rH
RTL/2

Ruri time environment on P800

RE THE OTHER PAR
STK (INTTOP, RE
N, REF ARRAY BY
INT, ARRAY (16) IN
TA RTLSYS; % TA
PTR, CPTR, XPT
STRUCTURE OF

T THE STACK..IT |

'6) BYTE HX:=¢0

; IF 1# NOL- AND |

= (CELL--LAST - L OCA

'+ RPTR ¥ 8,60 TO

o 1139(
4 gxgzos 3‘1 T 1 001 \
ot EE 820C
SUFFER () = s 1420
eoc, 7o AR 1930(
NAME (RAF LkCE 1000
1200/
yE204

1NAME (REF LKC
4000

H R TU 21000

27071
1026
11004
37100
/000

=10 OR PTR =2
.OUNT := RTLLCT (O)
=97 THEN FLAG :
OTE THAT & MAPS

RTL/2 Specification

THE RTL/2 RUN TIME ENVIRONMENT ON THE PHILIPS P800 SERIES

RTL/2 REFERENCE:69 VERSION:1

Authors: D. Webster, G.C. Stevenson, C.I. Dimmer

Date: l4th April 1976.

Related Documents: Listed in Section 8.

Purpose: To describe the operation of the object code generated

by the P856/7 RTL/2 compiler. The body of the document
is concerned with establishing a suitable environment.
Appendices include specifications of the control routines

and code conventions.

Philips Data Systems Publ. Nr.: 5122 991 28131

Systems Programming Limited
1976

All rights reserved.

Lo i

SECTION

APPENDIX

CONTENTS

INTRODUCTION

STACKS

SvC

Stack Usage

Stack Format on P800
Entering The User's Program
Multiprogramming

Use of A6,Al4

DATA BRICKS

CONTROL ROUTINES

THE
5.1
5:.2
5.3
5.4
5.5

BASE PROGRAM

Base Program Functions
Start-up Code

SVC DATA bricks

RRGEL

Miscellaneous

OPERATING SYSTEM INTERFACE

STANDARDS

REFERENCES

I.1 INTRODUCTION

I.2 BASE PROGRAM

I.3 CONTROL ROUTINES
I.4 SVC DATA BRICKS
I.5 OTHER TOPICS

PAGE

1/1

2/1
2/1
2/2
2/4
2/7
2/8

3/1

4/1

5/1
5/1
5/
5/1
5/2
5/3

6/1

7/1

8/1

I/1
I/1
I/1
I/2
I/2

o/1

0/2

APPENDIX

IT

III

Iv

II.1
IT2
IT.3
I1.4
II.5

ELL <1
ITI.2
III.3
ITT.4
IIT:5
IIL.6
ITT.7

IV. L
Iv.2
Iv.3

PAGE 2

INTRODUCTION
CONTROL ROUTINE ENTRY
PARAMETERS AND RESULTS

DETAILED SPECIFICATIONS

OPTIONAL EXCLUSION

INTRODUCTION

THE STACK MECHANISM
STACK SIZE ESTIMATION
REGISTER CONVENTIONS
RTL/2 DATA FORMATS
BRICK LAYOUT

CODE STATEMENTS

INTRODUCTION
STANDARD RTL/2 BRICKS

NON-STANDARD BRICKS

PAGE

I1/1
11/2
11/3
11/4
11/24

ITI/1
ITI/1
II1I/7
II1/8
IT11/12
III/17
III/19

Iv/1
v/l
Iv/2

INTRODUCTION

This document describes the environment in which an RTL/2 program

executes and how to set it up for initial entry to a user's program.

When an RTL/2 program is running it assumes that certain conventions
are obeyed, e.g. that some registers point at specific areas of core,
and that these in turn contain information which will not be violated
behind the program's back. Entry to such a program will obviously
have to be performed via some code sequence not written in RTL/2 and
not therefore bound by these conventions. Obviously this is heavily

machine dependent. This document deals with the P800 environment.

The basic aim is to describe those aspects of RTL/2 program execution
common to all implementations on P80Q computers. A discussion of
operating system interfacing has also been included and two appendices
describe the 'control routines' and the code section linkage

conventions.
This document should contain all the information a user needs in order
to run his own programs under a new operating system; it does not

attempt to tackle the problem of moving the RTL/2 utilities as well.

The reader is assumed to be familiar with the P800 and the documents

listed in the references section.

1/1

3 I

2:1s3s

STACKS

Stack Usage

Any correct RTL/2 program manifests itself at run-time in the

form of nested control operations. This is most obvious in the

case of procedure execution; it is only possible to enter a
procedure at its head, and exit either by obeying a RETURN or
ENDPROC statement, which returns control to the calling procedure,
or by performing a GOTO to a label variable residing in a data
brick, or passed as a parameter to the procedure, i.e. one that

can only have been initialised by a procedure which has already
executed in part. The procedure call/return mechanism is explicitly
nested and is enforced by the syntax of the language, but the

GOTO exit is only verifiable dynamically and may fail since there is

no guarantee that the label has been set.

Textual nesting can occur within a procedure, for instance where
variables are declared in BLOCKS or FOR loops. These are of no
concern in RTL/2 since all stack manipulation beyond the simple
allocation of space for temporary results is done on procedure

entry and exit.

A 'stack' (last-in first-out list) is used by the RTL/2 object
code to hold this nested information. In order to start up an
RTL/2 program, we must set up an embryo stack in the appropriate
layout. Appendix II contains a general discussion of the object
code and describes the stack in detail. Some of this information

is repeated here.

2/1

2/2

2.2.

2.2.1.

252wl

Stack Format on P800

Fig.2.l. shows the layout of a section of stack as it would be
utilised by a single procedure. It contains-all the regions

which may or must be created on procedure entry. The first
executable instruction of every procedure body is a call on a
procedure entry 'control routine' which, using a parameter embedded
in the code, allocates space for local variables on the stack,
beyond any similar regions already created. On procedure exit

this space is de-allocated. Thus, as successive, nested procedure
calls are obeyed, the stack expands. As exits are obeyed the

stack contracts.

The 'Link-Cell' contains all the information needed to control

the un-nesting operation. It has two elements:

i) the address of the link cell for the procedure which
called this procedure, and

ii) the program counter value for resumption in the calling

procedure.

Via element (i), all 'live' link cells are chained together.
The entry to this chain, i.e. the address of the currently
executing procedure's link cell is held permanently in register

Al2.

TOP OF STORE

PARAMETERS

RETURN
ADDRESS

LINK

D PREVIOUS LVP

}PROCEDURE

ENVIRONMENT
Al2 LOCAL

VARIABLES
LOCAL

VARIABLE
POINTER (LVP)

WORKING

STORAGE

J LOGICAL
N e S FUU Pt t—TOP OF STACK

W \\r--—l

v Ap ¥
L - @ J
‘_———— Al4d
CONTROL
ROUTINE
STACK AREA.
Fig. 2.1. - STACK LAYOUT OF A SINGLE PROC.

2/3

2/4

Entering The User's Program

Having examined the dynamics of stack utilisation we are now in

a position to describe the requirements for setting up the stack

for entry to the 'first' RTL/2 procedure of a program. All we

need do is generate sufficient of the standard procedure environment
as is necessary to match the specification of the procedure. In

the simplest case of a main procedure with no parameters, no local
storage, and returning no result it might be adequate to simply

call it by the single instruction:
CF A6, MAINPROG

which, assuming that A6 has been initialised, leaves the stack

looking like this:

RETURN ADDRESS

Link cell
a1 ———=— OLD LVP
(LVP) G

The "0ld LVP" value will be unde fined, which is fine as far as
obeying the corresponding procedure exit back to the 'start-up'

code is concerned. However, the control routine which interprets

global GOTO statements has to have some way of determining whether

the target label is in scope, which it does by scanning the chain
of link cells backwards, looking for a match on Al2. If the label
has not been set, no match will be found and it will not recognise
the end of the chain. Thus, the convention has been made that the
first location on the stack will always contain its own address, and
that Al2 will point to it just before entry to the main procedure,

thereby positively terminating the chain.

