string is located in a pool of strings

Examples of 'condition':

X:YANDP<0
X=7
XX=YY

XX :=: YY

AA :#: B

and the value represented by the string is the address of the string in the pool.
Note that the compiler may choose to share the storage for identical strings; they
should be treated as read-only. See 3.5.2 for other uses of the string pool.

Variables, function calls and conditional expressions are just as for arithmetic
expressions. Thus for example one can have ref array conditional expressions;
these can be useful as parameters of procedure calls such as

TWRT (lF J = 0 THEN JIM.NAME ELSE "NOBODY" END)

Examples of 'npexpn':

RESTART'
JOHN
WHO.NAME
,,FRED"

IF AA :#: BB THEN JIM.MOTHER ELSE JANE END

4.5 Byte Arithmetic

This section summarises the various distinctions between integers and bytes which
on a first reading might not be clear.

The modes BYTE and INT are quite distinct and variables of these modes can
only hold appropriate values. The fact that the value 3 say is a permissible value
of both modes should cause no more conf usion than the fact that the value 0.5 is
a permissible value of both FRAC and REAL modes. The internal representations
are distinct in both cases.

The syntactic form 'integer' (of which 3 is an example) will be interpreted
according to its context. In an expression (dynamically evaluated) the mode is
BYTE if the value lies in [0,255] and INT otherwise. As a repetition factor in an
array initialisation, the length of an array or the length of a stack, the question of
mode does not arise; it is merely a value to be heeded by the compiler. As an
initial value for a BYTE or INT variable (and consequently as a value in #
sequences in strings) the mode is determined by that of the variable being
initialised.

The only effective operators defined on BYTE values are LAND, LOR, NEV, =
and #. Care should be taken when using operators such as +, -,>, ((which take
INT operands) that unnecessary run time widening of values does not take place.

As a consequence of these rules if M has been declared to be of mode BYTE, the
statement

M:= 7

is valid whereas, because + is not defined between bytes,

M::M*1
is not; to increment M one must write

M :: BYTE (M + 1)
:

:i

ii
.l

I

.|

I

I

35

5 Statements

Statements define the actual operations to be performed. The statements are
obeyed sequentially unless stated otherwise. All statements may be labelled.
A series of statements separated from each other by semicolons is known as

a sequence.

The possible forms of statement are

(i) Block
(ii) Assignment statement
(iii) Goto statement
(iv) Switch statement
(v) lf statement
(vi) For and to statements
(vii) While statement
(viii) Procedure statement
(ix) Return statement
{x} Dummy statement
(xi) Code statement.

Syntax:

statement ::= labels unlabelledst
unlabelledst::: block lassignmentst lgotost lswitchst lifst lforst I

whilest I procst I returnst I dummyst I codest
seguence ::: statement [; statement] ...

5.1

5.2

Labels

A label has the form of an identifier. A
label followed by a colon. A statement

Syntax:

labels ;;: I identifier :1 ..

For the scope of a label see 3.9.

statement is labelled by preceding it by
may have many labels.

Blocks

A block introduces a new level of nomenclature and access for local variables. A
block consists of the word BLOCK followed by declarations of simple variables,
statements and the word ENDBLOCK.

Syntax:

block
blockbody

B LOCK blockbody ENDB LOCK
Isimpledec ;] ... sequence

Note that since a block is a statement the nesting of blocks can be continued
indefinitely. The body of a procedure behaves like a block and the parameters of
the procedure are considered to be declared in that block. The body of a for
statement also behaves like a block and the controlled variable is considered to be
declared in that block.

The scope of a local variable is the block in which it is declared including any
inner blocks unless the identifier is redeclared therein. Note however that in the
declarations in a block, the contents of a local variable must not be used in an
initial value until after the declaration of the variable itself. Thus the following
is illegal.

BLOCK
REF INTJJ := KK;
REF INT KK := J;

ENDBLOCK

il
t!
iiI'

ii
itil

li
t{
ri

'l
li

5.3

The storage space for all inner blocks will be allocated on entry to the procedure
concerned and there will be no time penaity involved in entering inner blocks.
The storage for variables in blocks on the same level will be shared.

Assignment Statements

An assignment statement consists of a list of destinations followed by :: (the left
parti followed by an expression.

