ANK ANKL

Logical AND with constant

ANK ANKL

P851M P852M P856M P857M

Syntax:

Logical product

Bit in r3 or r1	Bit in k or lk	Logical product
0 -	0	0
0	1	0
1	0	0
1	1	1

- T8 The logical product of k and the contents of bits 8-15 of the register specified by r3 is placed in bits 8–15 of r3. Bits 0–7 of this register are set to 0.
- The logical product of lk and the contents of the register specified by T2 r1 is placed in r1.

Type	Function		Syntax	
T8	$(r3)_{8^{\circ}15} \wedge k \rightarrow r3_{8^{\circ}15}$	0 → r3 ₀₋₇	ANK	NEW YORK AND SECTION OF THE PERSON NAMED IN
T2	(r1) ∧ lk → r1		ANKL	r1, lk

Condition register:

bit	0	1			4	5	7	8		15
T8	0	0	1	0	0	r.	3		k	
		304								

bit	0	1			4	5		8	9	10	11			14	15
T2	1	0	1	0	0		r1		0	1	0	0	0	0	0
12	Ė		-			-		-			-				-

- * If T8, r3 must be ≠ 0. If T2, r1 must be ≠ 0.
 * Restricted to system mode if r1 = A15.

ANR

Logical AND register/register

ANR

P851M P852M P856M P857M

Syntax:

[label] ANR [*] r1, r2 [label] ANRS r1, r2

Logical product

Bit in r1	Bit in 2nd operand	Logical product
0	0	0
0	1	0
1	0	0
1	1	1

The logical product of the contents of the register r1 and the contents of the register specified by r2 (direct addressing) or the contents of the memory address indicated in the register specified by r2 (indirect addressing) is stored in:

- (direct addressing) : register specified by r1

- (indirect addressing): either in register specified by r1 (I/s = 0) or in

the memory address indicated in the register

specified by r2 (1/s = 1).

Type	Function	MD	1/s	Syntax	
T1	(r1) ∧ (r2) → r1	00	0	ANR	r1, r2
T3	(r1) ∧ ((r2)) → r1	01	0	ANR*	r1, r2
T3	$(r1) \wedge ((r2)) \rightarrow \{r2\}$	01	1	ANRS	r1, r2

Condition register:

DIL				-	**	0	0	-	-	11	-	14	15
	1	0	1	0	0	r1		N	10	1	12		1/s

Remark:

* If T1, then r1 must be ≠ 0. If T3, and I/s ≠ 0 then r1 must be ≠ 0.

* Restricted to system mode if r1 = A15.

AN

Logical AND

AN

P851M P852M P856M P857M

Syntax:

[label] _ AN[S] [*] _ r1, m[, r2]

Logical product

Bit in r1	Bit in 2nd operand	Logical product
0	0	0
0	1	0
1	0	0
1	1	1

The logical product of the contents of the effective memory address and the contents of the register specified by r1, is placed in this register, when the I/s indicator 0, or in the effective memory address, when I/s is 1.

Туре	Function	MD	1/5	Syntax	
T4	(r1) ∧(m) → r1	10	0	AN	r1, m
T4	(r1) ∧(m) → m	10	1	ANS	r1, m
T5	(r1) ∧(m + (r2)) → r1	10	0	AN	r1, m, r2
T5	$(r1) \land (m + (r2)) \rightarrow m + (r2)$	10	1	ANS	r1, m, r2
T6	(r1) ∧((m)) → r1	11	0	AN*	r1, m
T6	(r1) ∧((m)) →(m)	11	1	ANS*	r1, m
T7	(r1) ∧((m + (r2))) → r1	11	0	AN*	r1, m, r2
T7	(r1) ∧((m + (r2))) →(m + (r2))	11	1	ANS*	r1, m, r2

Condition register:

Remark:

* If I/s = 0 then r1 must be ≠ 0.

* Restricted to system mode if r1 = A15.

ORK ORKL

Logical OR with constant

ORK ORKL P851M P852M P856M P857M

Syntax:

[label] ORK : r3, k - T8 [label] ORKL : r1, lk - T2

Logical union:

Bit in r3 or r1	Bit in k or lk	Logical union
0	0	0
0	1	1
1	0	1
1	1	1

- T8 A logical OR is performed on the contents of bits 8–15 of the register specified by r3 and the value of the constant k. The result is placed in bits 8–15 of the register specified by r3. Bits 0–7 of this register are set to zero.
- T2 A logical OR is performed on the contents of the register specified by r1 and the value of the constant lk. The result of this operation is placed in the register specified by r1.