Al12(LVP) 3 OLD LVP

A suitable entry sequence might be:

LDR Al2,n6

STR Al2,A6

SUK 26,2

CF A6,MAINPROG

which, after procedure entry housekeeping, would leave

the stack like this:

TERMINAL HALF LINK
CELL

RRT ADDRESS Link cell for MAINPROG

Currently, all run-time support packages have start-up
routines which use this convention. They are independent
of the characteristics of the user's programs which must
always be entered by a procedure of the same name. Every
user's main program wouldtherefore have the following

RTL/2 specification:

ENT PROC () MAINPROCEDURENAME ;

Conventionally, the main procedure is called RRJOB in

accordance with RTL/2 recommended standards.

2/5

2:3:5, Entry With Parameters

This arrangement is fine for entry to a single program
environment but when a system is constructed from several
processes it may be desirable to supply some sort of
parameter to each. Consider, an interactive system written
in RTL/2 supporting several terminals. Since the code is
re-entrant one possible (not necessarily the best) method
of making the particular terminal number available to the
program would be to specify this number as a parameter,

thus:

ENT PROC MAIN (INT TERMNO) ;

and to enter it via:

LDR Al2,A6
STR Al2,A6
SUK A6, 4

ST A5,2,A6
CF A6,MAIN

(assuming the number to be in A5) leaving the stack so:

Dummy link cell.

) TERMNO Parameter
AL2(LVP)— B 8" "~ — = ~ = == = =~ }Link Cell

Obviously any number of parameters may be treated in this

way.

2/6

2.4.2.

Multiprogramming

In the above example it has been assumed that the start up

code has been run as part of the process which was to execute

the RTL/2 program, for by definition a stack characterises a
process. If another process were to be made responsible for
setting RTL/2 stacks, for instance when creating processes
dynamically, the initial values, of Al2,Al4 would have to be
picked up via some external agency (e.g. a dynamic store
allocator or a list of spare stacks). Any parameter would then
have to be inserted into the appropriate core locations and

the initial values of Al2,Al4 copied into the task's register
dump area, wherever that might be. How this is done is obviously
system dependent in the extreme. It is not generally possible to
do so entirely in RTL/2 code, even if the stack is declared

as a STACK brick in an RTL/2 source module, since assignments

to stacksare not defined in the language. Named RTL/2 stacks

may be accessed (manipulated internally) only by machine code

sections.

The method of process parameterisation suggested above is not
generally satisfactory since, being local workspace, the
parameters are not accessible to other procedures run as part
of that process unless they are passed as parameters of each
call, which is inefficient. In section 3 an alternative

method using SVC data bricks will be described.

2/7

2/8

2.5.3.

Use of A6,Al4

NOTE that A6 is not used as a 'stack pointer' except during
procedure entry. All access to parameters, local variables
and workspace items is by indexed addressing using register
Al2, the compiler performing calculation of &ll offsets from

the current link cell.

During procedure entry A6 points to the logical top of
stack and part of the workspace area of the calling procedure

becomes the parameter area of the called procedure.

Al4 points to a logically distinct portion of the stack and is
used when calling control routines, and any FORTRAN subroutines

used.

SVC DATA BRICKS

An ordinary data brick appears only once in core.

It may be private off-stack workspace of a

particular procedure or group of procedures, or it

may act as a common communication area between several
processes. It is often necessary to have the ability

to create data bricks which, like stack, are private to
and referenced by the same name in each process, thereby
preserving the re-entrancy of the code. In RTL/2 such
areas are known as SVC DATA bricks. The compiler
accesses SVC and ordinary DATA bricks differently. The
latter are always addressable via some internally or
externally defined symbolic label; the former, of which
there may be many instances in a multiprogramming system,
have to be addressed via a register, Al3 on P800, the
administration of which is outside the scope of RTL/2.
Al3, like Al2,Al4 has to be set up in assembler for each

task in the system.

3/1

3/2

325 The RTL/2 object code references items in SVC data

bricks via symbolic offsets with respect to Al3.

For example:

SVC DATA FRED;
INT I,J,K;
REAL R;

ENDDATA;

SVC DATA RRSIO;
PROC () BYTE IN;
PROC (BYTE) OUT;

ENDDATA-

PROC JOE () ;
PROC (BYTE) P:=0UT;
END PROC;
might lead to the generation of:
LD A4,RRSIO+2,Al3
ST A4,-2,A12 for the assignment.

3.4.

3:5.

36

It is the system constructor's responsibility to specify the
mapping of all SVC data bricks by means of assembly language
equivalences. For instance, the bricks defined above would

be declared:

FRED EQU O
RRSIO EQU FRED+12
in some module, which definitions would be used in each

program or task.

To guarantee re-entrancy in all the systems constituent
procedures, the SVC DATA area mapping should be the

same for any program or task. If the designer can group
procedures by process it may be that some core can be
saved by 'overlaying' some SVC data; however, this sort

of technique is exceedingly dangerous and should be avoided.

Some SVC DATA bricks are mandatory if the target system

is to comply with RTL/2 standards. These are:

RRERR - error handling

stream I/0

RRSIO stream I/0
RRSED

The control routines and start-up code released to the
user also assume the presence of other bricks, which
include the bottom address of the stack for procedure
entry checking purposes, and INT items which are used

to record the low limit of the stack and the current line
number for code compiled with the TR option. Full details
of these SVC DATA bricks appear in Appendix IV.

3/3

3/4

4.

4.1.

4.5.

4.6.

CONTROL ROUTINES

Control routines are assembler subroutines which support RTL/2

generated code at run time. They fall into four main categories:

(1) Procedure entry/exit, GOTO Label variable housekeeping
(ii) Array bound checks and shift count checking.
(iii) REAL arithmetic.

(iv) Type conversions.

Some of these control routines can be omitted in certain

circumstances (refer to Appendix II for details).

The control routines detect certain unrecoverable errors.
In all cases control is transferred to an error handling
routine (R:RO0) which simulates an RTL/2 procedure call to
RRGEL, which procedure is defined in the RTL/2 System

Standards.

The implementor may vary these error handling conventions 1
he wishes and is at liberty to 'optimise' procedure entry by

removing any or all of three current facilities which are

(1) the stack limit check.
(ii) the stack usage recording.
(1ii) workspace base recording.
The specifications of all the control routines may be found in

Appendix II.

The control routines, although specific to the P800 computers

are independent of the operating system.

4/1

4/2

5.2.1.

THE BASE PROGRAM

Base Program Functions

The base program is responsible for establishing a suitable
environment for the execution of an RTL/2 program. It has

to perform three main functions:

(1) initialise the stack and registers for entry to the

user's RTL/2 program.

(ii) allocate space for SVC DATA bricks and set SVC

DATA items to suitable default values.

(iii) provide the standard error procedure, RRGEL.

The base program is written in assembler and is specific

to both the machine and operating system.

Start-up Code

This sets up the RTL/2 working environment and enters the
user's main procedure. The stack must be initialised as
described in Section 2, together with Al2,Al4. Al3 must
be set up to point at the beginning of the SVC data area

as described in Section 3.
When control is returned from the user program some sensible
action, such as returning control to the monitor, must be

taken.

SVC DATA bricks

The base program will normally allocate space from the
stack area for SVC DATA. Since the base program must
initialize the items in this area, it must 'know' the
shape and size of all SVC DATA bricks.

The definitions described in Section 3 will usually appear
in the base program together with ENTRY directives for

SVC DATA brick names.

5/1

5/2

5.4.

5.4.1.

RRGEL

RTL/2 system standards require that the SVC data brick RRERR

be incorporated in all systems. It is declared:

SVC DATA RRERR;
LABEL ERL;
INT ERN;
PROC (INT) ERP;

ENDDATA ;

In order that the user be able to GOTO ERL without having to
forego whatever system error monitoring facilities are

available, the procedure:
PROC (INT) RRGEL;

will invoke the monitoring before exiting to ERL. The control
routines, on detecting an error, call RRGEL in exactly the

same way as would an RTL/2 program.