The destinations each consist of a variable (possibly preceded by VAL to indicate
dereferencing) and all the destinations must be of the same mode. The expression
is evaluated and converted to that mode and assigned to each destination in turn.
Note that the expression on the right is evaluated before the destinations on the
left are evaluated and the evaluation of the destinations and assignment to them
occurs from right to left. For mode conversions see 4.

Syntax:

assignmentst : := leftpartlist expn
leftpartlist ::: destination :: I destination := I ...

destination ::: variable I VAL variable

Examples of 'assignmentst':

l::J:=7+Ki/ L
A(l) := B(l) := X := J+l
CELLA.HD ::37
U.RL :: V.RL * W.RL _ V.IM * W.IM
N :: LENGTH BB2(J)
JJ :: G(7)
JIM.ADDRESS :: JANE.ADDRESS

Note the distinction between

XX::X
which assigns the address of X to XX and

VAL XX := X

which assigns the value in X to the location currently pointed to by XX.

The destination must denote a single location and not an actual al.rav or record.
Thus

. U::Vtno JTM.NAME := "JlM"

are illegal.

Goto Statements

A goto statement causes an explicit transfer of control.

It consists of the keyword GOTO followed by a label expression.

Syntax:

gotost ::= GOTO expn

Examples of 'gotost':

GOTO FINISH
GOTO RESTART
GOTO ENDOFPROGRAM
GOTO S(J)
GOTO IF P < O THEN L1 ELSE L2 END

5.4

37

The normal case of a label expression will be a literal label, when the effect of the
goto statement will be to transfer control within the current procedure. The more
general situation involving label variables is likely to prove of most value in
controlling error recovery.

Note that GOTO S(J) is not in fact formally a switch; it is a jump to one of an
array of labels. See 5.5 for the switch statement.

A goto statement may not lead into a block (this includes the body of a for
statement).

Jumps other than to local literal labels could be performed as follows.

The current level denoted by the current position of the stack pointer is compared
with the level component of the label value; this component identifies the
execution of the procedure which was current when the label value was created.
lf the two levels are equal then control is passed to the address in the code given
by the address component of the label value and the statement is complete. lf the
two levels are unequal then the current level is terminated and the comparison
performed again with the calling level as current level. This process is repeated
until either the levels agree, when transfer will occur, or the root level has been
reached. In the latter case the label value was not in scope and an unrecoverable
error will occur. See 7.

In short, controlwill be passed to the label addres in the relevant activation of
the procedure containing the label and any procedure calls descendant from that
activation and still active will be terminated.

The following example illustrates the typical use of a label variable for error
recovery.

Example:

DATA...
LABEL RESTART; % THIS IS A LABEL VARIABLE%

:

ENDDATA;

PROC rvrAtN ();

hesrnnr :: L2:

bue ll;

ENDPROC;

'II

li
i.

i1
I

I
N,

"',èl

L2:
% ASSIGN L2 TO THE VARIABLE%

PROC ONE (};

ïruo I l;

Eruopnbc;

PROC rWO ();

GOTO RESTART; %RETURN TO L2%

ENDPROC;

The label variable RESTART is in a data brick and isthusaccessiblethroughout
the module. The procedure MAIN assigns the value of its literal label L2 and
current level to the variable RESTART. Procedure MAIN now calls ONE which
in turn calls TWO. In some circumstances TWO can fail and the statement
GOTO R ESTART in TWO will terminate the activations of ONE and TWO and
return control to L2 in MAIN. Any relevant error action can now be taken in the
coding at L2. The advantage of this technique is that no parameters need be set
up or tested at the perhaps many calls of ONE and TWO: the mechanism performs
no work until recovery is necessary.

5.5 Switch Statements

A switch statement transfers control to one of a number of literal labels
according to the value of an expression of mode integer.

Syntax:

switchst
labellist

Note carefully that the identifiers must be those of literal labels in the procedure
containing the statement. lf the value of the integer expresion is zero, negative
or greater than the number of labels in the list then control is not transferred but
passes to the next statement. This provides a convenient and efficient means of
monitorjng an illegal value of the integer expression.

Example:

SWITCH K OF Pl ,P2,P3,P4,P5;
FAIL (''K OUT OF RANGE,,)

Note that a switch statement is a statement and so can be labelled and hence
jumped to in the usual way.