Type	Function			Syntax	-
T8	$(r3)_{s-15} \lor k \Rightarrow r3_{s-15}$	r3 ₀₋₇	unchanged	ORK	r3, k
T2	(r1) ∨ lk → r1			ORKL	r1, lk

Condition register:

Remark:

- * If I/s = 0 then r1 must be # 0.
- * Restricted to system mode if r1 = A15.

ORR	Ī
ORRS	

Logical OR register/register

ORR

P851M P852M P856M P857M

Syntax:

[label] _ ORR [*] _ r1, r2 [label] _ ORRS _ r1, r2

Logical union:

Bit in r1	Bit in 2nd operand	Logical union
0	0	0
0	1	1
1	0	1
1	1	1

The logical OR of the contents of the 16-bit register specified by r1 and the contents of the 16-bit register specified by r2 (direct addressing) or the contents of the memory address indicated by the register specified by r2 (indirect instruction) is placed:

- (direct addressing) : in the register specified by r1

 (indirect addressing): either in the register specified by r1 (I/s = 0) or in the memory address indicated in the register

specified by r2 (I/s = 1).

Type	Function	MD	1/s	Syntax	
T1	(r1) ∨ (r2) → r1	00	0	ORR	r1, r2
T3	(r1) ∨ ((r2)) → r1	01	0	ORR*	r1, r2
T3	$(r1) \lor ((r2)) \to (r2)$	01	1	ORRS	r1, r2

Condition register:

bit	0	1			4	5	8	9	10	11		14	15
	1	0	1	0	1		r1	N	1D		r2		1/s

- If I/s = 0 then r1 must be ≠ 0.
- * Restricted to system mode if r1 = A15,

OR	
ORS	

Logical OR

OR ORS P851M P852M P856M P857M

Syntax:

[label] OR[S][*] r1, m[, r2]

Logical union:

Bit in r1	Bit in 2nd operand	Logical union
0	0	0
0	1	1
1	0	1
1	1	1

The logical OR of the contents of the effective memory address and the contents of the register specified by r1 is placed either in the r1 register, when I/s bit = 0, or in the effective memory address, when I/s bit = 1.

Type	Function	MD	1/s	Syntax	
T4	(r1) ∨ (m) → r1	10	0	OR	r1, m
T4	(r1) ∨ (m) → m	10	1	ORS	r1, m
T5	(r1) ∨ (m + (r2)) → r1	10	0	OR	r1, m, r2
T5	$(r1) \lor (m + (r2)) \to m + (r2)$	10	1	ORS	r1, m, r2
T6	(r1) ∨ ((m)) → r1	11	0	OR*	r1, m
T6	(r1) ∨ ((m)) → (m)	11	1	ORS*	r1, m
T7	(r1) ∨ ((m + (r2))) → r1	11	0	OR*	r1, m, r2
T7	$(r1) \lor ((m + (r2))) \to (m + (r2))$	11	1	ORS*	r1, m, r2

Condition register:

Remark:

- * r1 must be # 0.
- * Restricted to system mode if r1 = A15.

XRK	
XRKL	

Exclusive OR with constant

XRK

P851M P852M P856M P857M

Syntax:

Exclusive OR:

Bit in r3 or r1	Bit in k or lk	Exclusive OR
0	0	0
0	1	1
1	0	1
1	1	0

- The exclusive OR on the contents of bits 8–15 of the register specified by r3 and the value of k is placed in the register specified by r3.
 - Bits 0-7 of this register remain unchanged.
- The exclusive OR on the contents of the register specified by r1 and lk is placed in the register specified by r1.

Type	Function			Syntax	ĸ
T8	$(r3)_{8-15} \forall k \rightarrow r3_{8-15}$	r3 ₀₋₇	unchanged	XRK	r3, k
T2	(r1)			XRK	r1, lk

Condition register:

bit	0	1			4	5	7	8		15
T8	0	0	1	1	0	r	3		k	
								777	N VIII SI	7

oit	0	1			4	5	8	9	10	11			14	15
	1	0	1	1	0	r1		0	1	0	0	0	0	0

- r1 and r3 must be ≠ 0.
- * Restricted to system mode if r1 = A15.

XR	
XRS	

Exclusive OR

XR XRS P851M P852M P856M P857M

Syntax:

[label] _ XR[S] [*] _ r1, m[, r2]

Exclusive OR:

Bit in r1	Bit in 2nd operand	Exclusive OF	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

The exclusive OR of the contents of the effective memory address and the contents of the register specified by r1 is placed either in the register specified by r1, when the I/s bit = 0 or in the effective memory address, when I/s = 1.