The user must code RRGEL in accordance with his requirements

for monitoring. Normally the contents of all the registers will
be dumped to a suitable device, along with the error number
(the parameter of RRGEL) and possibly the current source code
line number if this option is in use. Having done this the base

program should GOTO ERL, if ERL is in scope. Since a control

routine may fail before the user's RTL/2 program has attempted
to set ERL, a default should be inserted by the start-up code.
Beware of failures in RRGEL which could cause indefinite looping.
Correct monitoring of stack overflow (standard error 1) demands
that the limit against which the stack check is made allows an

emergency margin always available for the execution of RRGEL.

Miscellaneous

In single program systems, it may be convenient to include a

stack and SVC DATA bricks in the base program, in a ready-
—initialized state. This may also be possible in a multiprog-
-ramming environment but care must be taken over the restartability

of the code and the re-entrancy of any code to be shared.

5/3

5/4

OPERATING SYSTEM INTERFACE.

It is conventional in P800 series operating systems to

use the LKM instruction to enter operating system functions,
with parameters in registers A7,A8 and in some cases a result in
in A7. An in-line parameter following the LKM defines which

function is to be performed.

The RTL/2 compiler for P800 computers compiles an SVC PROC
call into such a sequence, and so long as the convention is
adhered to then no low-level coding is required to access

operating system functions.

For any operating system facility not conforming to this
pattern the recommended approach is to write an RTL/2
callable procedure, the body of which presents a completely
RTL/2 compatible parameter and result specification.

Further run-time support software can then be written using
such procedures, and SVC PROC calls, with little recourse to

low—-level code.

6/1

STANDARDS

All standard commercial compiler packages attempt to provide
facilities according to the RTL/2 recommended standards.

The stream I/O formatting procedures are written in applications
RTL/2 and can be used immediately providing that suitable
procedures to match IN and OUT in RRSIO have been coded (usually
in RTL/2 and using the operating system's I/O facilities).

Since IN and OUT imply a ‘current stream' in each direction,
further procedures are required if programs are to establish
associations of streams with peripheral devices or files, and
to allow routing of data to and from a number of streams. These
procedures and the. actual IN and OUT procedures are collectively
known as a 'stream I/O support' package, and they are worth
providing as a basis for writing portable - or at least trans-

portable - programs.

Certain systems will no doubt not need this I/O capability, but
the error handling conventions should always be followed unless
the user wishes to modify the control routines in a fundamental

way. Too much modification in this area can lead to trouble

when subsequent software releases are made.

7/1

8. REFERENCES

(i) RTL/2 Language Specification, June 1974

RTL/2 Reference 1, Version 2. (5122 011 28951)
This document is the authoritative definition of the

RTL/2 language.

(1) Standards for RTL/2 Systems, May 1973.

RTL/2 Reference 4, Version 2. (5122 011 28961)
This defines RTL/2 standards.

(4id) Standard Stream I/O for RTL/2 Systems, May 1973.

RTL/2 Reference 5, Version 2. (5122 011 28971)
This expands the definition of the standards for stream

I/0.

(iv) PBOOM Programmer's Guide

8/1

I.1. INTRODUCTION

This appendix contains a list of features of standard
software that the user may wish to modify or re-write

from scratch.

L. 2. BASE PROGRAM

(1) Start-up.
Initialise stack, Al2,Al13,Al4.
Size of Al4 area if to be used for other purposes
(e.g. FORTRAN)
Call user's main procedure.
Handle the return and exit to monitor.
(ii) Default ERP and ERL.

(iii) Procedure RRGEL.

I.3s CONTROL ROUTINES

(1) R:RO1l - procedure entry
Stack check
Usage recording

(ii) Calls to RRGEL (all made via R:ROO)

(iii) SvVC DATA definition for access to stack usage
monitoring and control items.

(1v) More elaborate debugging aids can be conveniently
added to the control routines.
e.g. monitoring of procedure entry/exit, general

GOTO's.

T /el

I/2

SVC DATA BRICKS

(1)

(i)

OTHER

Decide mapping of SVC DATA bricks
Define this mapping. Usually by global definitions
of brick names in the base program but not

necessarily so.

TOPICS

(1)

(ii)

Having defaulted ERL and ERP in the base program
the user may wish to set up these variables to
point at RTL/2 quantities.

The implementor is at liberty to code the procedure
RRNUL, RRIPF and RROPF in RTL/2. He may not,
normally, do this with RRGEL without dropping into

code.

6 I [

INTRODUCTION

These routines are assembler-coded subroutines which

support the RTL/2 compiled code in a running system.

Some of them may be excluded from an RTL/2 program
or system. Section II.6. deals with optional exclusion

of various routines.
All the control routines are re-entrant. One copy may

be shared among any number of concurrent RTL/2 programs

or tasks.

I1I/1

IT.2 CONTROL ROUTINE ENTRY

The Control Routines differ from an RTL/2 procedure
in the method by which they are called. They cannot

be explicitly called in RTL/2 text, although they can of

course be called explicitly in CODE sections.

Most of the control routines are entered by:-

CF Al4,R:Rnn

and return to the compiled code by:-

RTN Al4

Refer to the detailed specifications for exceptions'

to the above.

II/2

IT.3s

PARAMETERS AND RESULTS

Parameters and results of control routines are
generally passed in registers. Some constant
parameters are planted in-line in the compiled

code as DATA directives.

The control routines operate on various types
of data, including the transient double length
fixed point forms ("Big" and "fine" forms).

Appendix III deals with all data formats.

Byte variables, as in all stack operations,
occupy the least significant half of a whole

word on the stack, the most significant half

being undefined. Variables of more than one word

(REAL, big, fine or LABEL) are arranged on the

stack in the same address order as they would be in

a data brick.

I1/3

I1.4 DETAILED SPECIFICATIONS

In the descriptions which follow the control
routines are grouped as they are grouped into

separate assembler modules.

The "registers used" are in addition to any

for parameters and results, and are stated

so that CODE section authors are aware of

which registers will be modified when calling
contfol routines from CODE. The control routines
assume that Al2,A13 and Al4 have not been
corrupted. For further information on writing

CODE sections refer to Appendix III.

Errors are mentioned only briefly in II.4

Full information is given in II.5.

I1/4

IT.4.1. CONTROL ROUTINE ERRORS

Module IDENT: — RTLROO

Control Routine:- R:ROO

I1.4.1.1. R:ROO Error handling, control routine errors

Called bz:—

(CODE sections or other control routines

only - never from compiled code.)

CF Al4,R:R00

DATA <error numbery

Action:-

R:ROO simulates an RTL/2 call on the standard

error procedure RRGEL.

Registers Used:-

A6, A9; the former contents which may be of
value in understanding the error are saved

in the Al4 area of the stack.

BExit:=

Via RRGEL to ERL, no direct return to calling

sequence.

I1/5

IT.4.2. Procedure Entry and Exit

Module IDENT:- RTLROL

Control Routines:- R2RO1l, R:RO2

IT.4.2.1.R:RO1l - Procedure Entry Housekeeping

Procedure calls are compiled into:-

<parameters into stack)
{set A6 pointing below parametersh

CF A6,<proc>

Procedures begin:-

CF A6, R:ROL
pata {n)

where (n) is the size (in words) of the local
variables and the maximum workspace required

by the new procedure.

Exit:- to instruction following DATA {n) .

Errors Detected:- Stack overflow - error no.l.

Registers Used:- A5.

II/6

I

[N

R:RO2 - Procedure Exit

Called by:-

{result if any to Al.——-b)
ABL R:RO2

Procedure results are always passed back

in Al (plus A2, A3 if result is of more

than one word.)

Action:- R:RO2 unwinds the stack to the link

cell of the calling procedure.

Exit:- to the calling procedure at *+he instruction

following the procedure call.