5.6 Conditional Statements

Conditional statements cause certain statements to be executed or skipped
according to the running values of specified conditions.

SWITCH expn OF labellist
identifier [, identifier] ...

t.,
I

!
t

10 1
t

it'1
I

Syntax:

ifst::= lF condition THEN sequence I ELSEIF condition THEN
sequence I ... t ELSE sequence I END

The behaviour is as follows: The condition following lF is evaluated. lf this is true
then the sequence following THEN is obeyed and this completes the statement.
lf the condition is not true then the conditions following the optional keywords
ELSEIF are evaluated until one of value true is encountered; the corresponding
seguence is then obeyed and this completes the statement. lf there are no
optional E LSEI F conditions or they are all false then the sequence following
ELSE, if present, is obeyed and this completes the statement. lf there is no
ELSE part then the statement is considered to be completed.

There are no restrictions on the statements in the sequences. They may be
labelled and control passed to them directly by a goto or switch statement. lf
control is transferred in this way then the behaviour after the execution of the
seguence will be as if control had entered via the conditions.

Examples of ifst':

IFX=OTHENP::OEND
IF Y> l THEN GOTO STOP END

IFY:ZANDJ=KTHEN
| :: l* 1; L := K :: INT U.RL;
F(1, J, K);

END

IF X= OTHEN P := Q ELSE Q :: P END

IF X= 1 THEN I := O ELSEIF X: 2THEN J :: O ELSE K :: OEND

IFX<YTHEN
XX := YY; J := K;

ELSEIFX>YTHEN ..]-
XX :: ZZ; J := L;

END

Note that the last example is equivalent to

IFX<YTHEN
XX := YY; J := K;

ELSE
IFX>YTHEN

XX := ZZ: J :: L;
END;

END

The use of ELSEIF saves an END.

5.7 For and To Statements

A for statement causes a sequence of statements to be repeatedly executed zero
or more times and in addition performs a series of assignments to a control
ræriable.

Syntax:

forst :;= [FOR identifier i= êXpo IBY expnl] TO expn
DO blockbody REP

Examples of 'forst':

FOR I := 1 TO t0 DO A(l) := 0 REp

FOR T := 10 BY -1 TO K-L DO
IF G(T) < 1 THEN GOTO SKIP END;

REP

FORJ:=-KBY2TOLDO
A(J) :: B(J) :: C(J) := 1.0;

REP

TO 15 DO T\ruRT ("*/") REP

Notes:

ti) The initial value, increment and limit are evaluated once only at the start of
the for statement in the order: increment, limit, initial value. The evaluations
occur as if the values were assigned to variables of mode integer.

(ii) lf the'BY expn' is omitted then an increment of 1 is assumed.

(iii) The controlled sequence behaves as a block (hence declarations are allowed)
and the controlled variable is considered to be declared to be of mode INT
in that block. Thus on exit from the for statement the controlled variable
is inaccessible.

(iv) The control variable is read-only. Thus it cannot occur explicitly as the
destination of an assignment statement nor can its address be evaluated
(eg, handed over to a REF parameter of a procedure) since an indirect
assignment might then occur.

(v) A goto statement may not lead into the blockbody controlled by a for
statement.

(vi) The detailed behaviour of the for statement

FOR name :: el BY e2TO e3 DO ieq REP

is more accurately described by the following statements which are
essential ly equivalent :

BLOCK INT inc ::e2, limit ::e3, name :=e1;
lab: lF inc) 0 AND name (= limit

OR inc < 0 AND name)= limit THEN
seq;
name :: name * inc; GOTO lab;
END;

ENDBLOCK

lf the increment is zero then the behaviour is not defined.

(vii) 6p abbreviated form of for statement is allowed when the control variable
is not used. In this case the statement merely takes the form

TO expn DO blockbody REP

and the body is executed 'expn' times. Note that if the 'expn' is non positive
then the body will not be executed at all. Note also that the body still
behaves as a block.

5.8 While Statements

A while statement causes a sequence of statements to be repeatdly executd
while a specified condition remains true.

;l

'1

I

I

F"

41

Syntax:

whilest ::: WHILE condition

The statement

WHILE e DO seq REP

is essentially equivalent to

lab : lF e THEN seq ; GOTO lab

procst
paralist

DO sequence REP

END

5.9 ProcedureStatements

A procedure statement invokes the execution of the corresponding procedure
body after the correspondence between the actual and formal parameters (if any)
has been performed.