Type	Function	MD	1/5	Syntax	
T4	(r1) ∀(m) → r1	10	0	XR	r1, m
T4	(r1) ∀(m) → m	10	1	XRS	r1, m
T5	(r1) ∀(m + (r2)) → r1	10	0	XR	r1, m, r2
T5	$(r1) \forall (m + (r2)) \rightarrow m + (r2)$	10	1	XRS	r1, m, r2
T6	(r1) ∀((m)) → r1	11	0	XR*	r1, m
T6	(r1) ∀((m)) →(m)	11	1	XRS*	r1. m
T7	(r1) ∀((m + (r2))) → r1	11	0	XR*	r1, m, r2
T7	(r1) \(((m + (r2))) \(\rightarrow (m + (r2)) \)	11	1	XRS*	

Condition register:

bit	0	1			4	5			and the state of t	14	
	1	0	1	1	0	r1	N	1D	r2		1/s
				М	ij,	P					

Remark:

- r1 must be ≠ 0.
- * Restricted to system mode if r1 = A15.

Ī	XRR
	XRRS

Exclusive OR register/register

XRR

P851M P852M P856M P857M

Syntax:

[label] __ XRR [+] __ r1, r2 [label] __ XRRS __ r1, r2

Exclusive OR:

Bit in r1	Bit in 2nd operand	Exclusive OR		
0	0	0		
0	1	1		
1	0	1		
1		0		

The exclusive OR of the contents of the 16-bit register specified by r1 and the contents of the 16-bit register specified by r2 (direct addressing) or the contents of the memory address indicated in the register specified by r2 (indirect addressing) are placed as follows:

- (direct addressing) ; in the register specified by r1

 (indirect addressing): either in the register specified by r1 (I/s = 0) or in the memory address indicated by the register specified by r2 (I/s = 1).

Type	Function	MD	1/8	Syntax	
T1	(r1) + (r2) → r1	00	0	XRR	r1, r2
T3	(r1) ∀ ((r2)) → r1	01	0	XRR*	r1, r2
T3	(r1) \(\tau \tau \tau \tau \tau \tau \tau \tau	01	1	XRRS	0.70000

Condition register:

CR = 0 if result = 0 1 if result > 0 2 if result < 0.

- r1 must be ≠ 0.
- Restricted to system mode if r1 = A15.

TM

Test mask

TM

P851M P852M P856M P857M

Syntax:

[label] _ TM _ r1, r2

The logical product (AND) of the contents of the register specified by r1 and the contents of the register specified by r2 is compared to zero. The result of the comparison is stored in the condition register. The contents of the register specified by r1 and r2 remain unchanged.

Type Function

T1 $[(r1) \land (r2)] \leftrightarrow 0 \rightarrow CR$

Condition register:

Remark:

- * r1 must be # 0.
- * Restricted to system mode if r1 = A15.

TNM

Test not mask

TNM

P851M P852M P856M P857M

Syntax:

[label] __ TNM __ r1, r2

The exclusive OR of the contents of the register specified by r1 and the contents of the register specified by r2 is compared with zero. The result of the comparison is stored in the condition register.

The initial contents of the register specified by r1 and the register specified by r2 remain unchanged.

Type Function

T1 [(r1) \((r2) \)] \(\to \) CR

Condition register:

- * r1 must be # 0.
- * Restricted to system mode if r1 = A15.

TSB

Test and Set Bit

TSB

P853 P854 P858 P859

Syntax:

[label] TSB[*] m[,r2]

This instruction tests a bit in a bitstring, sets the condition register to the value of that bit, and sets the bit to 1.

The address of the first character of the bitstring is the instruction operand, found as follows:

Туре	address

T5 m + (r2)

T6

T7 (m + (r2))

The bit position in the string must be specified in register A2; in addressing the operand it is used as shown below:

0		12 13	15
A2	D	E	3

The bit displacement A20-15 is split up in the character displacement D and the bit number B.

The function of the instruction is:

Туре	Function	Mode	Syntax	
T4	(m+D) _B → CR 1 → (m+D) _B	10	TSB	m
T5	(m+(r2)+D)B → CR 1 → (m+(r2)+D)B	10	TSB	m,r2
Т6	((m) + D) _B → CR 1 → ((m) + D) _B	11	TSB*	m
T7	$((m + (r2)) + D)_B \rightarrow CR$ $1 \rightarrow ((m + (r2)) + D)_B$	11	TSB*	m,r2

Condition register:

CR = 0 if tested bit was 0 CR = 1 if tested bit was 1

bit	0	1			4	5			8	9 10	11	14	15
	1	1	0	0	0	0	0	0	0	mode	r2		1

TSBR

Test and Test Bit / Register

TSBR

P853 P854 P858 P859

Syntax:

[label] TSBR r2

This instruction tests a bit in a bitstring, sets the condition register to the

value of that bit, and sets the bit to 1.