Registers Used:- A4.

I1/7

11/8

4.3,

Array Bound Checks

Module IDENT:- RTLRO3

Control Routines:- R:RO3, R:RO4,

R:RO5, R:RO6,
R:RO7.

Function:-

These control routines compute the address of an

array element from the array base address and a subscript
value. The element address is checked against the bounds
of the array and an unrecoverable error results if the

address is found to be outside.

Errors Detected:- Array bound check - error no.4.

Result:- (array element address) in A9. Neither A3

nor AlO are modified.

IT.4.3.1. R:RO3 - Arrays of BYTES

R:RO4 - Arrays of INT, FRAC, PROC, REF, and STACK.

R:RO5- Arrays of REALs

R:RO6 - Arrays of LABELS

Called by:-

{array base address to Alo)
<array subscript value to A3>

CF Al4, R:Rnn

Exit:- to instruction following, ’

CF Al4, R:Rnn

Registers Used:- All.

II/9

I1/10

IT.4.3.2. R:RO7 - Arrays of records.

Called by:-

<@rray base address to AlO>
<grray subscript value to A3>

CF Al4, R:RO7

DATA (record length (in bytes))

Exit:-= to instruction following

DATA (record length>

Registers Used:- Al, A2, All.

Bl .4.4; Check Shift Count for SHA, SHL

Module IDENT: - RTLROS8
Control Routine:- R:RO8
Function:- Checks shift counts for SHA, SHL instructions.

A maximum count is substituted for any value
in excess of the maximum.
Negative shift counts are biassed in readiness

for instruction manufacture.

Called by:-
(ﬁhift count value to A3>
CF Al4, R:RO8
Exit:- to instruction following the

CF Al4, R:RO8
where the following code appears:-—
ADKL A3,/3sss
EXR A3.
"sss" depends on the type of shift and the

register (s) to be shifted.

I1/11

I1.4.5. General GOTO

Module IDENT:- RTLRO9
Control Routines:- R:R09,
R:R10.

IT.4.5.1. R:RO9 - Stack Unwind

R:RO9 is only called from R;R10 and other assembler-written

code.

Function: -

R;RO9 takes a LABEL value, checks whether the value is in scope.
If so it unwinds the stack to the link cell of the procedure
activation where the LABEL was set, and goes to the address

held in the label.

Called by:-
Label into Al, A2, A3
Al = target address
A2 = LVP (Al2 value)
A3 = Link cell return address
CF Al4, R:R0O9
Exit:-

to instruction following the,
CF Al4, R:RO9 only

if the label is out of scope.

Registers Used:- All.

II/12

IT.4.5.2% R:R10 - General GOTO.

Function:-

R:R10 uses R:R0O9 to check the LABEL value and to GOTO

it if it is in scope.

Called by:-
{Label into Al, A2, A3
(see R:RO9 spec)
CF Al4, R:RI1O
Exit:-

Never returns to calling sequence. Either proceeds to

LABEL setting or unrecoverable error procedure.

Errors Detected:- LABEL out of scope-

error no. 2.

Registers Used:- See R:RO9Y spec.

IL /23

II/14

IT.4.6.

Line Number Trace

Module IDENT:- RTLRL1l

Function:-

Monitors RTL/2 line numbers when OPTION ()TR in use.

Called by:- CF Al4, R:R1ll
DATA <iine numbef?

Exits— to instuction following the

DATA {line number)

Registers Used:- All

R:R1l may be recoded to monitor the execution of an RTL/2
program, printing out line numbers as they are executed,
or to provide greater information on error conditions,

e.g. the last 10 lines executed.

IT.4.7. Compare LABELs and REALs

Module IDENT:- RTLR12

Control Routines:-— R:R12, R:R13

IT.4.7.1.R:R12 Compare LABELS

Called_Ez:»
{label-1 target address to Al)
{label-1 LVP (Al2 value) to A2)
<@abel—l link cell return address to A3;>
<pointer to label-2 to A%)
CF Al4, R:R12
Result: -
AlO zero if labels equal,
non-zero if labels unequal.
Exit:- to instruction following CF Al4, R:R12.

Registers Used:- All

(A1, A2, A3, A8 are preserved.)

I1/15

L[I.4.7.2. R:R13 - Compare REALs

Called by:~

<:REAL—l mantissa, more significant half,
to al)

<§EAL—1 mantissa, less significant half,
to A2.)

<ﬁEAL -1 exponent to A35>

<?ointer to REAL-2 to AQ)
CF Al4, R:R13

Result:-
AlO zerc if REAL-] = REAL -2
AlO +ve if REAL-~1 > REAL-2
AlO ~ve if REAL~-2 > REAL-1
Exit:- to instruction following CF Al14, R:R13.

Registers Used:- All
—=2x=05 Jsed

(Al, A2, A3, A8 are Preserved)

I1/16

IT.4.8.

REAL Add and Subtract

Module IDENT:- RTLR14

Control Routines:- R:R14, R:R15

Functions:-

R:R14 adds REAL numbers

R:R15 subtracts REAL numbers

Called by:-
<operand—l into Al, A2, A3>

<Pointer to operand-2 to A8>
CF Al4, R:Rnn

Result: -
In Al, A2, A3. For R:R14 this is
(operand-1 + operand-2). For R:R15
it is (operand-l1 - operand-2).
Exit:- To instruction following the,
CF Al4, R:Rnn.
Errors Detected:- Floating point overflow-—
~ error no. 6.
Registers Used:- A7, A9, AlO, All

(A8 preserved).

II/17

IT.4.9. REAL Multiply

Module IDENT: RTLR16O

Control Routine:- R:R16
Function:- Multiplies REAL numbers.
Called by:-

<operand—l into Al, AZ, A37
(pointer to operand-2 to A%}
CF Al4, R:R16

Result:- (Operand-1 * Operand-2)

In Al, A2, A3.

Exit:- to instruction following the,

CF Al4, R:R1l6.

Errors Detected:- Floating point overflow

- error no. 6.

Registers Used:- A4, A5, A6, A7, A9, AlO, All

(A8 preserved).

I1/18

II.4.10

REAL Divide

Module IDENT:- RTL217

Control Routine:- R:R17

Function: - Divides REAL numbers.

Called by:-

<operand—l into Al, A2, A1>
,<§minter to operand-2 into AQ>
CF Al4, R:R17

Result:- (Operand-1/Operand-2)

In Al, A2, A3.

Exit:~ to instruction following the,

CF Al4, R:R17.

Errors Detected: Floating Point overflow

- error no. 6.

Registers Used:- A4, A5, A6, A7, A9, AlO, All

(A8 preserved)

II/19

II/20

IT.4.11.

Fixed Point to REAL Conversions

Module IDENT:- RTLR18

Control Routines:- R:R18, R:R19, R:R20, R:R21, R:R22.

Functions:-

Convert fixed point forms to REAL.
R:R18 converts INT

R:R19 converts FRAC

R:R20 converts Big INT

R:R21 converts Big FRAC or Fine INT.

R:R22 converts Fine FRAC.

Called by:-

<bperand to Al, and A2 if double lengt@>
CF Al4, R:Rnn

Where the operand is double length the more significant
half is in Al.

Re -
S (REAL (operand))

In Al, A2, A3.
Mantissa more significant part Al.
Mantissa less significant part AZ2.

Exponent in A3.

Exit:- to instruction following,

CF Al4, R:Rnn

Registers Used:- None.

I1.4.12. REAL to Fixed Point Conversions

Module IDENT:-~ RTLR23

Control Routines:- R:R23, R;R24, R;R25

Functions: —
Conversions from REAL to fixed point forms
R:R23 converts to FRAC
R:R24 converts to INT

R:R25 converts to BYTE

Called by:-
J P
{ operand to Al, A2, A3>
CF Al4, R:Rnn
Result:- In Al. For R:R25 the BYTE is in the less
significant half of Al and the more significant
half is zero.
Exit:=- to instruction following the
CF Al4, R:Rnn
Errors Detected:~- Fixed point overflow on conversion
- error no. 7.
Registers Used:- None.