The form of a procedure statement is the same as that of a function call.
(See 4.1.3). lt consists of the identifier of a literal procedure (or SVC
procedure see 6) or the identifier of a procedure variable followed by a list of
parameters separated by commas and enclosed in round brackets. The brackets
must not be omitted even if there are no parameters.

Syntax:

variable paralist I identifier paralist
([expn[,expn1... 1)

The correspondence between the parameters is established by assigning the actual
parameters to the formal variables just as if they were the right and left sides
respectively of assignment statements. ln the body of the procedure the formal
parameters behave just as if they were variables declared in the block which is the
body of the procedure. The parameters are evaluated from left to right before the
procedure itself is evaluated.

Note that a function call may be used as a procedure statement for its side effects;
the result will be discarded.

Example:

Consider the procedure:

PROC ACTION (REAL A, B, INT N, REF ARRAY BYTE C, LABEL L);
INT I, J, K;

:

ENDPROC

Then the statement

ACTION (P, O * R,1," NOGO" , FAILURE)

behaves just as if the statements

:= P; B :: Q, * R; N :: 1;
:= "NOGO"; L r= FAILURE

were obeyed immediately on entry to the body of ACTION followed by the body
of ACTION. ln fact it is as if the procedure statement were replaced by the block

A
c

42

BLOCK
REALA::P,B:=OtR;
INT N := 1;
REF ARRAY BYTE C:: ,'NOGO,,;

LABEL L := FAILURE;

l*'''
''

*'

ENDBUbCT

5.10 Return Statements

A return statement may be used to leave a procedure and return control to the
calling procedure in the usual way. ln the case of a procedure which is not a
function procedure the final ENDPROC will behave as if preceded by a return
statement. In the case of a function procedure, control must be explicitly
returned and so the final ENDPROC must be preceded by a return statement or
a goto statement.

Syntax:

returnst ::: RETURN I RETURN (expn)

The 'expn' is only present in the case of a function procedure and is evaluated to
give the result.

5.11 Dummy Statements

The dummy statement is simply a void whose execution has no effect. lt is
formally necessary in order to allow a label to be placed before keywords such as
END, REP etc.

Syntax:

dummyst::: []
For example there is a dummy statement after the colon in

; LAB: REP

5.12 Code Statements

See 1.8.

43

6 Modules

The unit of compilation is the module. lt consists of

(i) environment descriptions

(iil record mode definitions

(iii) titles and options

(iv) LET definitions
(v) the bricks to be compiled

An environment description describes

(i) the format of another separately compiled brick

(ii1 the format of an available supervisor call

(iii) it may alsg (redundantly) describe a brick to be compiled in the present
module.

The bricks to be compiled are preceded by the word ENT if their name is to be
made accessible to other modules via the linker.

Syntax:

eom : ::' end-of-module-character
moduleitem ;;= [environdescn I recmodedec I letdefinition I

title I option I brick l
environdescn ::: EXT stackdescn I EXT procdescn I EXT datadescn I

SVC procdescn I SVC datadescn
stackdescn ::: STACK idlist
procdescn ::= PROC procdescriptor idlist
datad escn : : : datad ec-without-in itia l-va I ues

brick:;: I ENT] datadec lt ENT I procdec ll ENT I stackdec

Example of 'module':

OPTION (1)BC;

TITLE
I LLUSTRATION OF MODULE;

LET NL= 10;

EXT PROC (REF ARRAY BYTE) TWNT;

SVC DATA RRERR;
LABEL ERL;
INT ERN;
PROC (INT) ERP;

ENDDATA;

MODE PAIR (INT OLD, NEW);

ENT PBOC SEARCH (REF ARRAY PAIR P, INT X} INT;
% SEARCHES ARRAY P FOR OLD ENTRY X AND %
% RETURNS COR RESPONDING NE\IJ ENTRY %
% OUTPUTS MESSAGE AND GOES TO ERL IF FAILS %
FOR | :: 1 TO LENGTH P DO

REF PAIR RP := P(l);
lF RP.OLD = X THEN RETURN (RP.NEW) END;

REP;
TWRT (,,#N L#SEARCH FAI LS" };
GOTO ERL;

ENDPROC;