The address of the first character of the string is contained in the register

specified by r2.

The bit position in the string must be specified in register A2; in addressing

the operand it is used as shown below:

The bit displacement A20-15 is split up in the character displacement D and the bit number B.

The function of the instruction is:

Type Function $((r2) + D)_B \rightarrow CR$ $1 \rightarrow ((r2) + D)_B$ T3

Condition register:

CR = 0 if the tested bit was 0 CR = 1 if the tested bit was 1

bit 8 9 10 11 14 15 00 0 0 0 0 r2 0

TRB

Test and Reset Bit

TRB

P853 P854 P858 P859

Syntax:

[label] TRB[*] m[,r2]

This instruction tests a bit in a bitstring, sets the condition register to the value of that bit, and resets the bit to 0.

The address of the first character of the bitstring is the instruction operand, found as follows:

Туре	Address
T4	m
T5	m + (r2)
T6	(m)
T7	(m + (r2))

The bit position in the string must be specified in register A2; in addressing the operand it is used as shown below:

0		12	13	15
A2	D		E	3

The bit displacement $A2_{0-15}$ is split up in the character displacement D and the bit number B.

The function of the instruction is:

Туре	Function	Mode	Syntax	
T4	(m+D)B → CR	10	TRB	m
T5	$0 \rightarrow (m + D)B$ $(m + (r2) + D)B \rightarrow CR$ $0 \rightarrow (m + (r2) + D)B$	10	TRB	m,r2
T6	((m) + D)B → CR 0 → ((m) + D)B	11	TRB.	m
T7	$((m + (r2)) + D)_B \rightarrow CR$ $0 \rightarrow ((m + (r2)) + D)_B$	11	TRB*	m,r2

Condition register:

CR = 0 if tested bit was 0 CR = 1 if tested bit was 1

bit	0	1			4	5			8	9 1	0 11	14	15
	11	1	0	0	1	0	0	0	0	mode		12	1

TRBR

Test and Reset Bit / Register

TRBR

P853 P854 P858 P859

Syntax:

[label] TRBR r2

This instruction tests a bit in a bitstring, sets the condition register to the value of that bit, and resets the bit to 0.

The address of the first character of the string is contained in the register specified by r2.

The bit position in the string must be specified in register A2; in addressing the operand it is used as shown below:

The bit displacement $A2_{0-15}$ is split up in the character displacement D and the bit number B.

The function of the instruction is:

Condition register:

CR = 0 if the tested bit was 0 CR = 1 if the tested bit was 1

bit 0 1 4 5 8 9 10 11 14 15 1 1 0 0 1 0 0 0 0 0 1 r2 1 TB

Test Bit

TB

P853 P854 P858 P859

Syntax:

[label] TB[*] m[,r2]

This instruction tests a bit in a bitstring, and sets the condition register to the value of that bit.

The address of the first character of the bitstring is the instruction operand, found as follows:

Type	Address
T4	m
T5	m + (r2)
T6	(m)
T7	(m + (r2))

The bit position in the string must be specified in register A2; in addressing the operand it is used as shown below:

0		12 13	15
A2	D	E	3

The bit displacement $A2_{0-15}$ is split in the character displacement D and the bit number B.

The function of the instruction is:

Туре	Function	Mode	Syntax		
T4	(m+D)B → CR	10	TB	m	
T5	$(m + (r2) + D)_B \rightarrow CR$	10	TB	m.r2	
T6	((m) + D)B → CR	11	TB*	m	
T7	$((m + (r2)) + D)_B \Rightarrow CR$	11	TB.	m.r2	

Condition register:

CR = 0 if tested blt was 0 CR = 1 if tested bit was 1

bit	0	1			4	5			8	9	10	11	14	15
	1	1	0	1	0	0	0	0	0	m	ode	r	2	1

TBR

Test Bit / Register

TBR

P853 P854 P858 P859

Syntax:

[label] TBR r2

This instruction tests a bit in a bitstring, sets the condition register to the value of that bit.

The address of the first character of the string is contained in the register specified by r2.

The bit position in the string must be specified in register A2; in addressing the operand it is used as shown below:

1)	12	13	15
A2		D	В	

The bit displacement A2 $_{0-15}$ is split up in the character displacement D and the bit number B.

The function of the instruction is:

Type Function T3 $((r2) + D)_B \rightarrow CR$

Condition register:

CR = 0 If the tested bit was 0 CR = 1 if the tested bit was 1

bit 0 1 4 5 8 9 10 11 15 0 0 1 0 0 0 0 0 r2