I1/21

I1/22

IT.4.13.

ABS REAL and Negate REAL

Module IDENT:- RTLR26
Control Routines:- R:R26, R:R27
Functions:-

R:R26 Negates a REAL number
R:R27 performs ABS (REAL) number

i.e. negate if negative.
Called by:=-
<pperand into Al, A2, Ai>
CF Al4, R:Rnn

Result:- In Al, A2, A3.

Exit:- to instruction following the,

CF Al4, R:Rnn.

Errors Detected:- Floating point overflow

- error no. 6.

Overflow is only possible when ABS or negate operates on
the maximum negative REAL value, when it arises because
one more negative value than positive can be held in a

REAL.

Registers Used:- A7.

I1.4.14 Ooverflow checking

Module IDENT: RTLR28

Control Routines:- R:R28

Functions:— Checks for overflow when OPTION () OV in use.
Called by:- CF Al4, R:R28

Exit:- to instruction following the

CF Al4, R:R28

Errors detected:- fixed-point overflow

- error no. 5

Registers used:- none

Called after any assembler instruction which may set overflow:
add, subtract, multiply, divide, two's complement, increment
and left-arithmetic-shift (possibly due to narrowing) .

May be re-coded to take different action if overflow occurs.

I1/23

II/24

IL:8s

I .51

OPTIONAL EXCLUSION

Introduction

When the control routines are link edited into a
program or task from an object library selection
of only those modules which are required will be

automatic.

This section is provided as a guide to selecting
a subset of the control routines when they are to
be built as a shared area for use by tasks to be

built later.

TABLE II.5.1. — Optional Requirement

Of Control Routines

MODULE CONTROL WHEN NOTES
IDENT ROUTINES REQUIRED
RTLROO R:ROO
ALWAYS
RTLRO1 R:RO1,R:RO2
RTLRO3 R:R0O3,R:R04, Whenever array bound (a)
R:RO5,R:RO06, checks apply.
R:RO7.
RTLROS8 R:RO8 Whenever SHA,SHL
operators used.
R -
RTLRO9 R:RO9 ALWAYS
R:R10
RTLR11 R:R11 If OPTION () TR used
RTLR12 R:R12,R:R13 If REAL or LABEL
comparisons made
RTLR14 R:R14,R:R15 If REAL addition or (b)
subtraction used (c)
RTLR16 R:R1l6 If REAL multiply used (b)
(c)
RTLR17 R:R17 If REAL divide used (b)
(c)
RTLR18 R:R18,R:R19, If any conversions from (c)
R:R20,R:R21, fixed point to REAL.
R:R22
RTLR23 R:R23,R:R24, If any REAL to INT, (c)
R:R25 FRAC or FRAC conversions,
RTLR26 R:R26,R:R27 If ABS or negate (b)
operators used on REAL. (c)
RTLR28 R:R28 If OPTION() or used. I1/25

TABLE II.5.1. - Notes

(a) Array bound checks apply if,

(1) OPTION ()BS or OPTION ()BC used

or (ii) Arrays used in applicationsrRTL/2 where any other

action than reading from ARRAYs of INT, BYTE, FRAC

or REAL is involved.

(b) R:R15,R:R16 and R:R17 all call R:R26 and/or
R:R27 so RTLR26 must be included if any of

RTLR214, RTLR216 or RTLR217 are.

(c) On machines with floating point hardware
RTLR14, RTLRl6, RTLR17, RTLR18, RTLR23,
may all be omitted if

OPTION () FP is used at all times.

I1/26

IIL. 1.

ITT.2

INTRODUCTION

This appendix discusses the conventions of the assembler code used
on the P800 series, both compiler generated code and hand-
written code - so that a user may understand the compiled

code of his system. It also describes how to write code
statements in RTL/2 modules when this is necessary, in order,

for example, to drive peripheral devices. We start by

describing in detail, the utilisation of the stack at run-time.

THE STACK MECHANISM

It is assumed that the reader is familiar with the general notion
of a run-time stack which mirrors at any one time the dynamic state
of a task, i.e. the nested structure of procedure calls which

exist at that time - together with the local data those procedures

are using.

Program workspace grows by working downwards from the high
addreésed end of the stack with procedure data for successively
nested procedure calls.

The stack data for each procedure is arranged on each side of

a LINK CELL as shown:

Al2 Points here

low addresses high addresses
data for
L LINK
WORKING OCAL PARAMETERS '
unused calling

STORAGE VARIABLES | CELL
Proc.

h

PROC ENVIRONMENT

LOGICAL TOP OF STACK

I1I/1

III/2

IIT.2.1.

ITI.2:2.

IIT.2.3.

The LINK CELL

The link cell contains 2 words:

The lower addressed word contains the address of the link cell
(word O) of the procedure which called this procedure. It is
pointed at by register Al2 and thus contains the value Al2 is

to take on procedure exit.

The higher addressed word contains the link address, i.e. the value

register P is to take on procedure exit.

LOCAL VARIABLES

Local Variables are those declared within the current RTL/2
procedure and for loop control data. This data is stored as
it would be in a DATA brick except that BYTE variables occupy
whole words - the more significant half of the word is unused.
Local variables are addressed using indexed mode on Al2. They

may be overwritten after the procedure has completed.

PARAMETERS

These are the RTL/2 parameters, stored in the stack before
calling the current procedure. Within the procedure they

behave as do the local variables.

TIT . 2.4

ELL o2 D

WORKING STORAGE

The amount of working storace in use is variable in size,
being zero on entry to a procedure and accommodating
temporary data (e.g. partially calculated expressions,
temporary dumps of registers) as required. All data

is added or removed from this area by use of the local
variable pointer, Al2.

Al2 is set up to point to the current link cell on
procedure entry. An important case of working storage use
is when one procedure calls another. Parameters for the
called procedure are placed in the working storage of the
calling procedure, which then enters the called procedure.
The latter uses control routine R:RO1l which creates the

new environment and sets Al2 accordingly, the parameters in
working store becoming identical with the parameter area of
the new procedure. Any procedure result is left in the
registers Al upwards on exit from a procedure. The
procedure exit control routine, R:RO2, adjusts Al2 and returns

to the point of the procedure call.

Dummy Link Cell

The high-addressed end of the stack region contains a single
word pointing to itself, which serves as a dummy (half) link

cell to end the chain of link cells pointed to by Al2.

III/3

IIT.2.6. Example of Stack Usage

In an RTL/2 task where:-

(a) the most basic procedure is PROC A () ;

(b) A calls PROC B(INT X, REAL Y);

(c) B calls PROC C(INT P, BYTE Q, LABEL R) INT;
to compute an integer result,

the stack would look as shown in FIG.III.2.1.

The arrows show the pointers used to unwind the
stack when procedures return (by RETURN ENDPROC), or

GOTO statements with a LABEL variable are executed.

The rightmost dummy link cell terminates the chain of

pointers.

Note that the same principles apply if a procedure is
recursive, i.e. calls itself directly or indirectly. A new
link cell, local variables and workspace will be added,
regardless of whether the called procedure is already active

or not.

I111/4

FIG. ITII.2.1. - STACK Mechanism Example

higher addresses —————

REAL | INT | LOCALS | LINK
UNUSED Y X OF CELL
A A
¥
Al2 Dummy
When A is about to call B Link
Cell.
Al2
B LOCALS | LINK LOCALS| LINK
LABEL | BYTE | INT| WORK (0)2) CELL | Y | X OF CELL
R Q P | SPACE B B A A
When B is about to call C
C LOCALS | LINK LOCALS |LINK LOCALS |LINK
WORK OF CELL R Q P OF CELL | Y X OF CELL
SPACE C (& B B A A
; T
When C is in progress
M
LOCALS | LINK B |LOCALS |[LINK LOCALS | LINK
OF CELL R Q P| WORK OF CELL | Y X OF CELL
C C SPACH B B A A
When C is about to RETURN to B
Al2
B [LOCALS |LINK LOCALS | LINK
WORK OF CELL | Y X oF CELL
SPACE B B A A

When C has RETURNed to B.