The external descriptions inform the compiler of the characteristics of bricks
which are external to the module so that reference to these bricks may be made
in the module. The stack description merely lists the identifiers of stacks. The
data description is effectively the same as the declaration of the data brick
except that initial values cannot be set. The procedure description describes the
parameters and results in the same style as for procedure variables.

lf a procedure description is preceded by SVC rather than EXT then procedure
statements or function calls referring to that procedure will be treated as
supervisor calls and a special linkage may be compiled. The name of an SVC
procedure may only be used in a procedure statement or function call and not
as a literal vaJue. lf a data description is preceded by SVC rather than EXT then
the data brick will be treated as private to the task and a special method of
access may be compiled for variables within the brick.

45

7 lntegrity

The language presented in this manual is the full RTL/2language. This full
language is quite insecure in the sense that reference values could be used as

addreses without their containing sensible values and it is unreasonable to
suppose that efficient implementations of the language could, in general, trap
such illegal activities. lf the language is constrained so that illegal references
cannot be manipulated then much system programming will be difficult,
inefficient or impossible. On the other hand a secure language is of value for
application programs where address manipulation is of less importance. Hence
RTL/Z is seen as comprising two languages with the full language being the
system language and a secure subset being the application language.

The application language is the full language with the following restrictions.

(i) All variables of modes other than plain modes and LABEL must be
initialised.

(ii) The addresses of local variables must not be assigned to data brick reference
variables, returned asthe result of a procedure, or manipulated in any other
way which might result in their passing out of scope.

(iii) Code statements are forbidden.

It is intended that a program complex formed by linking application modules
compiled with identical environments will be secure.

ln the system language

(i) a stack checkbn procedure entry is optional

(ii) array bound checks are optional

(iii) monitoring of general goto statements is optional

In the application language

(i) a stack check on procedure entry is mandatory

(ii1 array bound checks are optional for fetching from plain arrays and
otherwise mandatory

(iii) monitoring of general goto statements is mandatory

For an outline of a recommended mechanism for handling the errors which arise
when these and other checks fail, see Appendix 2.

47

Appendix 1

Standard Input-Output

The RTL/2 language as such contains no specific provision 1'or input and
output since-to do so might prove an undesirable burden for some systems.
However in order to aid transportability of programs between systems a

recommended standard package for character streaming has been def ined.
This is briefly outlined below and described in detail in the manuals
'nTU2 System standards'and 'RTL/2 Standard stream l/O'which should
be consulted for details of formats, errors, etc.

41.1 StreamingMechanism

Each task has two SVC data bricks associated with it, namely:

DATA RRSIO; DATA RRSED;
PROCflBYTE IN; ANd BYTE TERMCH;
PROC(BYTE) OUT; BYTE IOFLAG;

ENDDATA; ENDDATA;

The procedure in lN will removethe next character from the current input
stream and return it as result. The procedure in OUT will send the character
passed as parameter to the current output stream. All streaming of individual
characters will be via lN and OUT as appropriate.

TERMCH and IOFLAG are concerned with the standard stream input procedures.

A-1.2 Input

Individual characters are obtained from the current input stream by calls of the
procedure variable lN in data brick RRSIO.

Numbers and text may be read from the current input stream by the following
procedures. In each case the last character read and removed (the terminating
character) is placed in TERMCH in data brick RRSED.

PROC FREAD0FRAC reads a signed decimal number and returns a truncatd
fraction value as result.

PROC IREAD0INT reads a signed decimal integer and returns its value as result.

PROC RREAD0REAL reads a signed decimal number with optional exponent
and returns its value as result.

PROC TREAD(REF ARRAY BYTE X, T) INT reads characters and places them
into successive elements of X. lnout is terminated as soon as one of the characters
of T is encountered. The number of characters placed in X is returned as result.

41.3 Output

Individual characters are sent to the current output stream by calls of the
procedure variable OUT in data brick RRSIO.

Numbers and text may be output to the current output stream by the following
procedures.

PROC NLS(lNT N) and PROC SPS(lNT N) send N newline and space characters
respectively.

PROC FWRT(FRAC X) sends the unrounded fraction value X as a signed
decimal number in a fixed format dependent upon the implementation.

PROC IWRT(lNT X) sends the integer value X asa signed decimal integer
with leading zeros suppressed.

PROC RWRT{REAL X) sendsthe unrounded real value X asa decimal number
in a fixed format dependent upon the implementation.

48

PROC FWRTF(FRAC X, INT N), PROC IWRTF(INT X, M) and PROC RWRTF
{REAL X, INT M, N} send the fraction, integer and real values (rounded where
appropriate) in formats determined from the values of the additional parameters
M and N.

PROC TWRT(REF ARRAY BYTE A) sends the successive elements of the
array A as characters.

49

Appendix 2

Standard Error Recovery

In order to aid transportability of programs between systems a recommended
standard mechanism for error recovery has been defined. This is outlined
befow and described in detail in the manual 'RTLl2 System standards'.

Two types of error are distinguished - unrecoverable and recoverable errors.
An unrecoverable error is one such that further processing of the task
concerned might destroy the structure of the system. (Examples include array
bound violations and stack overflow.) A recoverable error is one such that further
processing of the task can continue without danger to the structure of the
system.

The kernel of the standard is an SVC data brick thus

DATA RRERR;
LABEL EBL:
INT ERN;
PROC(INT) ERP;

ENDDATA;

ERL contains the unrecoverable error label, ERN the unrecoverable error
number and ERP the recoverable error procedure.

On detection of an unrecoverable error by the system, an appropriate error
number is assigned to ERN, any monitoring facilities are invoked and
control is then passed to the label in ERL. A user task could simulate an
unrecoverable error by merely assigning a number to ERN and passing
control to ERL. However, this would bypass any monitoring facilities and so
the standard includes

PROC RRGEL(INT N)

which when called assigns N to ERN, invokes the monitoring facilities and
finally transfers control to E R L.

Detection of a recoverable error results in a call of the procedure contained
in ERP with the integer parameter indicating the cause of the error.
Recoverable errors may be signalled by the system or the user.

A task can create its own error recovery environment merely by directly
assigning appropriate values to ERL, ERN and ERP. A procedure which
wishes to set up its own error environment, whilst preserving the
existing one, may do this by assigning the existing values of ERL, ERN and
ERP to local rnriables on entry and restoring them on exit.

B.

50

HT
LF
SP
,,

#f$
oa

&

(

)
*
+

,_

I
0-9

;

Language use

layout - horizontal tab
layout - newline
layout - space
string quote
not equals, strings
comments
not used
byte quote
open bracket
close bracket
multiply
add
comma
minus
constants, records
divide
numbers
labels, assignment etc.
statement, declaration separator
less than
assignment, equals
greater than
not used
not used
names, numbers

Ref

1.1
1.1

1.1
1.4
1.4, 4.3
1.5

1.3

4.2.3
4.2

4.2
1.3,4.1.2
4.2.3
1.3
5.1, 5.3, 4.3

4.3
5.3,4.3
4.3

1.2, 1.3

Appendix 3

nTLn Language Subset of ISOT

Character Decimalvalue

?

@

A-Z

Notes:

(i)

(ii)

I
10
32
34
35, 36,92
37
38
39
40
41
42
43
44
45
46
47
48-57
58
59
60
61
62
63
64
65-90

The characters &, ? and @ are not used for any particular purpose
in the language but they may occur in strings, comments and titles.

Because of lack of uniformity in manufacturers' treatment of #, î.
and $ it should be made clear that they are considered
interchangeable and all mean the same thing. The intention is that
on any preparation equipment the key marked # may be used with
confidence. Note that no confusion can arise as to the internal value
as far as representing these characters in strings is concerned because
they cannot stand for themselves.

51

Appendix4

Keyrords

ABS
AND
AR RAY
BIN
BLOCK
BY
BYTE
CODE
DATA
DO
ELSE
ELSEI F
END
ENDBLOCK
ENDDATA
ENDPROC
ENT
EXT
FOR
FRAC
GOTO
HEX
IF
INT
LABEL
LAND
LENGTH
LET

4.2.3
4.3
3.3
1.3
5.2
5.7
3.2,4.2.3
1.8
3.10
5.7,5.9
4.1.4,5.6
4.1.4,5.6
4.1.4,5.6
5.2
3.10
3.6
6
6
5.7
3.2,4.2,3
5.4
1.3
4.1.4, 5.6
3.2,4.2.3
3.2
4.2.4
4.2.3
1.11