III/5

I1T.2.7- Ald Area

Al4 is used when calling the control routines
and any FORTRAN subroutines. It points to a
logically distinct stack area which does not
have to be part of the stack used by the RTL/2 compiled

coae.

II1/6

I A

STACK SIZE ESTIMATION

It is improtant that the user be able toc estimate stack size

correctly. Too little stack will cause task failure and may happen

under unusual and untested circumstances when the procedures in the

task are nested to greater depth than normal. Too much stack

is wasteful in core space.

Two techniques may be used:

(1)

(ii)

Initial over—-estimate. The task may be run initially with an

over large stack. An integer in SVC DATA is used by the procedure
entry control routine(R:RO1l) and is updated to the lowest point

in the stack reached by the linkcell/working storage used.

After the task has run for long enough for the user to be
confident that all possible routes have been taken through the
various procedures, (including error procedures), this location
may be inspected. 200 bytes is adequate for tasks of straight-
forward type. Note that recursive procedures can use more

stack than you expect. If IWRT or IWRTF is used for example it
should be tested with the maximum number of significant digits

that the task can produce, e.g. 5.

Accurate calculation. It is possible to calculate the displacement

between successive link cells by inspection of compiled (assembly)
code, and thereby to calculate (by inspection of all possible
routes) the loncest stack usage. This is tedious in complex
programs. The method is as follows:
Add up the {n) values (see II.4.2.1.) for all
procedures in a calling chain - allow for
recursion by multiplying by the maximum depth of
recursion - and find the maximum value this total
can have, i.e. the stack usage of the most demanding
calling chain. Remember that this figure is the no.
of words of stack, and that it must be added to the
allocations made by the base program for SVC DATA bricks

and the Al4 area used by the control xoutines.

IT1/7

III.4 REGISTER CONVENTIONS

The usage of the P800 registers in compiled RTL/2 code
is as follows. Register usage within particular control

routines is specified in detail in II.4.

IIT.4.1 Register O(P) is the program counter.
Register Al5 is the hardware stack pointer. P and Al5 are

not referred to explicity in the compiled code.

I1T.4.2 Registers A1,A2,A3 are used together for:-

(a) Passing back procedure results of all types.
(b) Parameters, particularly REAL or LABEL, to control

routines.
(¢) Transiently to move a REAL or LABEL to or from the
stack.

Registers ALl,A2 are also used for:-

(d) Double length operations, whether involving control

routines or not.
Register A2 is also used for:-

(e) Holding subscripts and addresses during array addressing

without bound checking.
Register A3 is also used for:-
(f) Generation of variable length shift instructions which

are executed by EXR A3.

(g) Holding subscripts during array addressing with bound

checking.

II1I/8

LIT +4 43

Registers A4,A5,A6 and A7 are used together:-

(a)

As an extension of the workspace part of the stack.

The simplest expressions involving no procedure calls
and no conditions do not require any workspace in store.
Any registers in use as a "stack extension" must be
dumped into the stack before procedure calls or branches
(in conditional expressions) or control routines which
use A4,A5,A6 or A7. This dumping is performed by

instructions inserted by the compiler.

Register A6 is used:-

(b)

During procedure entry as a pointer to the base of the
parameters, and thus to where the new link cell should
be planted. A6 is used in the CF instructions used to
enter RTL/2 procedures and the procedure entry control

routine, R:ROl.

III/9

III/10

ITI.4.4

ITI.4.5

ITII.4.6

III.4.7

Registers A7 and A8 are used:-

(a) To hold parameters of SVC PROC calls. (see III.7.6.).

Register A8 is also used:-

(b) As a pointer to the second operand when diadic operations

are performed on data types that occupy more than one word.

(c) Transiently to hold a byte during byte arithmetic.

Registers A9,A10,A1ll are used:-

(a) Transiently within the compiled code
and

(b) By the control routines, also transiently.

Register A9 is also used:-

(c) To hold an address, either an intermediate address in
a complicated expression involving records, or as the

result of an array-bound checking control-routine.

Register AlO is also used:-

(d) To hold an address, either an intermediate address in
a complicated expression involving variable subscripts,

or as a parameter to an array-bound checking control-routine.

Register Al2 is dedicated to being the local variable pointer.
It points to the link cell of the currently executing procedure
and is used to access parameters, local variables and stack

workspace.

Register Al3 is dedicated to being the SVC DATA pointer.

It is used for all access to SVC DATA brick items.

III.4.8

Register Al4 is dedicated to pointing to the control routine
area of the stack. Control routines (except R:RO1l and R:RO2)
are entered by CF Al4,... instructions. The size of the
control routine area of the stack includes an allowance for
the standard error procedure, RRGEL, (which may use the Al4
part of the stack to successfully monitor an overflow of the

Al2 part).

If routines in other languages are to be called from RTL/2
by CF Al4,... (a bridging procedure will be necessary)
then the stack requirements of using such routines must be

added to the "Al4 allocation'".

ITI/11

II1/12

IIT. 5.

TIT.5.1.

IITI.5.2.

IIL.5. 3.

RTL/2 DATA FORMATS

The standard RTL/2 data types are implemented on P800

as follows:

BYTE

An RTL/2 BYTE is a byte of P800 storage. Note that RTL/2
treats all BYTE variables as unsigned which is usually

the case in P800 character instructions. Bytes within

a word addressed left (even address) to right (odd address).

RTL/2 BYTE storage follows this convention.

INT

An RTL/2 INT is represented by a P800 word in the standard

X T \
sign bit 15 bits integer assumed binary
point

2's complement form:

FRAC

An RTL/2 FRAC is represented by a 2's complement 16-bit

word thus:

?
sign bit 15 bits fraction

assumed binary point

Thus 0.5BO is represented by Hexadecimal 4000

-1.0BO is represented by Hexadecimal 8000

ITI.5.4. REAL

The standard 3-word format of P800 is used,

the floating point hardware.

LOWEST ADDRESSED WORD.

conforming to

sign

bit

‘more significant part of
4

mantissa (normalized).

A

assumed binary

point.

NEXT ADDRESSED WORD

unused

bit always
zZero

less significant part of

mantissa

HIGHEST ADDRESSED WORD

sign
bit

exponent

exponent as 2's complement integer.

III/13

IIT.5.4.1. Negative Real Numbers are held with a negative

(2's complement of double length) mantissa, and

a positive or negative exponent as appropriate.

ITI.5.4.2. Zero is represented as 3 words of zero

(i.e. 0.0* (2**0)).

ITI.5:5. REF
PROC variables are all represented as 16-bit
STACK addresses.

IIT.5.6. LABEL

Three words are used:-

Lowest addressed word:

address to go to (new value of 'p')

Next addressed word:

link cell address (new value of Al2)

Highest addressed word:

return address of the procedure

in which the LABEL was set.

III/14

ITL.5.7.

Intermediate Modes

All the transient, double-length, forms use the
standard double length arithmetic format of P80O.

low addressed word high address word
sign |more significant) less significant
bit half half

AN I 1\

(a) (B) unused bit, (C)

always zero.

Only the position of the assumed binary point differs:-

For fine FRAC it is at (Aa).

For fine INT and big FRAC it is at (B).

For big INT it is at (C).

III/15

III/16

ITT.5.:8.

IIT.5.9.

RECORDS

RTL/2 records are laid out as a succession of components
each with its own format as described in III.5.1.-7 and
ITI.5.9. The record has no extra data structure, except
that padding bytes are inserted, if necessary, to ensure
that all non-byte components start at an even address.
Padding is also inserted so that all records, except those
containing only bytes (not arrays of bytes) always start

at an even address.