LOR
MOD
MODE
NEV
NOT
ocT
OF
OPTION
OR
PROC
REAL
REF
REP
RETURN
RTL
SHA
SHL
SLA
SLL
SRA
SRL
STACK
SVC
SWITCH
THEN
TITLE
TO
VAL
WHILE

4.2.4
4.2.4
3.4
4.2.4
4.2.3
1.3
5.5
1.7
4.3
3.2,3.6,6
3.2,4.2.3
3.2
5.7,5.8
5.10
1.8
4.2.4
4.2.4
4.2.4
4.2.4
4.2.4
4.2.4
3.2,3.7,6
6
5.5
4.1.4,5.6
1.6
5.7
5.3
5.8

62

Appendix 5

Syntax Rules

amode
arraydec

artay
arrayelement

arrayinititem
arrayinitvalue

arraymode
arrayspec

assignmentst

bindigit
bindigitlist
block
blockbody
brick

codeheading
codeitem

codest
comment

comparator
comparison
condexpn

condition
constant

datadec

datadescn
declaration
destination
diadicop

digit
d igitlist
dummyst

environdescn

eom
exponent
expn

::= simplemode I reemode
::= AR RAY (length [, length I ...)

amode initidlist
::= identif ier I recordcomponent
: := variable (subscriptlist) | array

(subscri ptl ist)
::= initvalue [(intæer)]
;1= ([arrayinititem [, arrayinititem]...

J) | string
::=ARRAY [(t, 1...)] amode
::= ARRAY (length [, length 1...]

simplemode idlist
::= leftpartlist exfin

3.3.2

3.3.2
4.1.2

4.1.2
3.5.4

3.5.4
3.3.2

3.4
5.3

4.2.4

1.2
1.3
5.11

::=011 1.3
::= bindigit... 1.3
::= BLOCK blockbody ENDBLOCK 5.2
::= [simpledec;] ... sequence 3.6
::= [ENT] datadec I IENT] procdec I

tENTI stackdec

::= CODE digitlist, digitlist;
: := lSOT-character-other-than-

tripl -or-trip2 | tripl letitem I

trip2 name
: := codeheading codeitem...
: : = % sequence-of-characters

-excl udi ng-%-and-newline %
::= = l# l< l<= l> l)= | :=: | :#:
ll= €XPl'l comparator expn
i:= lF condition THEN expn IELSEIF

condition THEN expnl .., ELSE
expn END 4.1.4
subcondition IOR subcondition]... 4.3
number I identifier I variable I

structure I string 4.1.1

::= DATA identifier ;declaration [;
declarationl... ENDDATA 3.10

::= datadec-without-initial-values 6
;;= [simpledec larraydec lrecorddecl 3.10
::= variable I VAL variable 5.3

6

1.8

1.8
1.8

1.5
4.3
4.3

::= SLL
SHA
+l-

SRL I SHL I SLA I SRA I*lltllt:/tMoDl
NEVILANDILOR

::= 011 | 2 | 3 | 4l 5 l6l 7 l8l9
::= digit...
::= []

::= EXT stackdescn I EXT datadescn I

EXT procdescn I SVC procdescn I

SVC datadescn 6
::= end-of-module-character 6
::= E sign digitlist 1.3
::= term I diadicop term]... 4"2.4

53

forst

fraction
functioncall

gotost

hexdigit
hexdigitlist

identifier
idlist
ifst

;;= [FOR identifier := expn I BY
expn ll TO expn DO blockbody
REP 5.7

::= real B sign digitlist 1.3
::= variable paralist I identifier paralist 4.1.3

5.4::= GOTO expn

::=digit lA lB lC lD I E lF 1.3
::= hexdigit... 1 .3

::= name 1 .2
::= identifier [, identifier]... 3.4
::= lF condition Tl.lEN sequence

IELSEIF condition THEN
sequenceJ ... IELSE sequence]
END 5.6

::= inititem [, inititem] ... 3.2
::= identifier [:=[identifier :=] ...

initvaluel 9.2
::= simpleinitvalue I refinitvalue I

recinitvalue ; arrayinitvalue 3.5.4
::= digitlist I BIN bindigitlist I OCT

octdigitlist I HEX hexidigitlist I

'stringchar' 1.3
::= name I number I string i comment I

title I option I separator 1.1

::= identifier [, identifier] ... 5.b
::= lidentifier :] ... 5.1
::= destination := ldestination := 1... 5.3
::= integer 3.3.2
::= LET name = iletiteml ...; 1 .l 1