ARRAYS

Arrays are represented as follows:

L| A1) |a(2) | a3 | e ‘A (n)

where A(1l) ,A(2), etc. are the elements and have their

type and structure as already defined. L is a single

word defining the length of the array as the number of
elements. L is a 1l6-bit integer and is stored at an even
address. Array elements are all stored at even addresses
except when the array is an array of BYTEs or an array of
records which only contain BYTEs; other arrays of records
may thus contain padding bytes. The address of an array
(i.e. a REF ARRAY) is the theoretical address of the

zeroth element. Only in arrays of one-word elements is this

the same as the address of the length word.

Multidimensional arrays are compiled, in the standard RTL/2

style, as arrays of REF arrays as many times as is necessary.

IIT-6 BRICK LAYOUT

RTL/2 bricks are compiled as follows.

IIT.6.1. PROC bricks (other than SVC PROC)

An RTL/2 PROC is compiled with a call to control routine R:RO1
at the head. This routine sets up register Al2 as appropriate.
RETURN statements, wherever they occur are compiled as calls to
control routine R:RO2 whether or not a result is

returned. Details of control routines are given in Appendix IT.

Local variables used by the procedure are implemented in the
stack. They are thus addressed using register Al2, in indexed
mode. Data brick variables may be addressed directly, unless the
data brick is an SVC DATA brick; in the latter case variables

must be addressed using register Al3 in indexed mode.

IIT.6.2. DATA bricks

An RTL/2 DATA brick is compiled with the data laid out in the
order defined in the RTL/2 text. A padding byte is inserted if

necessary before any item which must start at an even address.

SVC DATA bricks are considered to be mapped in the same way,
although SVC DATA bricks cannot be addressed other than via
register Al13 (to ensure that the appropriate task's copy is
used), and cannot be allocated storage by an RTL/2 definition

of them.

ITE/17

ITT: 63+ STACK Bricks

An RTL/2 stack brick is compiled as an uninitialised block
of core, with the length of the remaining space, in bytes,

in the first word.

N.B. the RTL/2 statement STACK FRED 2¢¢

produces the following:

L 198 bytes (contents undefined)

length word,
containing the
number 198.

The stack, if referred to by a STACK variable, is addressed

by the length word address.

IIT.6.4. SVC PROC bricks.

There is no RTL/2 means of compiling an SVC PROC brick.
See section III.7.6. for details of the code compiled for

SVC PROC calls.

II1TI/18

IIT. T CODE STATEMENTS

This section summarises the main features of writing CODE
statements in RTL/2 modules. Familiarity with the assembler

language of the P800 series is assumed.

ITI.7.1. General Principles

CODE statements or 'code sequences' have a syntax which
follows the overall standard as described in the RTL/2

Language Specification Manual thus:

codeseq ::= codeheading codeitem
codeheading ::= digitlist, digitlist;
codeitem ::= ISO7-character-other-than-trip-l-or-trip-2

trip=1 letitem‘name.

letitem ::= name'number'string,comment separator.

In the P800 implementation the characters 'tripl' and 'trip2'
of the specification manual are & and @ respectively.

The trip characters are used to access RTL/2 defined varisbles
or LET names, etc. from within a CODE statement, as described
below. 1In addtion to the two trip characters, the presence

of a pair of dollar signs ("$$") has special significance

in this implementation. (See III.7.7.)

III.7.2. CODE body

A code statement is, as far as an RTL/2 compiler is concerned
similar in nature to other statements.When it is entered during

the execution of a procedure there will be no working storage

in use on the stack (i.e. the workspace area and registers A4,

A5,A6 and A7 will be free) and none should remain in use when it

is completed. The compiler will make no assumptions about the

contents of registers except Al2,A13,Al14 on exit from a code

statement.

ITI/19

IIT.7.2.1. CODE heading information

The programmer must tell the compiler how many bytes
of storage to reserve in-line for the assembler code

between "CODE" and "&RTL". This length must be exact.

Secondly he must state how much workspace in the RTL/2

stack is to be used by the CODE statement in the worst

case. This is so that this requirement will be checked
(when the procedure containing the CODE statement is

entered) by control routine R:ROl.

These two figures appear after the keyword, CODE , thus:-

CODE 42,2;

&RTL;
is a code sequence occupying 42(decimal) bytes, and

using, at most, 2 bytes of stack workspace.

11T.7.2.2. Use of RTL/2 Items

In between CODE; and &RTL; the programmer may write
any legal assembler statements. Care should be taken to
conform to the assembler statements layout requirements.
No editing, other than that described here in response

to trip characters is performed by the compiler.

Trip-1 ('&"'), trip-2 ('@') and "$$" are recognized by the
compiler and displacements, values or symbols are substituted
for RTL/2 items. The following sections describe this in
detail. Note that it is the programmer's responsibility to
use RTL/2 items in a correct manner; for example no

automatic dereferencing will be added by the compiler.

III/20

III.7:3s Local Variables and Parameters

Any RTL/2 defined local variable or parameter of the
current procedure (including FOR loop control variables,
and those declared in inner BLOCKs or FOR loops, where

in scope) are accessible in CODE sections.

The compiler substitutes in response to:-

& variable-name
the displacement of the variable from the current link
cell. The displacement will be positive for parameters,

negative for other locals.

Thus to access a local INT X we can use:-—
(i) LD A4,&X,Al2

since Al2 points to the link cell.

The address of the variable may be calculated, if required,

by:-

(ii) LDKL A4,&X
ADR A4,Al2

leaving A4 pointing to X.

In both examples the compiler will substitute a numeric
displacement, so that if X were -2 bytes from the link

cell:-

LD Ad4,-2,A12 is produced for (i),
and
LDKL A4,-2

ADR A4,Al12 is produced for (ii).

III/21

I1TI.7.4. DATA Brick Variables (not SVC DATA)

Data brick variables may be addressed directly from
within CODE statements by:-

& variable name @ data brick name

The compiler substitutes the offset within the brick

for the variable. The data brick name is not modified if
EXT or ENT , otherwise a compiler-generated symbol (by
which the data brick is known in the compiled code) is

substituted.

For example, given:-

EXT DATA DBX;
REF. INT B;

ENDDATA;

DATA DBLOCAL;
INT C;

ENDDATA ;

the sequence:-
CODE 8,0;
LDKL A4, &C@DBLOCAL
ST A4,&BE@DBX
&RTL ;
might compile into:-
LDKL A4,R%342+/10
ST A4,DBX+/4

III/22

15 8 Ry Y SVC DATA Items

Variables in SVC DATA bricks are denoted in CODE sequences
as for DATA bricks:-

& variable name @ brick name.
and a similar symbolic expression will be substituted.
However, the brick address will be the offset of the brick
from the start of the SVC DATA area, register Al3 must be

used in indexed mode to access the variable.

To access ERN in the standard SVC DATA brick:-

SVC DATA RRERR;
LABEL ERL;
INT ERN;
PROC (INT) ERP;

ENDDATA;

the following might be used:-

LD A4,&ERN@RRERR,A13
giving in the compiled code:-

LD A4,RRERR+/6,Al13

RRERR is defined at 1link edit time.

I1T.7.6. SVC PROC calls

Calls to SVC PROCedures are compiled as:

lst parameter (if two) to A7

ond or only parameter to A8

LKM

DATA PRNAME
where PRNAME is the name given to the RTL/2 SVC PROC,
and is resolved at link edit time to be the correct

LKM number.

If the procedure is declared as returning an integer result,the

result will be assumed to be in A7.

ITII/23

I11/24

391 1 A

Workspace

Workspace on the current RTL/2 stack may be used as

required in a code section, as long as the worst-case

usage is recorded as the second number after the key-word

CODE (see II.7.2.)

The special trip character sequence of "$$" may be

used to access workspace locations, as follows:-

ST Al,$3%$,A12
ST A2,$$+2,A12

"$$" is translated by the compiler to the (negative)

offset of the lowest addressed word of workspace

available to the CODE section. This is calculated

as minus (local space + CODE workspace).

Failure to
may result
corrupting

current oxr

declare such workspace in the CODE heading
in the assembler written statements
the Local variables or link cells of the

other active procedures.

ITII.7.8. Record Components

An RTL/2 component selector may be used to address

a record component. If we have:

MODE COMPLEX (INT RL, IM)

and we have in a data brick, DATATHREE:

COMPLEX C

then C. IM may be moved into register Al, in a code

section, thus:

LD Al, & C@DATATHREE + &IME@COMPLEX

Note then &CE@DATATHREE gives the address of the first
byte in C. &IM@COMPLEX gives the displacement within
any record of mode COMPLEX (2 bytes in this simple

case) .

Record structure layouts need not, therefore, be known

explicity by the CODE section author.

The length of a record may also be retrieved symbolically,
which can be useful in addressing arrays of records. The
length of any record of mode COMPLEX will be inserted in a

code statement in place of:

&COMPLEX

Note that record lengths will always be padded out to a
whole number of bytes unless the record only contains

bytes.

III/25

III.7.9. Array Element and LENGTH.

Array elements are always stored at an address:

Array address + (element number * element size)
Array addresses, i.e. the address the compiler always
substitutes for an array identifier, are adjusted so

that this dis so. An array address is thus the byte

address of a non-existent zeroth element of the array.

ITL 7.9.1. For example, to load the BYTE, AB(I), given an ARRAY
() BYTE AB in a DATA brick, DATAFOUR, and a local INT I,

we might use:-

LD A9,&I,Al2
LC Al,&AB@DATAFOUR,A9

For arrays of other types the subscript would need
multiplication by the element size before use as an

address index.

IIT.7.9.2. In a more elaborate case of a record array:

MODE COMPLEX (INT RL, IM)

ARRAY (10) COMPLEX CC in DATATHREE then
CC(2).IM could be accessed thus:
LD Al, & CC@DATATHREE +&COMPLEX+&COMPLEX+&IME@COMPLEX

the 2nd element being 2 record lengths on from the

array address.

IIT.7.9.3. Array LENGTH words may be accessed at an address two
bytes lower than that of the first array element. Only
in the case of INT, FRAC,REF, PROC or STACK arrays is

this the same as the array address.

III/26

ITII.7.10.

ITT.7.11.

Bricks

The starting address of a DATA or PROC brick
may be accessed simply by trip-1 then RTL/2

identifier, eg.

LDKL Al, & BRICKNAME

Control Routines

These may be used without restriction. External
references should not be written to satisfy the
linkage editor since they are output by the RTL/2

compiler.

Refer to Appendix II for detailed specifications
of the control routines. When called from CODE
sections particular attention must be paid to

register usage.

I11/27

TIX1.7:12s Procedure Calls

III.7.12.1. Procedure bricks may be called from CODE sections by

their RTL/2 names e.g.

CF A6,& PROCNAME

III.7.12.2. A6 should be first initialized to point to the "$$+6"
word and 8 bytes of stack workspace should be included
in the CODE heading for the CF instructions to PROCNAME
and from PROCNAME to R:ROl.

ITI.7.12.3. Parameters must be stored in the stack workspace and
Parameter space should also be added to the workspace

requirement so that, for example, a call to

PROC PQR (INT I,J);

from a CODE section might look like the following.

CODE ..., ,...;
lst parameter to Al (say)
2nd parameter to A2 (say)
ST Al,$$+10,A12
ST A2,$$+8,A12
LDKL A6,%$$+6
ADR A6,Al2
CF A6,&POR
&RTL;

I1I.7.12.4. Procedure results may be accessed directly from Al
(plus A2,A3 if multiple word results). The parameters
will be intact after return and can be accessed at
the same offsets from Al2, although their values may have
been modified by the called procedure.

III.7.12.5. Procedure variables are used 1in the same way as any
other data variables. When used to call procedures in
CODE sections the indirection must be added (Perhaps

by use of CFI rather than CF).

I1I/28

III.7.13 RTL/2 Labels

Label variables are accessed in the same way as other

variables.

Literal labels outside the code statement may be accessed
using the usual '&' facility, e.qg.
ABL &FAIL
causes a jump to the RTL/2 label FAIL, which must be in
the same procedure brick. Literal labels may also be
defined inside code statements so as to be rendered
accessible to RTL/2 statements within the same brick,
thus:
&LI&:
may appear in a CODE section allowing one to write:
GOTO L1 or LABELVARIABLE: = L1

elsewhere in the same procedure.

III.7.14 Constants

III.7.14.1 Constants may be referred to in their RTL/2 form within

a code statement. This has two advantages:

(i) Constants named with RTL/2 LET statements may be
used under their LET names - thus ensuring that
code sections are automatically edited if LET
statements are changed.

(ii) The user can be saved the tedium of calculating
internal representation of real or fractional
constants and can use, for example, octal and
binary forms of integers not available in the

assembly language.

REAL, INT and FRAC constants may be written as 'trip-1'

'constant' where 'constant' has its usual RTL/2 syntax.

I11/29

III/30

III.7.14.2.

I1I.714.3.

A string is translated into the symbolic address in
the string pool of the (theoretical) zeroth element
of the string (which is stored as a BYTE array).

The string will be added to the string pool if it is

not already present.

Example of Constants in CODE

RTL/2 text:-

LET NTASK=12;

CODE o % 6 s a1 9 o IF
LDKL Al,&NTASK
LDXIL, A2, &"STRING"
&RTL:;

Output from Compiler

LDKL al,/c
LDKL A2,R:POOL+ ,,,,

where the string pool, R:POOL, contains

DATA 'STRING'.

III.7.15.

Summary

The transformations which the compiler makes to RTL/2 items

in code statements are as below.

Programmers may use them

in any way which is valid assembler, bearing in mind the

meanings which the table below implies.

RTL/2 Text Corresponding Assembler

&integer literal value in octal

&fraction

&string symbolic address of conceptual zero
element of string in pool

&name&: label followed by : (colon)

&&,&Q &,@ respectively

&identifier depends on use of identifier as below

&modename literal value of length of mode in
decimal

&brickname symbolic address of start of brick

&literallabelname symbolic address of label

&localname displacement of variable from current
linkcell (i.e. from contents of register 5)

&component@mode displacement of component from start of
record

&globalname

@databrick symbolic address of variable

$$

offset from Al2 of the lowest addressed

workspace word available to CODE section.

III/31

III/32

V1. INTRODUCTION

This appendix gives details of SVC DATA bricks expected
by the control routines and RTL/2 base program, as

supplied for Philips P80O0.

IV.2. STANDARD RTL/2 BRICKS

These bricks are described in RTL/2 Standards.
IV:2:1s RRSIO

Initial values of IN and OUT are RRIPF, RROPF

respectively which procedures call RRGEL with error

numbers of 98 and 99 respectively.

IV:2:25 RRSED

Initial values in RRSED are:-

IOFLAG 0]

TERMCH HEX 80 (end-of-stream)
TV 2hs e RRERR

Initial values in RRERR are:-

ERL, points to exit from program

ERN : =0

ERP RRGEL.

Iv/1

Iv/2

IV.3.

IV.3.1Y.

NON-STANDARD BRICKS

RRSTK

This has the specification:-

SVC DATA RRSTK;
INT STKL@,
STKLIM
WSPBAS ;

ENDDATA ;

STKLO is the lowest reached stack addressed since
the program began. Its initial value is the highest
address in the stack. It is used to monitor maximum

stack usage.

STKLIM is the low address limit of the stack. It is

used to check for stack overflow.

WSPBAS is the address of the low end of the current
procedure workspace. It is used to provide a dump of

the procedure workspace.

The addresses stored in STKLO, STKLIM, and WSPBAS are
all word addresses and point to one word below the
lowest used, lowest allowed and lowest workspace word

respectively.

IVs3e2s RRERRX

This has the specification:-

SVC DATA RRERRX;
INT LINENO;
ENDDATA ;

LINENO is the latest RTL/2 line number when the

TR option is in use. Its initial value is zero.

Iv/3

IV/4