::= name I number I string I comment I

separator 1 .1 1

::=Al Bl Cl D..........XtY12 1.2

::= moduleitem [; moduleitem] ... eom 6
::= lenvirondescn i recmodedef I

letdefinition l title I option I brickl 6
::=* | - | ABS I NOT I REAL I tNT I

FRAC I BYTE I LENGTH 4.2.3

::= letter Iletter I digit] ...
::= real I integer I fraction

::=0l1l2l3l4l5l6l7
::= octdigit...
::= letter I digit
::= opchar...
::= OPTION (digitlist) [opitem [,

opiteml... J

1.2
1.3

1.3
1.3
1.7
1.7

1.7

::- [pspec [, pspec]... J 3.6
;;= ([expn [, expn]...1] 4.1.3
::= REAL I INT I FRAC I BYTE 3.2
::= constant I variable I functioncall I

condexpn l(expnl 4.2.1

initidlist
inititem

initrralue

integer

item

labellist
labels
leftpartlist
length
letdef inition
letitem

letter

module
moduleitem

monadicop

name
number

octdigit
octd igitlist
opchar
opitem
option

paradescription
para list
plainmode
primary

54

primmode
procdec

procdescn
procdescriptor

procst
progmode

pspec

real

recinitvalue
recmode
recmoddef

recmodeident
record
recordcomponent

recorddec
ref initvalue
resultmode
returnst
rspec

selector
separator
sequence
sign
simpledec
simpleinitvalue
simplemode

simplespec
stackdec
stackdescn
statement
stri ng
stringpart
stringchar
stringinsert
stringitem
structure
subcondition
subscriptlist
snritchst

;;= plainmode I progmode
::= PROC identifier (paradescription)

resultmode ; blockbody ENDPROC
::= PROC procdescriptor idlist
;1= ([simplemode [, simplemode] ...J]

resultmode
::= variable paralist I identifier paralist
::= LABEL ISTACK I PROC

procdescriptor
::= simplespec

::= digitlist . digitlist Iexponentl I

digitlist exponent
31= (initvalue [,initvalue] ...]
::= recmodeident
::= MODE recmodeident (rspec [,

rspecJ ...)

::= identifier
: := identifier I arrayelement
::= variable . selector I record .

selector
::= recmode initidlist
::= variable I structure I string
::= [simplemode]
::= RETURN I RETURN (expn)
::= simplespec I arrayspec

::= identifier
::= see-sectiOn-1 .9
::= statement [; statement] ...
::=[+l-]
: : = simplemode initidlist
::= sign number I identifier
;;=[REF]primmodelREF

arraymode I REF recmode
::= simplemode idlist
::= STACK identifier integer
::= STACK idlist
: := labels unlabelledst
::= stringpart...
;;= " Istringchar... I stringinsert] ... "
::= see-section-1 .3
;;= f [stringitem [, stringiteml...) *
::= integer [(integer)]
ri= ârfaY I record
::= comparison IAND comparision] ...
::= expn [, expn] ...
::= SWITCH expn OF labellist

3.2

3.6
6

3.6
5.9

3.2
3.6

a

i

1.3
3,5.4
3.4

3.4
3.4
4.'t.2

4.1.2
3.4
3.5.2
3.6
5.10
3.4

4.1.2
1.9
5
1.3
3.2
3.5.1

3.2
3.4
3.7
6
5
4.1.2
1.4
1.3
1.4
1.4
4.1.2
4.3
4.1.2
5.5

4.2.3

1.6
,.

term
title

Imonadicop] ... primary
T I TL E sequence-of-characters-
excl ud i ng-sem icolonr;

::= block I assignment I gotost I

switchst I ifst I forst 1 whilest I

procst I returnst I dummyst I

codest

unlabelledst

55

rrariable ::= identifier I arrayelement I

recordcomponent 4.1.2

whilest ::= WHILE condition DO sequence
REP 5.8

The clas names'npconstantl,'npexpn' and'vectordec' have been omm itted
from the above list because they are.merely subclasses of 'constant', 'expn'
and 'arraydec', respectively; these classes are introduced in the body of this
manual only as an explanatory aid.

